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Abstract

In a claims problem, a group of agents have claims on the liquidation value of

a bankrupt firm, but there is not enough to honor the totality of the claims. A

central rule for claims problems is the so-called constrained equal awards rule. For

a strategic justification of the rule, we propose a procedurally fair and multilateral

bargaining game. We show that for each claims problem, the awards vector chosen

by the rule is the unique subgame perfect equilibrium outcome of the game.

JEL Classification: C71; C72; D63

Key words: Nash program; Strategic justification; Claims problem; Constrained

equal awards rule

1 Introduction

In a claims problem, a group of agents have claims on the liquidation value of a bankrupt

firm, which we call the “endowment.” The endowment is not sufficient to honor the

totality of the claims.1 How should it be allocated? A “rule” is a single-valued mapping

that associates, with each claims problem, an allocation of the endowment satisfying

non-negativity, claims boundedness, and efficiency. We call such an allocation an “awards

vector.” As a central rule for claims problems, we consider the so-called constrained equal

awards (CEA) rule. The CEA rule satisfies a number of desirable properties, and the rule

has been characterized in multiple ways, reviewed in Thomson (2019).2 Our purpose is

∗We thank Ryo Kawasaki, William Thomson, and Takehiko Yamato for their helpful comments.
This work was partially supported by JSPS KAKENHI Grant Number JP17J01520 (Hagiwara) and
JP18J20162 (Hanato).

†Department of Industrial Engineering and Economics, School of Engineering, Tokyo Institute of Tech-
nology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan; E-mail: hagiwara.m.af@m.titech.ac.jp
(Corresponding author); hanato.s.aa@m.titech.ac.jp.

1For a comprehensive survey on claims problems, see Thomson (2019).
2See, for example, Theorem 6.4 at pp 144 of Thomson (2019), which is due to Dagan (1996).
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to develop a strategic justification of the rule.

Nash (1953) initiates the study of strategic justifications of cooperative solutions for

bargaining problems through non-cooperative procedures. Specifically, he provides a

strategic justification for the Nash bargaining solution (Nash, 1950) through the so-called

“Nash demand game.” This line of research is known as the Nash program.3 The CEA

rule corresponds to the Nash bargaining solution in a special class of bargaining problems,

as discussed in Remark 3. In this sense, we follow the original work of Nash (1953) as a

part.

For each claims problem, we propose a game associated with the problem for which

the awards vector chosen by the rule is the unique subgame perfect equilibrium (SPE)

outcome of the game. Our game, as well as other games that have been offered to

provide non-cooperative foundations of rules for claims problems, such as in Tsay and

Yeh (2019), requires that claims be known to the one in charge of the design task.4 As a

justification, by citing Serrano (2005), “the community of n agents involved in the problem

at hand can be the one in charge of the design task” (pp 8). In addition, we assume that

the community in charge of the design task has the ability to impose the outcome of

the game once played.5 Since a game is designed by the claimants and the outcome

once made is enforced, it is desirable that the game be “procedurally fair” (claimants

be treated equally) and “multilateral” (all claimants negotiate simultaneously). If some

claimant is not treated equally, for example, the agent with a maximum claim has a

power to select his assignment, then the other claimant may not want to participate in

the game. However, since the community of claimants is in charge of the design task, the

3For a comprehensive survey on the Nash program, see Serrano (2005).
4By contrast, in implementation theory, we usually assume that the designer does not know the

agents’ private information, and the aim of the theory is to provide a game in which the set of equilibrium
outcomes is equal to the outcome chosen by a rule. If the agents’ private information is known to the
designer and the goal of the Nash program were only seen as the same aim of implementation theory,
we can achieve this by the trivial game: if all agents agree on the outcome chosen by the rule, we select
it; otherwise, we select a bad outcome (see Proposition 1 of Bergin and Duggan, 1999). However, from
the viewpoint of strategic justifications, this game does not shed any light on the meaning of the specific
rule. For a discussion on the relationship between the Nash program and implementation theory, see
Serrano (2005).

5This assumption is discussed by Nash (1953). “· · · we must assume there is an adequate mechanism
for forcing the players to stick to their threats and demands once made, for one to enforce the bargain
once agreed” (pp 130).
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claimants already agree with the procedure when the game is played. If at some stage

of the game, some claimant does not negotiate with the other claimants at all, then he

may complain about the final allocation even if before participating, he knows that the

outcome once made is enforced. Then, we incorporate the two features into our games.

