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Abstract: Optimal control has seen many success stories over the past decades. However,
when it comes to autonomous systems in open-ended settings, we require methods that
allow for automatic learning from data. Reinforcement learning is a principled mathematical
framework for autonomous learning of good control strategies from trial and error.
Unfortunately, reinforcement learning suffers from data inefficieny, i.e., the learning system
often requires collecting much data before learning anything useful. This extensive data
collection is usually not practical when working with mechanical systems, such as robots. In
this talk, I will outline two approaches toward data-efficient reinforcement learning, and I will
draw connections to the optimal control setting. First, I will detail a model-based
reinforcement learning method, which exploits probabilistic models for fast learning. Second,
I will discuss a model-predictive control approach with learned models, which allows us to
provide some theoretical guarantees. Finally, I will discuss some ideas that allow us to learn
good predictive machine learning models that obey the laws of physics. This geometric
approach finds physically meaningful representations of high-dimensional time-series data.
With this, we can learn long-term predictive models from a few tens of image observations.
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