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1 Introduction

This paper considers the provision of non-excludable public goods. It is well known

that when public goods are provided in a decentralized fashion, the so-called free-rider

problem arises (Samuelson, 1954). Following Groves and Ledyard (1977), who were the

first to propose a mechanism whose Nash equilibrium allocations are Pareto-efficient, a

vast body of literature has been published on the resolution of the free-rider problem.1

Besides the free-rider problem, another incentive problem arises in the provision of

non-excludable public goods, called the “participation problem”: an agent may have

an incentive not to participate in the mechanism because she can obtain benefits from

public goods that are provided by participants due to non-excludability (Olson, 1965).

However, Groves and Ledyard (1977) and subsequent studies implicitly assumed that

all agents must participate in the mechanism that the mechanism designer proposes.

Therefore, these studies did not solve the participation problem.

Subsequently, several studies have examined the participation problem (Palfrey

and Rosenthal, 1984; Saijo and Yamato, 1997, 1999, 2010; Dixit and Olson, 2000). To

address this problem, these studies considered the following two-stage game: in the

first stage, each agent simultaneously decides to “participate” or “not participate” in a

given mechanism and, in the second stage, after knowing the other agents’ participation

decisions, the agents who chose “participation” in the first stage play the mechanism.

They all derived impossibility results that everyone does not necessarily participate in

the mechanism.2

Motivated by these impossibility results of full participation, we take a “second-

best” approach. That is, we identify which mechanism has the highest rate of partic-

ipation in a given class of mechanisms. To this end, we compare mechanisms based

on their rates of participation. To the best of our knowledge, there has been no study

comparing mechanisms in the same environment where each agent has the freedom of

1The main drawback of the Groves-Ledyard mechanism is that it is not individual rational, that
is, the equilibrium allocation determined by the mechanism does not necessarily satisfy the condition
where it is at least as good as each agent’s initial endowment. Hurwicz (1979) and Walker (1981)
subsequently succeeded in constructing a mechanism whose Nash equilibrium allocations are Lindahl
allocations that satisfy both Pareto-efficiency and individual rationality. After that, numerous mecha-
nisms that satisfy additional desirable properties, such as individual feasibility and balancedness, have
been proposed. See, for example, Groves and Ledyard (1987), Tian (1990), Hurwicz (1994), Dutta et
al. (1995), and Suzuki (2009).

2Specifically, the aforementioned studies mainly considered either the mechanism attaining Pareto-
efficient allocations or the voluntary contribution mechanism. Saijo and Yamato (1997, 2010) showed
that these impossibility results hold for a more general class of mechanisms in the economy where the
amount of the public good is continuous.
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non-participation.3

As a first step in comparing several public provision mechanisms, this paper re-

stricts its attention to the two types of mechanisms. First, we consider any mecha-

nism in normal or extensive form attaining Pareto-efficient allocations, which we call

a Pareto-efficient mechanism.4 Second, we consider the voluntary contribution mech-

anism, which has been studied by many authors, although it cannot realize Pareto-

efficient allocations.5 Following Saijo and Yamato (1997, 1999), we also consider a

two-stage game and assume that all agents have the same Cobb-Douglas preferences.

However, unlike Saijo and Yamato (1997, 1999) who focused on pure strategies, this pa-

per examines a symmetric mixed strategy Nash equilibrium of the first stage (hereafter,

participation game). Since the agents are homogenous in our model, it is reasonable

to focus on symmetric mixed strategy Nash equilibria. Another reason for this focus

is that coordination on any asymmetric equilibrium would be difficult. In fact, some

studies only focused on symmetric mixed strategy Nash equilibria due to coordination

difficulties (Bagnoli and Lipman, 1988; Holmström and Nalebuff, 1992).