While Li and Ju (2016) and Tsay and Yeh (2019) also study the strategic justification of

the CEA rule, their games do not have at least one of the two features. For a detailed

discussion, see Subsection 1.1.

Our game is as follows: At each period t, each claimant proposes a pair consisting of

an awards vector and a permutation. If some awards vector is proposed by more than one

claimant, then the awards vector which receives the highest number of votes is chosen as

temporary awards vector. The components of this temporary awards vector are subjected

to the composition of the reported permutations, and then the game ends.6 If no two

claimants propose the same awards vector, the game proceeds to the next period t + 1

and we repeat the above process. The formal definition of the above game is proposed in

Section 3.

Our game resembles the simultaneous-offers bargaining game analyzed in Chatterjee

and Samuelson (1990) in the sense that all agents simultaneously make proposals and

if they cannot reach an agreement in the current period, they can renegotiate in the

next period.7 The simultaneous-offers bargaining game is the Nash demand game with

renegotiation. In the games proposed by Li and Ju (2016) and Tsay and Yeh (2019), most

claimants do not have a chance to renegotiate (see Subsection 1.1), but in our game, all

claimants can do so if they cannot reach an agreement.

We show that for each claims problem, the awards vector chosen by the CEA rule

achieved at period 1 is supported as an SPE outcome of the game associated with the

problem (Proposition 1). In addition, for each claims problem, any SPE outcome of the

6The permutation idea is proposed in Thomson (2005) for the allocation of a social endowment of
infinitely divisible resources and exploited by Doğan (2016), Hagiwara (2019), and others. Chang and
Hu (2008), Hayashi and Sakai (2009), Moreno-Ternero, Tsay, and Yeh (2018), and Tsay and Yeh (2019)
apply the idea of letting each agent report a permutation as a strategy into their games to exchange the
order of claimants not for exchanging an allocation.

7Note that, although Chatterjee and Samuelson (1990) consider the case of only two agents, our game
is applicable to any number of agents.
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game associated with the problem is the awards vector chosen by the CEA rule achieved

at period 1 (Proposition 2). By Propositions 1 and 2, for each claims problem, the awards

vector chosen by the CEA rule achieved at period 1 is the unique SPE outcome of the

game associated with the problem (Theorem 1).8

Our results have two applications, one to bargaining problems and one to coalitional

problems. For detailed discussions of these applications, see Remarks 3 and 4.

Correspondences between rules for claims problems and bargaining solutions have

been identified (see, for example, Theorem 14.1 at pp 361 of Thomson, 2019).9 In partic-

ular, the CEA rule corresponds to the Nash bargaining solution.10 From this correspon-

dence, our Theorem 1 implies that for the bargaining problem associated with a claims

problem, our game provides a strategic justification of the Nash bargaining solution.

This implication resembles a result of Anbarci and Boyd III (2011). They propose

a game, which is a variant of the Nash demand game, and they call it the “Simultane-

ous Procedure.” They show that for each two-person bargaining problem, the outcome

chosen by the Nash bargaining solution is the unique Nash equilibrium outcome of their

game. In contrast to their game, our game is applicable to any number of agents and it

allows renegotiation. In addition, as a special kind of bargaining problem, our results are

applicable to the “Divide-the-Dollar problem,” where the endowment is equal to 1 and

each agent’s claim is at least 1.11

Moreover, correspondences between rules for claims problems and solutions to coali-

tional problems have been identified (see, for example, Theorem 14.2 at pp 373 of Thom-

son, 2019). In particular, the CEA rule corresponds to the Dutta-Ray solution (Dutta and

Ray, 1989).12 From this correspondence, our Theorem 1 implies that for the coalitional

8While our game is similar to the simultaneous-offers bargaining game of Chatterjee and Samuel-
son (1990) as we discussed, our result is contrast to the result of them where all outcomes including
disagreement are supported as the SPE outcomes of their game.

9If for each claims problem, the outcome chosen by the rule coincides with the outcome chosen by
the solution when applied to the associated bargaining problem, then we say that the rule corresponds
to the bargaining solution. This definition of correspondence is also applied to coalitional problems.

10This result is proposed by Dagan and Volij (1993).
11For strategic justifications in Divide-the-Dollar problems, see, for example, Anbarci (2001), Rach-

milevitch (2017), and Karagözoğlu and Rachmilevitch (2018).
12For solutions in coalitional problems, strategic justifications have been discussed. For example,

Pérez-Castrillo and Wettstein (2001) propose the “bidding mechanism” in which for each coalitional
problem, the SPE outcomes of this mechanism coincide with the vector of the Shapley value payoffs.
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problem associated with a claims problem, our game provides a strategic justification of

the Dutta-Ray solution.

