生命理工学系 News

【研究室紹介】 木村研究室

生細胞・生体内のエピジェネティクス動態制御

  • RSS

2017.06.05

生命理工学系にはライフサイエンスとテクノロジーに関連した様々な研究室があり、基礎科学と工学分野の研究のみならず、医学や薬学、農学等、幅広い分野で最先端の研究が活発に展開されています。

研究室紹介シリーズでは、ひとつの研究室にスポットを当てて研究テーマや研究成果を紹介。今回は、生細胞・生体内のエピジェネティクス動態制御について研究する、木村研究室です。

教授 木村宏

生命理工学コース
教授 木村宏別窓

キーワード エピジェネティクス、細胞核、転写制御、生細胞イメージング
Webサイト 木村研究室別窓

研究紹介

ヒトなど多細胞生物は、ひとつの受精卵から出発し、細胞の増殖と分化を経て個体が形成されます。完成された個体では、個々の細胞はそれぞれ特殊な形態や性質をもち、特化された役割を行使しています。例えばヒトの体は約60兆個の細胞から構成されていますが、どの細胞もほぼ同じ遺伝情報(DNAの塩基配列)を持つにも関わらず、違う形や機能を持つのはなぜでしょうか?それは、個々の細胞で発現する遺伝子が異なるからです。この遺伝子発現の調節には、転写因子のみならず、DNAのメチル化やDNAと強固に結合するヒストンの翻訳後修飾によるエピジェネティックな制御が重要な働きをしていることが分かってきました。特に、ヒストン修飾は、転写の抑制や活性化に働く多彩な修飾を受けることが知られています。 私たちは、ヒストン修飾や、転写を担うRNAポリメラーゼの生きた細胞内での動態を調べることで、細胞の機能や外部からのシグナルに応じて、遺伝情報が必要に応じて発現する仕組みを明らかにしようとしています。

研究成果

代表論文

  • [1] Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, Yamagata K, Ueda J, Nagase T, Haraguchi T, Hiraoka Y, Kimura A, Kurumizaka H, and Kimura H. (2016). A genetically encoded probe for live-cell imaging of H4K20 monomethylation. J Mol Biol, 2016 Aug 14. pii: S0022-2836(16)30305-9. doi: 10.1016/j.jmb.2016.08.010. [Epub ahead of print]
  • [2] Kaimori JY, Maehara K, Hayashi-Takanaka Y, Harada A, Fukuda M, Yamamoto S, Ichimaru N, Umehara T, Yokoyama S, Matsuda R, Ikura T, Nagao K, Obuse C, Nozaki N, Takahara S, Takao T, Ohkawa Y, Kimura H, and Isaka Y. (2016). Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci Rep 6, 24318
  • [3] Dias JD, Rito T, Torlai Triglia E, Kukalev A, Ferrai C, Chotalia M, Brookes E, Kimura H, Pombo A. (2015). Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells. Elife 4, pii: e11215.
  • [4] Kimura H, Hayashi-Takanaka Y, Stasevich TJ, and Sato Y. (2015). Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochem Cell Biol 144, 101-109.
  • [5] Hayashi-Takanaka Y, Maehara K, Harada A, Umehara T, Yokoyama S, Obuse C, Ohkawa Y, Nozaki N, and Kimura H. (2015). Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies. Chromosome Res 23, 753-766.
  • [6] Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y, Sakata-Sogawa K, Tokunaga M, Nagase T, Nozaki N, McNally JG, and Kimura H. (2014). Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272-275.
  • [7] Stasevich TJ, Sato Y, Nozaki N, and Kimura H. (2014). Quantifying histone and RNA polymerase II post-translational modification dynamics in mother and daughter cells. Methods 70, 77-88.
  • [8] Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, and Kimura H. (2014). Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging. PLoS One 9, e106271.
  • [9] Arimura Y, Kimura H, Oda T, Sato K, Osakabe A, Tachiwana H, Sato Y, Kinugasa Y, Ikura T, Sugiyama M, Sato M, and Kurumizaka H. (2013). Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci Rep 3, 3510.
  • [10] Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, Horikoshi N, Kujirai T, Kita H, Kimura T, Hira S, Okada Y, Hayashi-Takanaka Y, Obuse C, Kurumizaka H, Kawahara A, Yamagata K, Nozaki N, and Kimura H. (2013). Genetically encoded system to track histone modification in vivo. Sci Rep 3, 2436.
  • [11] Kimura H. (2013). Histone modification for human epigenome analysis. J Hum Genet 58, 439-445.
  • [12] Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, and Kimura H. (2011). Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39, 6475-6488.
  • [13] Kimura H, Hayashi-Takanaka Y, and Yamagata K. (2010). Visualization of DNA methylation and histone modifications in living cells. Curr Opin Cell Biol 22, 412-418.
  • [14] Hayashi-Takanaka Y, Yamagata K, Nozaki N, and Kimura H. (2009). Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J Cell Biol 187, 781-790.
  • [15] Goto Y and Kimura H. (2009). Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37, 7416-7428.
  • [16] Kimura H, Hayashi-Takanaka Y, Goto Y, Takizawa N, and Nozaki N. (2008). The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct Funct 33, 61-73.
  • [17] Kimura H, Takizawa N, Allemand E, Hori T, Iborra FJ, Nozaki N, Muraki M, Hagiwara M, Krainer AR, Fukagawa T, and Okawa K. (2006). A novel histone exchange factor, protein phosphatase 2Cgamma, mediates the exchange and dephosphorylation of H2A-H2B. J Cell Biol 175, 389-400.
  • [18] Kimura H. (2005). Histone dynamics in living cells revealed by photobleaching. DNA Repair 4, 939-950.
  • [19] Kimura H, Sugaya K, and Cook PR. (2002). The transcription cycle of RNA polymerase II in living cells. J Cell Biol 159, 777-782.
  • [20] Kimura H and Cook PR. (2001). Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153, 1341-1353.
  • [21] Kimura H, Tao Y, Roeder RG, and Cook PR. (1999). Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol Cell Biol 19, 5383-5392.
  • [22] Kimura H, Ohtomo T, Yamaguchi M, Ishii A, and Sugimoto K. (1996). Mouse MCM proteins: complex formation and transportation to the nucleus. Genes Cells 1, 977-993.
  • [23] Kimura H, Takizawa N, Nozaki N, and Sugimoto K. (1995). Molecular cloning of cDNA encoding mouse Cdc21 and CDC46 homologs and characterization of the products: physical interaction between P1(MCM3) and CDC46 proteins. Nucleic Acids Res 23, 2097-2104.
  • [24] Kimura H, Nozaki N, and Sugimoto K. (1994). DNA polymerase alpha associated protein P1, a murine homolog of yeast MCM3, changes its intranuclear distribution during the DNA synthetic period. EMBO J 13, 4311-4320.