We first show that there is a unique symmetric mixed strategy Nash equilibrium

in the participation game under both the voluntary contribution mechanism and any

Pareto-efficient mechanism. Next, we find that the probability of participation in the

symmetric mixed strategy Nash equilibrium decreases as the number of agents in an

economy increases under both mechanisms. Finally, we numerically compare the volun-

tary contribution mechanism with any Pareto-efficient mechanism from the viewpoints

of participation probabilities, expected provision levels of the public good, and expected

payoffs. The equilibrium participation probability of each agent under the voluntary

contribution mechanism becomes greater than that under any Pareto-efficient mecha-

nism as the number of agents in an economy increases. Moreover, both the equilibrium

expected provision level of the public good and the equilibrium expected payoff of each

agent under the voluntary contribution mechanism become higher than those under

3Saijo and Yamato (1997, 1999, 2010) considered multiple mechanisms, but did not compare them.
On the other hand, Palfrey and Rosenthal (1984) and Dixit and Olson (2000) considered one specific
mechanism. Recently, there is a growing literature that examines the participation problem (Ko-
riyama, 2009; Shinohara, 2009, 2015; Healy, 2010; Furusawa and Konishi, 2011; Matsushima and
Shinohara, 2012; Konishi and Shinohara, 2014). These studies also focused on specific mechanisms.

4Under the aforementioned mechanisms, agents choose strategies simultaneously. These are called
mechanisms in normal form. On the other hand, under the Pareto-efficient mechanisms for public
goods proposed by Moore and Repullo (1988) and Varian (1994), agents select strategies sequentially.
These are called mechanisms in extensive form.

5Warr (1982, 1983) and Bergstrom et al. (1986) theoretically investigated the properties of the vol-
untary contribution mechanism. See Ledyard (1995) and Chen (2008) for surveys on the experimental
results of the voluntary contribution mechanism.
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any Pareto-efficient mechanism when the number of agents and the value of the public

good are sufficiently large. Our results suggest that the voluntary contribution mecha-

nism might be superior to any Pareto-efficient mechanism if we allow agents to choose

participation in the mechanism voluntarily.

Some studies are closely related to ours. Palfrey and Rosenthal (1984) and Dixit

and Olson (2000) examined symmetric mixed strategy Nash equilibria in their partic-

ipation games. They considered the problem of the provision of a binary public good,

while the amount of the public good is continuous in this paper. Palfrey and Rosen-

thal (1984) considered the voluntary contribution mechanism both with and without a

refund in the second stage. In the second stage of Dixit and Olson (2000), participants

play a cooperative game of Coasian bargaining to determine whether to provide the

public good. Okada (1993) and Hong and Karp (2012) also investigated a symmetric

mixed strategy Nash equilibrium of a similar participation problem for n-person pris-

oners’ dilemmas and international environmental agreements, respectively. They also

showed that all agents do not participate and the equilibrium participation probability

decreases as the number of agents increases in their settings.6

The rest of this paper is organized as follows. Section 2 introduces the model,

mechanisms, and participation game. Section 3 presents examples to illustrate our

basic idea. Section 4 investigates symmetric mixed strategy Nash equilibria in the

participation game under the voluntary contribution mechanism and those under any

Pareto-efficient mechanism. Section 5 numerically compares the voluntary contribu-

tion mechanism with any Pareto-efficient mechanism. Section 6 provides concluding

remarks. All proofs are relegated to the appendices.

2 Preliminaries

2.1 Model

We consider the following economies with one private good and one pure public good.

Let N = {1, 2, . . . , n} be the set of agents, with generic element i. Agent i’s con-

sumption bundle is denoted by (xi, y) ∈ R2
+, where xi is the level of private good she

consumes on her own and y is the level of the public good. Each agent i ∈ N has a

6Dixit and Olson (2000) derived these results using simulation analysis. Hong and Lim (2016)
provided analytical and experimental results that support Dixit and Olson’s (2000) simulation results.
Koriyama (2009) also examined a symmetric mixed strategy Nash equilibrium for the provision of a
binary public good. However, he did not investigate the relationship between the number of agents in
an economy and the equilibrium participation probability.
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preference relation represented by a (symmetric) Cobb-Douglas utility function on her

consumption space R2
+: for each (xi, y) ∈ R2

+, uα
i (xi, y) = xα

i y1−α, where α ∈ ]0, 1[.7

Then, the coefficient α on the private good can be identified with a utility function.