1.1 Related literature

Strategic justifications of the CEA rule for claims problems have been derived by Li and

Ju (2016) and Tsay and Yeh (2019).13

Li and Ju (2016) propose the following n-stage game, where n is the number of

claimants. Claimants are numbered following the reverse order of claims. In Stage 1,

the agent whose claim is largest, claimant n, divides the endowment as proposal. In

Stage k ∈ {2, . . . , n}, claimant k − 1 chooses a component of the proposal as their

payoffs.14 Agents with lower claims are given priority to choose early on in the game, but

claimant n is given the power to make the division. Therefore, in this game, claimants are

not treated equally. In addition, at each stage of their game, only two claimants negotiate,

so that the game is bilateral even in the case of more than two claimants. Furthermore,

any claimant who negotiated at a stage of their game with claimant n cannot negotiate

anymore.

Tsay and Yeh (2019) propose the following three-stage game for the CEA rule. In

Stage 1, each claimant announces a pair consisting of an awards vector and a permutation.

The composition of the reported permutations selects a claimant as coordinator. If all

claimants, except for the coordinator, announce the same awards vector, then this awards

vector is the proposal; otherwise, the awards vector announced by the coordinator is the

proposal. In Stage 2, the coordinator either accepts or rejects the proposal. If he accepts

it, the proposal is the outcome. If he rejects it, he selects one claimant to negotiate awards

for the two of them15; all the others receive their awards as specified in the proposal.

That is, in the first stage, all claimants are given the power to choose the temporary

13Strategic justifications of other rules have been also studied. For the family of f -just rules, see
Dagan, Serrano, and Volij (1997) and Chang and Hu (2008). For the constrained equal losses rule, see
Li and Ju (2016) and Tsay and Yeh (2019). For the Talmud rule, see Li and Ju (2016), Moreno-Ternero,
Tsay, and Yeh (2018), and Tsay and Yeh (2019). For the proportional rule, see Tsay and Yeh (2019).

14This bilateral negotiation procedure is similar to the games of Chae and Yang (1988) and Sonn
(1992).

15For the bilateral negotiation game for the CEA rule, see Tsay and Yeh (2019).
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awards vector, but in the second stage, only the coordinator is given the power to reject

a component of the proposal and to choose an claimant to negotiate on the final awards

for them. Therefore, since no claimant except for the coordinator has the power to reject

components of the proposal, claimants are not treated equally. Moreover, in their game,

only the coordinator and the claimant selected by the coordinator at Stage 2 have one

chance to renegotiate.

By contrast, in our game, all claimants are treated equally; they negotiate multilat-

erally; and they have chances to renegotiate.

2 The model

Let N = {1, . . . , n} be the set of agents with n ≥ 2. Each agent i ∈ N has a claim on a

resource, ci ∈ R+. Claimants are numbered so that c1 ≤ · · · ≤ cn. Let c ≡ (c1, . . . , cn) be

a claims vector. There is an endowment E of the resource. The endowment is insufficient

to honor the totality of the claims. Using RN
+ for the cross-product of n copies of R+

indexed by the members of N , a claims problem is a pair (c, E) ∈ RN
+ ×R++ such that

E ≤
∑

i∈N ci. Let CN denote the domain of all claims problems.

An awards vector for the claims problem (c, E) ∈ CN is a vector a ≡ (a1, . . . , an) ∈

RN
+ (i.e., non-negativity) such that, for each i ∈ N , ai ≤ ci (i.e., claims boundedness)

and
∑

i∈N ai = E (i.e., efficiency). Let A(c, E) = {a ∈ Rn
+ | for each i ∈ N, ai ≤

ci and
∑

i∈N ai = E} be the set of awards vectors of the problem (c, E) ∈ CN . A division

rule, or simply a rule, is a single-valued mapping which associates, with each problem

(c, E) ∈ CN , an awards vector a ∈ A(c, E).

The following is central to our study:16

Constrained equal awards rule, CEA: For each (c, E) ∈ CN and each i ∈ N ,

CEAi(c, E) ≡ min{ci,λ}, where λ ∈ R+ is chosen so as to satisfy efficiency.

