材料系 News

溶液塗布だけでできる透明p型アモルファス半導体を開発

  • RSS

2018.02.20

要点

  • 室温かつ溶液コーティングで製膜できる透明p型アモルファス半導体を実現
  • 正孔の移動度はn型透明アモルファス半導体IGZOに匹敵
  • 大きな移動度を持つアモルファスp型半導体の設計指針を提示

概要

東京工業大学 科学技術創成研究院の細野秀雄教授(元素戦略研究センター長)と元素戦略研究センターの金正煥助教らの研究グループは、これまで実現できなかった液相から合成でき、高い移動度を持つ透明p型のアモルファス半導体[用語1]の設計指針を考案、Cu-Sn-I系半導体で初めて実現しました。

3 eV以上のバンドギャップ[用語2]を持つ透明物質で正孔が伝導キャリアとなるp型半導体は稀です。研究グループは、化学結合と構成イオンの軌道の広がりを基に、新たな物質設計指針を考案しました。Cu(銅)-Sn(スズ)-I(ヨウ素)という3成分系に着目、原料を溶媒に溶かし、室温で塗布することで、6~9 cm2/Vsという大きな移動度を持つ透明p型アモルファス半導体の薄膜が得られました。この移動度は、同グループが開発し、既にディスプレイの駆動に使われているn型アモルファス酸化物半導体のIGZO[用語3]に迫るものです。これを用いれば、プラスチック基板上に透明pn接合が容易に形成できるので、曲がる透明な電子回路開発に道が拓けます。今回、物質設計指針が確立したことから、多くの元素の組み合わせでの活用が広がり、透明n型アモルファス酸化物半導体(TAOS)に匹敵する、新しい物質群の創製が期待されます。

本研究成果はドイツ科学誌「Advanced Materials」に速報としてオンライン版に2018年1月30日付(日本時間)で公開されました。

本成果は、以下の事業・研究課題によって得られました。

  • 文部科学省 元素戦略プロジェクト<拠点形成型>

    研究課題名: 「東工大元素戦略拠点」
    代表研究者: 東京工業大学 元素戦略研究センター センター長 細野 秀雄
    PM: 元素戦略研究センター 雲見日出也 特任教授
    研究実施場所: 東京工業大学
    研究開発期間:   平成25年7月~平成34年3月

研究の背景と経緯

半導体には、電子が伝導を担うn型と正孔が担うp型があります。ディスプレイへの応用には均質で大面積の薄膜が容易に作製できるアモルファス半導体が適しています。しかしながら、アモルファスの半導体は電子や正孔が動きにくいため、高精細な液晶ディスプレイや有機ELディスプレイの駆動には適用できませんでした。

研究の内容

1996年に大きな電子移動度を持つTAOSの設計指針と、それを基に作製した物質群を報告しました。それまで結晶の半導体をアモルファス化すると、欠陥や構造の乱れが生じ、伝導を担う電子の移動が阻害されてしまうために、電子の輸送特性は著しく劣化すると考えられていました。

研究グループは、(n-1)d10ns0(nは主量子数で≥5)という電子配置を持つ金属イオンから構成される酸化物ならばアモルファス化しても、結晶に近い移動度が保持されるということを提案しました。一般に、電子が伝導する伝導帯の底部は、透明な酸化物では主に陽イオンが空の電子軌道[用語4]で構成されます。この金属イオンの系では、空間的に電子の広がりが大きく、形状が球形のs軌道同士が重なっています。よって、アモルファスになって結合の角度が様々に変化しても、s軌道同士の重なりの大きさは、それほど減少しません。現在、世界規模で売り出されているIGZOは、この考え方で実現したTAOSの1つです。これに対しシリコンでは、空間的広がりが小さく、形状の異方性の大きなsp3軌道から構成されているため、アモルファスになると移動度が数桁も低下してしまいます。

従来の考え方では、p型アモルファスの設計は困難でした。正孔が動く価電子帯の上部は、主に陰イオンの占有軌道から構成されるからです。そのため、価電子帯の上部に占有された軌道を持つ陽イオンである銅イオンやスズイオンなどを使ってp型の酸化物半導体を実現してきましたが、これらの系ではアモルファス化すると高い移動度の半導体は得られませんでした。