Hence, the set of symmetric Cobb-Douglas utility functions is represented by the open

interval ]0, 1[.

Agent i’s initial endowment is denoted by (ωi, 0), where ωi > 0. That is, there is

no public good initially. In what follows, we assume that for each i ∈ N , ωi = ω > 0.

However, the public good can be produced from the private good by means of a constant

returns to scale technology, and let y =
∑

i∈N(ωi − xi) be the production function of

the public good. Given a non-empty set T ⊆ N of agents, a feasible allocation for T is

denoted by (xT , y) ≡ ((xi)i∈T , y) ∈ R#T+1
+ with

∑
i∈T (ωi −xi) = y.8 The set of feasible

allocations for T ⊆ N is denoted by AT .

2.2 Mechanisms

A mechanism is a function Γ that associates with each non-empty set T ⊆ N a

pair Γ(T ) = ((MT
j )j∈T , gT ), where MT

i is the strategy space of agent i ∈ T and

gT :
∏

j∈T MT
j → R#T+1

+ is an outcome function when the agents in T play the mech-

anism.9 For convenience, we use notation ΓT instead of Γ(T ). Given gT (m) = (xT , y),

let gT
i (m) = (xi, y) for each i ∈ T and gT

y (m) = y. For each α ∈ ]0, 1[ and each non-

empty T ⊆ N , let NE(ΓT ,α) ⊆ AT denote the set of (pure strategy) Nash equilibrium

allocations of ΓT at α.

This paper considers a well-known mechanism called the voluntary contribution

mechanism. Formally, the voluntary contribution mechanism is a mechanism such that

for each non-empty T ⊆ N and each i ∈ T , MT
i = [0, ωi] and for each m ∈

∏
j∈T MT

j ,

gT
i (m) =

(
ωi − mi,

∑
j∈T mj

)
. Under the voluntary contribution mechanism, each

agent i ∈ T chooses her contribution out of her endowment to the provision of the

public good, mi, to maximize her utility uα
i

(
ωi − mi,

∑
j∈T mj

)
, given contributions

(mj)j∈T\{i} of the other agents in T . We consider the Nash equilibrium allocations of

the voluntary contribution mechanism.

In addition to the voluntary contribution mechanism, we consider any mechanism

satisfying the following two conditions:

7Let a, b ∈ R be such that a ≤ b. Then, we denote by [a, b] and ]a, b[ the closed interval from a to
b and the open interval from a to b, respectively.

8Given a non-empty set X, we denote by #X the cardinality of X.
9For simplicity, we confine our attention to mechanisms in normal form. This restriction does not

affect the results.
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• Symmetry: For each non-empty T ⊆ N and each α ∈ ]0, 1[, if for each pair

{i, j} ⊆ T , ωi = ωj and (xT , y) ∈ NE(ΓT ,α), then for each pair {i, j} ⊆ T ,

xi = xj.

• Pareto-efficiency only for participants: For each non-empty T ⊆ N and

each α ∈ ]0, 1[,

NE(ΓT ,α) ⊆

⎧
⎪⎨

⎪⎩
(xT , y) ∈ AT :

there is no (x′
T , y′) ∈ AT such that

for each i ∈ T , uα
i (x′

T , y′) ≥ uα
i (xT , y) and

for some j ∈ T , uα
j (x′

T , y′) > uα
j (xT , y)

⎫
⎪⎬

⎪⎭
.

The condition of symmetry requires that if all participants have the same preferences

and endowments, they receive the same consumption bundle at any Nash equilibrium.

Therefore, every participant pays the same amount of the private good for the provision

of the public good at any Nash equilibrium. The condition of Pareto-efficiency only for

participants means that every Nash equilibrium allocation of the mechanism should be

Pareto-efficient for participants, but not necessarily with respect to all agents. We call

a mechanism satisfying these two conditions a Pareto-efficient mechanism.