16For other important rules for claims problems, see, for example, Ch.2 of Thomson (2019).
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3 The game for a strategic justification of the CEA

rule

For a strategic justification of the CEA rule, we consider the following game starting

at period 1. At each period t, each claimant proposes a pair consisting of an awards

vector and a permutation. If some awards vector is proposed by more than one claimant,

then the awards vector which receives the highest number of votes is chosen as temporary

awards vector. If at least two awards vectors receive the highest number of votes, then the

awards vector proposed by the claimant who has the lowest index among the claimants

who announce one of these awards vectors is chosen as temporary awards vector. The

components of this awards vector are subjected to the composition of the reported per-

mutations, and then the game ends. Note that no matter what the permutations reported

by the other claimants are and no matter what order of permutations for the composition

is, each claimant can assign any component of the temporary awards vector to himself

by proposing an appropriate permutation. A claimant’s payoff is the discounted present

value of the minimum of his claim or his component of resulting allocation adjusted so as

to satisfy claims boundedness. If no two claimants propose the same awards vector, the

game proceeds to the next period t+1 and we repeat the above process. If the claimants

cannot reach an agreement permanently, then the negotiation breaks down.

To define the game formally, let us introduce some notation. A permutation π :

N → N is a one-to-one function from N to N . Let Π be the set of permutations. Let

δ ∈ (0, 1) be the claimants’ common discount factor.

Let (c, E) ∈ CN be given. The game Γ(c, E) is as follows:

1. At period t, each claimant i proposes a pair (ai, πi) ∈ A(c, E)× Π.

2. If for some a ∈ A(c, E), |{i ∈ N | ai = a}| ≥ 2, we select aî, where î = min{i′ ∈

N | ai′ ∈ arg max
a∈A

|{i ∈ N | ai = a}|}.

The components of the awards vector aî are exchanged by according to the compo-

sition π∗ ≡ πn ◦ · · · ◦ π1, and the game ends. This outcome at period t is denoted

by [aîπ∗ , t], where aîπ∗ = (aîπ∗(1), . . . , a
î
π∗(n)). When claimant i obtains aîπ∗(i) at period
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t, his payoff is δt−1 min{ci, aîπ∗(i)}.

3. If for each a ∈ A, |{i ∈ N | ai = a}| ≤ 1, then the game proceeds to the next period

t+ 1 and we repeat the above process.

If the claimants cannot reach an agreement permanently, disagreement occurs and

then each claimant obtains a payoff of zero.

Regarding our game, there are the following two remarks.

Remark 1. (Tie-breaking). We use a tie-breaking when at least two awards vectors

receive the highest number of votes. Note that no matter what tie-breaking is used, our

results hold. One may say that this game does not treat claimants equally.

To resolve this problem for procedural fairness, let each claimant additionally re-

port another permutation and by according to the composition of these permutations, a

claimant who chooses one awards vector in those receiving the highest number of votes

is selected as tie-breaker. Then, the awards vector reported by the tie-breaker is selected

as temporary awards vector. In this modified game, no matter what the permutations

reported by the other claimants are, any claimant reporting one awards vector in those

receiving the highest number of votes can be the tie-breaker by proposing an appropriate

permutation. Therefore, this modified game is procedurally fair. Since the definition of

our game and the proofs of Propositions 1 and 2 are simpler, we propose those in this

paper.♦

Remark 2. (Inefficient allocations). In our game, some final allocation after exchange

may not satisfy efficiency. Chang and Hu (2008) also use inefficient allocations in their

game. In their game, at the first stage, if some claimant reports a different awards vector

from the awards vectors announced by the other claimants, then the coordinator, who

is the first claimant selected by the composition of the reported permutations, gets a

negative value and the other claimants gets nothing. In their game, inefficient allocations

have an important role to have Nash equilibria of their game, but in our game, these are

just selected so as to satisfy claims boundedness.♦
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In the following, we derive an SPE outcome of Γ(c, E).

Proposition 1. For each (c, E) ∈ CN , [CEA(c, E), 1] is supported as an SPE outcome

of Γ(c, E).

Proof. Let σ∗ ≡ (σ∗
1, . . . , σ

∗
n) be the strategy profile such that each claimant i ∈ N

always proposes (CEA(c, E), πid), where πid is the identity permutation i.e., for each

i ∈ N , πid(i) = i. The outcome under σ∗ is [CEA(c, E), 1]. Then, claimant i’s payoff is

CEAi(c, E) (≤ ci). We prove that σ∗ is an SPE of Γ(c, E).

