イベント・セミナー・講演会

General framework for constructing fast and near-optimal machine-learning-based decoder of the topological stabilizer codes

  • RSS

日程
2018年2月7日(水)
時間
13:30-
場所
大岡山キャンパス別窓 本館2階 H239 物理学系輪講室
講師
藤井 啓祐 特定准教授(京都大学 大学院理学研究科)
お問い合わせ先
連絡教員:物理学系 西森秀稔(内線2488)

量子物理学・ナノサイエンス第216回セミナー

概要

Quantum error correction is an essential technique for constructing a scalable quantum computer. In order to implement quantum error correction with near-term quantum devices, a fast and near-optimal decoding method is demanded. A decoder based on machine learning is considered as one of the most viable solutions for this purpose, since its prediction is fast once training has been done, and it is applicable to any quantum error correcting codes and any noise models. So far, various formulations of the decoding problem as the task of machine learning has been proposed. Here, we discuss general constructions of machine-learning-based decoders. We found several conditions to achieve near-optimal performance, and proposed a criterion which should be optimized when a size of training data set is limited. We also discuss preferable constructions of neural networks, and proposed a decoder using spatial structures of topological codes using a convolutional neural network. We numerically show that our method can improve the performance of machine-learning-based decoders in various topological codes and noise models.

  • ナノサイエンス・量子物理学国際研究センター 主催
  • 東京工業大学理学院・物理学系、「ナノサイエンスを拓く量子物理学拠点」共催

更新日:2018.01.19

  • RSS

ページのトップへ

CLOSE

※ 東工大の教育に関連するWebサイトの構成です。

CLOSE