Remark. Note that a well-known Lindahl mechanism is Pareto-efficient. Given a

value α ∈ ]0, 1[ and a non-empty set T ⊆ N of agents, a feasible allocation (xT , y)

for T is a Lindahl allocation for T at α if there is a price vector q ∈ R#T
+ such

that for each i ∈ T , xi + qiy = ωi and for each (x′
i, y

′) ∈ R2
+ with x′

i + qiy′ ≤ ωi,

uα
i (xi, y) ≥ uα

i (x′
i, y

′). Let L T (α) be the set of Lindahl allocations for T at α. A Lindahl

mechanism is a mechanism such that for each α ∈ ]0, 1[ and each non-empty T ⊆ N ,

NE(ΓT , α) = L T (α). That is, a Lindahl mechanism is a mechanism whose Nash

equilibrium allocations coincide with the Lindahl allocations for each value α ∈ ]0, 1[

and each non-empty set T ⊆ N of agents. ♦

2.3 Participation game

Given a mechanism, we consider the following two-stage game with voluntary partici-

pation. In the first stage, each agent simultaneously decides whether she participates in

the mechanism. In the second stage, knowing the other agents’ participation decisions,

the agents who participated in the first stage choose their strategies for the mechanism.

We derive a symmetric subgame perfect equilibrium of the two-stage game with

voluntary participation. Saijo and Yamato (1999) identified a unique Nash equilibrium

6



allocation for each possible first stage outcome in any Pareto-efficient mechanism and

the voluntary contribution mechanism.

Proposition 1 (Saijo and Yamato, 1999). Let α ∈ ]0, 1[ and T ⊆ N with T ≠ ∅.
Then:

(i) There exists a unique symmetric pure strategy Nash equilibrium allocation of any

Pareto-efficient mechanism for T at α given by, for each i ∈ T ,

(
xT

i , yT
)

= (ωα,ω(1 − α)#T ) .

(ii) There exists a unique symmetric pure strategy Nash equilibrium allocation of the

voluntary contribution mechanism for T at α given by, for each i ∈ T ,

(
xT

i , yT
)

=

(
ωα#T

1 + α(#T − 1)
,

ω(1 − α)#T

1 + α(#T − 1)

)
.

Given a Nash equilibrium allocation of the second stage, the first stage can be

reduced to the following simultaneous game. Given a mechanism Γ, a participation

game under Γ is represented by (N, ({P, NP}, (πΓ
i ))i∈N), where {P, NP} is the strategy

set common to all agents and πΓ
i is agent i’s payoff function. Each agent chooses either

P (participation) or NP (non-participation), simultaneously. Let T (s) be the set of

participants at s ≡ (si)i∈N ∈ {P, NP}#N , that is, T (s) ≡ {i ∈ N : si = P}. The payoff

of agent i is: for each s ∈ {P, NP}#N ,

πΓ
i (s) ≡

⎧
⎨

⎩
uα

i

(
xT (s)

i , yT (s)
)

if i ∈ T (s)

uα
i

(
ω, yT (s)

)
if i /∈ T (s),

where
(
(xT (s)

j )j∈T (s), yT (s)
)
∈ NE(ΓT (s),α).

Then, from Proposition 1, the following hold:

• If Γ is a Pareto-efficient mechanism, then for each i ∈ N and each s ∈ {P, NP}#N ,

πΓ
i (s) =

⎧
⎨

⎩
ωαα[(1 − α)#T (s)]1−α if i ∈ T (s)

ω[(1 − α)#T (s)]1−α if i /∈ T (s).

• If Γ is the voluntary contribution mechanism, then for each i ∈ N and for each

7



1

2

1 1 2

2

P NP

P NP P NP

(
0, 0

)

Pareto
(
6.68, 6.68

)

Voluntary
(
6.39, 6.39

)

(
5.43, 6.97

) (
6.97, 5.43

)

Figure 1. Game tree when agents can choose their participation to a mechanism.

s ∈ {P, NP}#N ,

πΓ
i (s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωαα(1 − α)1−α#T (s)

1 + α(#T (s) − 1)
if i ∈ T (s)

ω[(1 − α)#T (s)]1−α

[1 + α(#T (s) − 1)]1−α if i /∈ T (s).