We use the one-shot deviation principle (see, for example, Fudenberg and Tirole,

1991): a strategy profile σ is an SPE if and only if no claimant gains by deviating from σ

in a single action. Fix i ∈ N and a positive integer t arbitrarily. Suppose that claimant

i deviates from σ∗
i in a single action and proposes some (ai, πi) ̸= (CEA(c, E), πid) at

period t. First, we consider the case E <
∑

i∈N ci. The proof is divided into two cases,

n ≥ 3 and n = 2. Note that the proof for the case n ≥ 3 is applied to that for the case

n = 2 as a part, so that we first consider the case n ≥ 3.

Case n ≥ 3. For any (ai, πi), arg max
a∈A

|{i′ ∈ N | ai′ = a}| = {CEA(c, E)}. If claimant i proposes

(ai, πi), then since πid ◦ · · · ◦ πi ◦ · · · πid = πi, he obtains CEAπi(i)(c, E). Thus, to

see that he cannot gain by deviating from σ∗
i , we prove that for each πi ∈ Π,

δt−1 min{ci, CEAπi(i)(c, E)} ≤ δt−1CEAi(c, E). It suffices to prove that for each

j ∈ N , min{ci, CEAj(c, E)} ≤ CEAi(c, E).

By the definition of CEA, for each j ∈ N , CEAj(c, E) = min{cj,λ}, where λ ∈ R+

is chosen so as to satisfy
∑

j∈N CEAj(c, E) = E. If CEAi(c, E) = ci, then we

immediately obtain that for each j ∈ N , min{ci, CEAj(c, E)} ≤ CEAi(c, E)(= ci).

If CEAi(c, E) < ci, then λ = CEAi(c, E)(< ci). Since λ < ci, we have that

for each j ∈ N , min{ci, CEAj(c, E)} = min{ci,min{cj,λ}} = min{cj,λ} ≤ λ =

CEAi(c, E). Therefore, claimant i cannot gain by deviating from σ∗
i .

Case n = 2. If claimant i proposes (ai, πi) such that ai = CEA(c, E) and πi ̸= πid, then

arg max
a∈A

|{i′ ∈ N | ai′ = a}| = {CEA(c, E)}. Therefore, since πid ◦ πi(= πi ◦ πid) =

πi and πi ̸= πid, claimant i obtains CEAj(c, E), where j ̸= i. Analogously
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to the case n ≥ 3, we obtain that δt−1 min{ci, CEAj(c, E)} ≤ δt−1CEAi(c, E).

Thus, claimant i cannot gain by deviating from σ∗
i if he proposes (ai, πi) such that

ai = CEA(c, E) and πi ̸= πid.

If claimant i proposes (ai, πi) such that ai ̸= CEA(c, E), then for each a ∈ A(c, E),

|{i′ ∈ N | ai′ = a}| ≤ 1. Thus, the game proceeds to the next period t + 1. Since

claimant i follows σ∗
i at period t+ 1, his payoff is δtCEAi(c, E). If claimant i does

not deviate from σ∗
i , his payoff is δt−1CEAi(c, E)(≥ δtCEAi(c, E)). Therefore, he

cannot gain by deviating from σ∗
i .

By the above discussion, in the case
∑

i∈N ci > E, we have that σ∗ is an SPE of

Γ(c, E). In the case
∑

i∈N ci = E, since A(c, E) = {CEA(c, E)}, this case is proved by

an analogous proof to that for n ≥ 3. Therefore, [CEA(c, E), 1] is supported as an SPE

outcome of Γ(c, E).

The following is the uniqueness part of our strategic justification of the CEA rule.

Proposition 2. For each (c, E) ∈ CN , any SPE outcome of Γ(c, E) is [CEA(c, E), 1].

Proof. First, we show that for any b ̸= CEA(c, E), [b, t] is not supported as an SPE

outcome of Γ(c, E). Suppose, by contradiction, that there exists an SPE σ of Γ(c, E)

whose outcome is [b, t]. We show that some claimant gains by deviating from σ. Let

λ ∈ Rn
+ be such that

∑
i∈N min{ci,λ} = E. Since b ̸= CEA(c, E), the proof is divided

into the following three cases.

Case 1. For some i∗ ∈ N , bi∗ > ci∗ .

Case 2. For each i ∈ N , bi ≤ ci, and

2-1. for some i∗∗ ∈ N such that ci∗∗ ≤ λ, bi∗∗ < ci∗∗ , or

2-2. for some i∗∗∗ ∈ N such that ci∗∗∗ > λ, bi∗∗∗ ̸= λ.