主な日本語総説

  • [1] 田代 聡、木村 宏.(2016).ヌクレオーム解析時代の幕開け.細胞工学 35, 66-69.
  • [2] 木村 宏.(2016).遺伝子活性化のしくみの生きた細胞内での観察.パリティ 31, 70-72.
  • [3] 原口徳子、木村 宏、平岡 泰.(2015).新・生細胞蛍光イメージング.共立出版. 全352頁.
  • [4] 木村 宏.(2015).単一細胞解析から明らかになった転写を制御するヒストン修飾の役割.細胞工学 34.
  • [5] 木村 宏.(2014).ヒストンH2A─最も多様性のあるコアヒストン.実験医学 32, 2087-2091.
  • [6] 佐藤優子,木村 宏.(2014). エピジェネティクスの生細胞イメージング技術.エピジェネティクス―基礎研究から産業応用への展望―(畑田出穂、久保田健夫/編). シーエムシー出版 pp152-160.
  • [7] 木村 宏、胡桃坂仁志.(2013). ヌクレオソーム.染色体と細胞核のダイナミクス(平岡 泰・原口徳子/編)化学同人 pp19-50.
  • [8] 木村 宏. ヒストン修飾検出法. (2013). エピジェネティクスキーワード事典(牛島俊和・眞貝洋一/編)羊土社 pp275-281.
  • [9] 木村 宏, 佐藤優子. (2013). ヒストン修飾検出法. 遺伝子医学MOOK 25号「エピジェネティクスと病気」(佐々木裕之/監、中尾光善、中島欽一/編)メディカル・ドゥ pp247-253.
  • [10] 木村 宏, 佐藤優子, 林 陽子. (2012). 内在性蛋白質翻訳後修飾の生細胞計測. 生物物理 52, 234-235.
  • [11] 木村 宏, 林 陽子. (2010). エピゲノム制御にかかわるヒストン修飾のイメージング. 医学のあゆみ 235, 995-1000.
  • [12] 林 陽子, 後藤友二, 木村 宏. クロマチン免疫沈降法. エピジェネティクス実験プロトコール(牛島俊和・眞貝洋一/編) 羊土社 pp143-166.
  • [13] 木村 宏. (2008). ビフォー&アフター フォトブリーチ. 蛋白質核酸酵素 53, 1992-1999.
  • [14] 木村 宏. (2007). 光退色と光刺激による細胞内分子動態の解析. 化学と生物 45, 798-804.
  • [15] 木村 宏. (2005). クロマチンタンパク質のFRAP解析:結合・解離速度の測定. クロマチン・染色体実験プロトコール(押村光雄・平岡 泰/編)羊土社 pp115-127.
  • [16] 木村 宏. (2004). 転写の分子イメージング. 細胞核のダイナミクス(竹安邦夫・米田悦啓/編)シュプリンガーフェアラーク東京2004. pp23-32.
  • [17] 木村 宏. (2003). 細胞核構造と機能のストカスティックな制御. 生物物理 43, 234-239.

教員紹介

木村宏 教授

1996年3月北海道大学博士(理学)。北海道大学遺伝子実験施設教務職員、オックスフォード大学博士研究員、東京医科歯科大学難治研助教授、京都大学医学研究科先端領域融合医学研究機構特任教授、大阪大学生命機能研究科准教授を経て、2014年7月より現職。

教育活動
学部:分子生物学I、分子進化学
所属学会
日本分子生物学会、日本細胞生物学会、日本生物物理学会、日本エピジェネティクス研究会(幹事)

教員からのメッセージ

木村教授より

遺伝子発現の制御という生命現象の根幹に関わる問題を理解するために、独自の技術を開発しながら研究に取り組んでいます。地道な努力を続けることで、新しい発見があります。一緒に、研究を楽しみましょう。

お問い合わせ先

教授 木村宏
すずかけ台キャンパスB2棟 938号室
E-mail : hkimura@bio.titech.ac.jp

※この内容は掲載日時点の情報です。最新の研究内容については研究室サイト別窓をご覧ください。

  • RSS

ページのトップへ

CLOSE

※ 東工大の教育に関連するWebサイトの構成です。

CLOSE