3 Examples

This section provides examples to illustrate our basic idea. Let α = 0.7 and ω = 10.

3.1 Two-agent case

Pareto-efficient mechanism. Figure 1 illustrates the two-stage voluntary partic-

ipation game under any Pareto-efficient mechanism for a two-agent case. There are

three possible cases in the second stage:

1. If both agents choose P (participation), then the Nash equilibrium allocation is

a unique symmetric Pareto-efficient allocation for the two-agent economy, given

by (xN
1 , xN

2 , yN) = (7, 7, 6). In this case, the payoff of each participant i ∈ {1, 2}
is u0.7

i (xN
i , yN) ≈ 6.68.

2. If agent i selects P, but the other agent j ≠ i chooses NP (non-participation),

then only participant i plays the mechanism. In this case, the Nash equilibrium

8



P (p) NP (1 − p)

P (p) 6.68, 6.68 5.43, 6.97

NP (1 − p) 6.97, 5.43 0, 0

Figure 2. Payoff matrix of any Pareto-efficient mechanism when agents can choose their
participation.

allocation is a unique Pareto-efficient allocation for the economy of only one

participant i, given by (x{i}
i , y{i}) = (7, 3). Then, the payoff of participant i is

u0.7
i (x{i}

i , y{i}) ≈ 5.43, whereas that of non-participant j is u0.7
j (ω, y{i}) ≈ 6.97.

Note that non-participant j can enjoy the non-excludable public good produced

by participant i, y{i}, although she makes no contribution to the provision of the

public good.

3. If both select NP, no public good is produced. In this case, the payoff of each

non-participant i ∈ {1, 2} is u0.7
i (ω, 0) = 0.

Figure 2 shows the payoff matrix for the first stage decision on participation, in

which the second stage equilibrium payoff is indicated for each possible case. We now

derive a unique symmetric mixed strategy Nash equilibrium in Figure 2. Let p ∈ [0, 1]

be the probability of participation that each agent chooses under a symmetric mixed

strategy profile. Then, each agent’s expected payoff of choosing P when the other agent

chooses P with probability p under any Pareto-efficient mechanism is

p × 6.68 + (1 − p) × 5.43,

and her expected payoff of choosing NP is

p × 6.97 + (1 − p) × 0.

We denote these two expected payoffs as UPE
P (p) and UPE

NP (p). At a non-degenerate

mixed strategy equilibrium, UPE
P (p) = UPE

NP (p). Therefore, UPE
P (p)−UPE

NP (p) = −(6.97−
6.68)p + 5.43(1 − p) = 0, which we can alternatively write as

0.29p = 5.43(1 − p). (1)
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Figure 3. Graphs of LPE, LV, and GPE = GV.

The left-hand side of (1), LPE(p) ≡ 0.29p, represents the expected payoff loss of choos-

ing P when the other agent selects P with probability p under any Pareto-efficient

mechanism. On the other hand, the right-hand side of (1), GPE(p) ≡ 5.43(1 − p),

denotes the expected payoff gain of choosing P when the other agent selects NP with

probability (1−p) under any Pareto-efficient mechanism. The expected payoff loss LPE

is increasing in p, the participation probability of the other agent, while the expected

payoff gain GPE is decreasing in p (see Figure 3). At equilibrium, the expected payoff

loss LPE is equal to the expected payoff gain GPE. There is a unique mixed strategy

equilibrium given by 0.9502.10

Voluntary contribution mechanism. Similarly to Pareto-efficient mechanisms,

we can examine the two-stage voluntary participation game under the voluntary con-

tribution mechanism. Figure 1 illustrates the game tree and Figure 4 shows the payoff

matrix for the first stage decision on participation in the voluntary contribution mech-

anism, in which the second stage equilibrium payoffs are denoted for each possible

case.11 Then, each agent’s expected payoff of choosing P when the other agent chooses

10Incidentally, in Figure 2, there are two pure Nash equilibria, in which one agent chooses P, whereas
the other agent does not. This paper focuses on the symmetric mixed-strategy equilibrium.