We sequentially analyze each case.17

17When
∑

i∈N ci = E, it suffices to consider Case 1 because of the following reason. When
∑

i∈N ci =
E, if for each i ∈ N , bi ≤ ci, then E =

∑
i∈N bi ≤

∑
i∈N ci = E. This implies that for each i ∈ N ,

bi = ci, which contradicts the assumption that b ̸= CEA(c, E).
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Case 1. Let â be the temporary awards vector before b is achieved at period t by exchange.

For each i ∈ N , let πi
σ be the permutation proposed by claimant i at period t under

σ. That is, for each i ∈ N ,

âπn
σ◦···◦π1

σ(i) = bi.

We show that for some j ∈ N , bj < âj(≤ cj). Suppose, by contradiction, that for

each i ∈ N , âi ≤ bi. If for some k ∈ N , âk < bk, then E =
∑

i∈N âi <
∑

i∈N bi = E,

which is a contradiction. Thus, for each i ∈ N , âi = bi(= âπn
σ◦···◦π1

σ(i)). However,

ci∗ ≥ âi∗ = bi∗ > ci∗ , which is also a contradiction. Consequently, for some j ∈

N , âj > bj(= âπn
σ◦···◦π1

σ(j)). Claimant j can assign âj to himself by proposing an

appropriate πj ( ̸= πj
σ). Since bj < âj(≤ cj), claimant j gains by deviating from σj,

which contradicts the hypothesis that σ is an SPE of Γ(c, E).

Case 2-1. We show that for some j ∈ N , bj > λ. Suppose, by contradiction, that for each

i ∈ N , bi ≤ λ. Since for each i ∈ N , bi ≤ ci, then for each k ∈ N such that

ck ≤ λ, bk ≤ ck = CEAk(c, E). In addition, for each ℓ ∈ N such that cℓ > λ,

bℓ ≤ λ = CEAℓ(c, E). Therefore, for each i ∈ N , bi ≤ CEAi(c, E). Since bi∗∗ <

ci∗∗(= CEAi∗∗(c, E)), we have
∑

i∈N bi <
∑

i∈N CEAi(c, E), which contradicts the

assumption that
∑

i∈N bi =
∑

i∈N CEAi(c, E) = E. Thus, for some j ∈ N , bj > λ.

Claimant i∗∗ can obtain bj by proposing an appropriate πi∗∗ ( ̸= πi∗∗
σ ). Since bj >

λ ≥ ci∗∗ > bi∗∗ , claimant i∗∗ gains by deviating from σi∗∗ , which contradicts the

hypothesis that σ is an SPE of Γ(c, E).

Case 2-2. When bi∗∗∗ < λ, we show that for some j ∈ N , bj > λ. Suppose, by contradiction,

that for each i ∈ N , bi ≤ λ. Then, by the same proof as in Case 2-1, we obtain

that for each i ∈ N , bi ≤ CEAi(c, E). Since bi∗∗∗ < λ(= CEAi∗∗∗(c, E)), we have
∑

i∈N bi <
∑

i∈N CEAi(c, E), which contradicts the assumption that
∑

i∈N bi =
∑

i∈N CEAi(c, E) = E. Thus, for some j ∈ N , bj > λ. Claimant i∗∗∗ can obtain bj

by proposing an appropriate πi∗∗∗ ( ̸= πi∗∗∗
σ ). Since bj > λ ≥ ci∗∗∗ > bi∗∗∗ , claimant

i∗∗∗ gains by deviating from σi∗∗∗ , which contradicts the hypothesis that σ is an
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SPE of Γ(c, E).

When bi∗∗∗ > λ, we show that for some j ∈ N such that cj > λ, bj < λ. Suppose,

by contradiction, that for each i ∈ N such that ci > λ, bi ≥ λ(= CEAi(c, E)).

When for some k ∈ N such that ck ≤ λ, bk < ck, this is in Case 2-1. Thus, we

consider the case where, for each ℓ ∈ N such that cℓ ≤ λ, bℓ = cℓ(= CEAℓ(c, E)).

Since for each i ∈ N such that ci > λ, bi ≥ λ(= CEAi(c, E)) and for each ℓ ∈ N

such that cℓ ≤ λ, bℓ = cℓ(= CEAℓ(c, E)), then for each m ∈ N , bm ≥ CEAm(c, E).