そこで今回、空間的広がりが大きな占有されたp軌道を持つ陰イオンである“ヨウ素イオン”に注目しました。このイオン半径(5p軌道の広がりで決まっている)は~200 pmであり、これはn型のTAOSの主構成イオンであるインジウムイオンの空の5s軌道の半径(180 pm)よりも大きいものです。5pの3つの軌道に電子が6つ詰まったヨウ素イオンは、電子が占有された半径の大きな擬s軌道と見做すことができます。よって、ヨウ素化物の結晶半導体をアモルファス化すれば大きな正孔の移動度をもつp型半導体が実現できると考えました(図a)。

結晶のCuIは透明なp型半導体で、この多結晶薄膜の移動度は~8 cm2/Vsであることが数年前に報告されました。そこでCuIとSnI4を有機溶媒に溶かし、室温でスピンコートして薄膜を作製したところ、透明で均質なアモルファスの薄膜が得られました。その正孔の移動度は6~9 cm2/Vsという値で結晶薄膜と全く遜色ないものでした(図b)。結晶薄膜には粒界が存在するために表面は平滑でなく微小な穴が無数にみられましたが、アモルファス薄膜ではこれらは見られませんでした(図c)。この結果は、低温で溶液を原料に用いて簡単に成膜でき、しかも結晶薄膜と遜色ない電気特性の透明p型アモルファスが初めて実現したことになります。

Figure 1. A photograph of the chip. The chip was designed using standard 65-nanometer CMOS technology.

(a) 結晶とアモルファスCuIの価電子帯上部の電子軌道の重なり(模式図)。アモルファスではI-Cu-Iの角度が一様でなくなるが、ヨウ素イオン同士の5p軌道の重なりの程度は結晶と大きく変わらない。

(b) 正孔(ホール)の移動度と濃度の関係。下図はプラスチック基板上に成膜したアモルファスCu-Sn-I薄膜の写真。

(c) Snを10%含む薄膜の断面の透過電子顕微鏡写真と電子線回折像。

今後の展望

今回の成果により、透明アモルファス半導体を使ってpn接合をプラスチック上に形成できることから、曲がる電子回路の作製が可能となります。さらに物質設計指針が提示されたので、これに沿って移動度の大きい透明p型アモルファス半導体が様々な元素で構成できることから、TAOSに匹敵する新しい物質群が得られるものと期待されます。

用語説明

[用語1] アモルファス半導体 : 原子が規則正しく配列されている結晶に対し、決まった原子配列をもたない状態がアモルファス。不純物の添加や電圧をかけることで伝導度を大きく変化できる物質が半導体。アモルファスは容易に均質な薄膜は低温で作製できるというメリットがあるが、優れた半導体機能をもつ物質は稀である。

[用語2] バンドギャップ : 電子が空っぽの伝導帯と詰まった価電子帯とのエネルギーの差で最小の値。

[用語3] IGZO : インジウム、ガリウム、亜鉛と酸素から構成される物質。優れた特性を有するアモルファス半導体としても機能する。2003~4年に東工大細野グループによって初めてその薄膜トランジスタ(TFT)が作られた。最近、急速に普及しつつある大型有機ELテレビの画面は、これまでの半導体では駆動できず、IGZOのTFTが採用されている。

[用語4] 電子軌道 : 原子の属する電子は、そのエネルギーによって空間的に存在する領域が決まっている。エネルギーの低い順にs、p、d、f軌道となる。s軌道は形状が球形で、p軌道は2葉のクロバー型。大きく広がった、お互いに直交する3つのp軌道は、大きく広がったs軌道に形状が似てくるので、“擬s軌道”と見做すことができる。シリコンやゲルマニウムなどの典型的半導体物質では、4面体の中心から4つの頂点方向に伸びたsp3軌道から価電子帯が構成されている。

論文情報

掲載誌 : ADVANCED MATERIALS
論文タイトル : "Material Design of p-Type Transparent Amorphous Semiconductor, Cu–Sn–I" (p型透明アモルファス半導体の材料設計:Cu-Sn-I)
著者 : Taehwan Jun, Junghwan Kim, Masato Sasase and Hideo Hosono
DOI : 10.1002/adma.201706573 別窓

お問い合わせ先

東京工業大学 科学技術創成研究院

フロンティア材料研究所教授/元素戦略研究センター長

細野秀雄 教授

E-mail : hosono@msl.titech.ac.jp

Tel : 045-924-5009 / Fax : 045-924-5196

  • RSS

ページのトップへ

CLOSE

※ 東工大の教育に関連するWebサイトの構成です。

CLOSE