11It is easy to see that the Nash equilibrium allocations of the voluntary contribution mechanism
are given by (xN

1 , xN
2 , yN ) = ( 140

17 , 140
17 , 60

17 ) when both agents choose P and (x{i}
i , y{i}) = (7, 3) when

only agent i selects P.
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P (p) NP (1 − p)

P (p) 6.39, 6.39 5.43, 6.97

NP (1 − p) 6.97, 5.43 0, 0

Figure 4. Payoff matrix of the voluntary contribution mechanism when agents can choose
their participation.

P with probability p under the voluntary contribution mechanism is

p × 6.36 + (1 − p) × 5.43,

and the expected payoff of choosing NP is

p × 6.97 + (1 − p) × 0.

We denote these two expected payoffs as UV
P (p) and UV

NP(p). At a non-degenerate mixed

strategy equilibrium, UV
P (p) = UV

NP(p). Therefore, UV
P (p)−UV

NP(p) = −(6.97−6.36)p+

5.43(1 − p) = 0, that is,

0.61p = 5.43(1 − p). (2)

The left-hand side of (2), LV(p) ≡ 0.61p, represents the expected payoff loss of choosing

P when the other agent selects P with probability p under the voluntary contribution

mechanism. On the other hand, the right-hand side of (2), GV(p) ≡ 5.43(1−p), denotes

the expected gain of choosing P when the other agent selects NP with probability (1−p)

under the voluntary contribution mechanism. The expected payoff loss LV is increasing

in p, while the expected payoff gain GV is decreasing in p (see Figure 3). There is a

unique mixed strategy equilibrium, at which the expected payoff loss LV equals the

expected payoff gain GV, given by 0.9032.12

Comparison between two mechanisms. Note that the equilibrium participation

probability under any Pareto-efficient mechanism, 0.9502, is greater than that under the

voluntary contribution mechanism, 0.9032. As per Figure 3, the expected payoff loss

under any Pareto-efficient mechanism, LPE(p), is lower than that under the voluntary

contribution mechanism, LV(p), for any positive value of p and both are increasing

12Incidentally, in Figure 4, there are two pure Nash equilibria, in which one agent chooses P, whereas
the other agent does not.
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P (p) NP (1 − p)

P (p) 7.55, 7.55, 7.55 6.68, 8.58, 6.68

NP (1 − p) 8.58, 6.68, 6.68 6.97, 6.97, 5.43

P (p)

P (p) NP (1 − p)

P (p) 6.68, 6.68, 8.58 5.43, 6.97, 6.97

NP (1 − p) 6.97, 5.43, 6.97 0, 0, 0

NP (1 − p)

Figure 5. Payoff matrix of any Pareto-efficient mechanism when agents can choose their
participation. Agent 1 chooses one of the two rows, agent 2 chooses one of the two columns,
and agent 3 chooses one of the two matrices.

in p. In addition, the expected payoff gains under the two mechanisms are the same,

GPE = GV, and are decreasing in p. Hence, the equilibrium participation probability

under any Pareto-efficient mechanism at which LPE intersects GPE is greater than that

under the voluntary contribution mechanism at which LV intersects GV.

3.2 Three-agent case

As shown above, the equilibrium participation probability under any Pareto-efficient

mechanism is greater than that under the voluntary contribution mechanism when

there are two agents. However, when there are more than two agents, the equilibrium

participation probability under any Pareto-efficient mechanism may be less than or

equal to that under the voluntary contribution mechanism.