Since bi∗∗∗ > λ(= CEAi∗∗∗(c, E)), we have
∑

i∈N bi >
∑

i∈N CEAi(c, E), which

contradicts the assumption that
∑

i∈N bi =
∑

i∈N CEAi(c, E) = E. Thus, for some

j ∈ N such that cj > λ, bj < λ. Claimant j can obtain bi∗∗∗ by proposing an

appropriate πj ( ̸= πj
σ). Since min{cj, bi∗∗∗} > λ > bj, claimant j gains by deviating

from σj, which contradicts the hypothesis that σ is an SPE of Γ(c, E).

By the above discussion, for any b ̸= CEA(c, E), [b, t] is not supported as an SPE outcome

of Γ(c, E).

Next, we show that for any t̃ ̸= 1, [CEA(c, E), t̃] is not supported as an SPE outcome

of Γ(c, E). If
∑

i∈N ci = E, then A(c, E) = {c} = {CEA(c, E)}. Therefore, each

claimant proposes a pair (a, π) ∈ A(c, E)×Π such that a = CEA(c, E) at period 1. This

implies that the game ends at period 1. Thus, in the case
∑

i∈N ci = E, for any t̃ ̸= 1,

[CEA(c, E), t̃] is not supported as an SPE outcome of Γ(c, E).

We consider the case
∑

i∈N ci > E. Suppose, by contradiction, that there exists an

SPE σ′ of Γ(c, E) whose outcome is [CEA(c, E), t̃] such that t̃ ̸= 1. Then, for each i ∈ N ,

claimant i’s payoff is δt̃−1CEAi(c, E). Let j be the claimant whose claim is minimum

among the claims larger than zero. Since
∑

i∈N ci > E, such a claimant exists. We show

that claimant j can obtain a payoff larger than δt̃−1CEAj(c, E)(> 0) by deviating from

σ′
j.

Let (ak, πk) be claimant k’s proposal at period 1 under σ′, where k ̸= j. Since under

σ′, the game ends at period t̃ ≥ 2, no two claimant propose the same awards vector at

period 1, so that ak ̸= aj, where aj is claimant j’s proposal concerning an awards vector

at period 1 under σ′. We show that there exists ℓ ∈ N such that akℓ ≥ CEAj(c, E).
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Suppose that for each i ∈ N , aki < CEAj(c, E). By the definitions of CEA and claimant

j, for each i ∈ N such that ci > 0, CEAj(c, E) ≤ CEAi(c, E). Then, for each i ∈ N

such that ci > 0, aki < CEAi(c, E). In addition, for each i ∈ N such that ci = 0,

aki = CEAi(c, E) = 0. Therefore,
∑

i∈N aki <
∑

i∈N CEAi(c, E), which contradicts the

assumption that
∑

i∈N aki =
∑

i∈N CEAi(c, E) = E. Thus, there exists ℓ ∈ N such that

akℓ ≥ CEAj(c, E).

This implies that claimant j can obtain the payoff of min{cj, akℓ} at period 1 by

deviating from σ′
j and proposing a pair consisting of ak and an appropriate πj ∈ Π,

because, when claimant j changes his proposal concerning an awards vector aj into ak at

period 1, ak becomes the awards vector which receives the highest number of votes. Since

min{cj, akℓ} ≥ CEAj(c, E) > δ t̃−1CEAj(c, E) > 0, claimant j gains by deviating from σ′
j,

which contradicts the hypothesis that σ′ is an SPE of Γ(c, E). Therefore, [CEA(c, E), t̃]

such that t ̸= 1 is not supported as an SPE outcome of Γ(c, E).

Finally, we show that disagreement is not supported as an SPE outcome. The proof

is analogous to the case of [CEA(c, E), t̃] such that t̃ ̸= 1. If
∑

i∈N ci = E, then the game

ends at period 1 by the same reason in the case of [CEA(c, E), t̃] such that t̃ ̸= 1. Thus,

in the case
∑

i∈N ci = E, disagreement is not supported as an SPE outcome of Γ(c, E).

We consider the case
∑

i∈N ci > E. Suppose, by contradiction, that there exists an

SPE σ′′ of Γ(c, E) whose outcome is disagreement. Then, for each i ∈ N , claimant i’s

payoff is zero. Let j be the claimant whose claim is larger than zero. Since
∑

i∈N ci > E,

such a claimant exists. We show that claimant j can obtain a payoff larger than zero by

deviating from σ′′
j .

Let (ak, πk) be claimant k’s proposal at period 1 under σ′′, where k ̸= j. Since under

σ′′, disagreement occurs, then no two claimant propose the same awards vector at period

1, so that ak ̸= aj, where aj is claimant j’s proposal concerning an awards vector at

period 1 under σ′′.

Since E > 0, there exists ℓ ∈ N such that akℓ > 0. This implies that claimant j can

obtain the payoff of min{cj, akℓ} at period 1 by deviating from σ′′
j and proposing a pair

consisting of ak and an appropriate πj ∈ Π. Since min{cj, akℓ} > 0, claimant j gains

13



by deviating from σ′′
j , which contradicts the hypothesis that σ′′ is an SPE of Γ(c, E).

Therefore, disagreement is not supported as an SPE outcome of Γ(c, E).

By the above discussions, any SPE outcome of Γ(c, E) is [CEA(c, E), 1].

From Propositions 1 and 2, we have the following main result.

Theorem 1. For each (c, E) ∈ CN , [CEA(c, E), 1] is the unique SPE outcome of Γ(c, E).

In the following remarks, we point out interesting relations between the CEA rule and

some solution concept of the cooperative game theory. For this theory to be applicable, we

need first to define a formal way of associating, with each claims problem, a cooperative

problem. Two main classes of such problems have been studied, bargaining problems

(Remark 3) and coalitional problems (Remark 4), and accordingly we establish two kinds

of relations.

Remark 3. A bargaining problem is a pair (B, d), where B is a subset of RN and d is

a point of B. The set B is the feasible set consisting of all utility vectors attainable by

the group N and d is the disagreement point. A bargaining solution is a function defined

on a class of bargaining problems that associates, with each bargaining problem in the

class, a unique point in the feasible set of the problem. The Nash bargaining solution

(Nash, 1950) selects the point maximizing the product of utility gains from d among all

points of B dominating d.

Given a claims problem (c, E) ∈ CN , its associated bargaining problem is the

problem with feasible set B(c, E) = {a ∈ RN
+ | for each i ∈ N, ai ≤ ci and

∑
i∈N ai = E}

and disagreement point d = 0.

For each (c, E) ∈ CN , the outcome chosen by the CEA rule coincides with the outcome

chosen by the Nash bargaining solution when applied to (B(c, E), d) (Dagan and Volij,

1993). Therefore, for the bargaining problem associated with a claims problem, our game

provides a strategic justification of the Nash bargaining solution.

As a special case of bargaining problem, our results are also applicable to the “Divide-

the-Dollar problem,” where (B(c, 1), d) such that for each i ∈ N , ci ≥ 1.♦

Remark 4. A (transferable utility) coalitional problem is a vector v ≡ (v(S))S⊆N ∈
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R2|N|−1, where for each coalition ∅ ̸= S ⊆ N , v(S) ∈ R is the worth of S. A solution is a

mapping that associates, with each such problem v, a point in RN whose coordinates add

up to v(N). The Dutta-Ray solution (Dutta and Ray, 1989) selects, for each convex

coalitional problem, the payoff vector in the core that is Lorenz-maximal.18

Given a claims problem (c, E) ∈ CN , its associated coalitional problem (O’Neill,

1982; Aumann and Maschler, 1985) is the problem v(c, E) ∈ R2|N|−1 defined by setting

for each ∅ ̸= S ⊆ N , v(c, E)(S) ≡ max{E −
∑

i∈N\S ci, 0}.

For each (c, E) ∈ CN , the outcome chosen by the CEA rule coincides with the outcome

chosen by the Dutta-Ray solution when applied to v(c, E) (see, for example, Theorem

14.2 at pp 373 of Thomson, 2019). Therefore, for the coalitional problem associated with

a claims problem, our game provides a strategic justification of the Dutta-Ray solution.♦
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Doğan, B. (2016): “Nash-implementation of the no-envy solution on symmetric domains

of economies,” Games and Economic Behavior, 98, 165 – 171.

Dutta, B., and D. Ray (1989): “A concept of egalitarianism under participation

constraints,” Econometrica, pp. 615–635.

Fudenberg, D., and J. Tirole (1991): Game theory, 1991. MIT Press, Cambridge,

MA.

Hagiwara, M. (2019): “A simple and procedurally fair game form for Nash implementa-

tion of the no-envy solution,” The B.E. Journal of Theoretical Economics, forthcoming.

Hayashi, T., and T. Sakai (2009): “Nash implementation of competitive equilibria in

the job-matching market,” International Journal of Game Theory, 38(4), 453.
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