Pareto-efficient mechanism. One can easily verify that the Pareto-efficient allo-

cations of any Pareto-efficient mechanism are given by (xN
1 , xN

2 , xN
3 , yN) = (7, 7, 7, 9)

when three agents choose P; (x{i,j}
i , x{i,j}

j , y{i,j}) = (7, 7, 6) when two agents, i and j,

select P; and (x{i}
i , y{i}) = (7, 3) when only one agent i chooses P. Figure 5 shows the

payoff matrix of any Pareto-efficient mechanism for the first stage decision on participa-

tion, in which the second equilibrium payoffs are denoted for each of the possible eight

cases. We derive a unique symmetric mixed strategy Nash equilibrium in Figure 5. Let

p ∈ [0, 1] be the probability of participation that each agent chooses in a symmetric

mixed strategy profile. At a non-degenerate mixed strategy equilibrium, each agent’s

expected payoff of choosing P when the other agent selects P with probability p under

any Pareto-efficient mechanism,

UPE
P (p) = p2 × 7.55 + 2 × p(1 − p) × 6.68 + (1 − p)2 × 5.43,

12



Figure 6. Graphs of LPE, LV, and GPE = GV.

should be equal to her expected payoff of choosing NP,

UPE
NP (p) = p2 × 8.58 + 2 × p(1 − p) × 6.97 + (1 − p)2 × 0.

Therefore, UPE
P (p)−UPE

NP (p) = −(8.58−7.55)p2−2×(6.97−6.68)p(1−p)+5.43(1−p)2 =

0, that is,

1.03p2 + 0.58p(1 − p) = 5.43(1 − p)2. (3)

The left-hand side of (3), LPE(p) ≡ 1.03p2 + 0.58p(1 − p), consists of two terms:

• The first term, 1.03p2, represents the expected payoff loss of choosing P when the

other two agents select P with probability p under any Pareto-efficient mechanism.

• The second term, 0.58p(1−p), expresses another expected payoff loss of choosing

P when one of the other two agents selects P with probability p and one of them

chooses NP with probability 1 − p under any Pareto-efficient mechanism.

On the other hand, the right-hand side of (3), GPE(p) ≡ 5.43(1 − p)2, denotes the

expected payoff gain of choosing P when the other two agents select NP with probability

1 − p under any Pareto-efficient mechanism (see Figure 6). There is a unique mixed

strategy equilibrium, at which the expected payoff loss LPE equals the expected payoff

13



P (p) NP (1 − p)

P (p) 6.79, 6.79, 6.79 6.39, 7.32, 6.39

NP (1 − p) 7.32, 6.39 , 6.39 6.97, 6.97, 5.43

P (p)

P (p) NP (1 − p)

P (p) 6.39, 6.39, 7.32 5.43, 6.97, 6.97

NP (1 − p) 6.97, 5.43, 6.97 0, 0, 0

NP (1 − p)

Figure 7. Payoff matrix of the voluntary contribution mechanism when agents can choose
their participation. Agent 1 chooses one of the two rows, agent 2 chooses one of the two
columns, and agent 3 chooses one of the two matrices.

gain GPE, given by 0.6705.13

Voluntary contribution mechanism. It is easy to see that the Nash equilibrium

allocations of the voluntary contribution mechanism are given by (xN
1 , xN

2 , xN
3 , yN) =

(8.75, 8.75, 8.75, 3.75) when three agents choose P; (x{i,j}
i , x{i,j}

j , y{i,j}) = (140
17 , 140

17 , 60
17)

when two agents, i and j, select P; and (x{i}
i , y{i}) = (7, 3) when only one agent i

chooses P. Figure 7 shows the payoff matrix for the first stage decision on participation

in the voluntary contribution mechanism with three agents. At a non-degenerate mixed

strategy equilibrium, each agent’s expected payoff of choosing P when the other agents

select P with probability p under the voluntary contribution mechanism,

UV
P (p) = p2 × 6.79 + 2 × p(1 − p) × 6.39 + (1 − p)2 × 5.43,

should be equal to her expected payoff of choosing NP,

UV
NP(p) = p2 × 7.32 + 2 × p(1 − p) × 6.97 + (1 − p)2 × 0.

Therefore, UV
P (p)−UV

NP(p) = −(7.32−6.79)p2−2×(6.97−6.39)p(1−p)+5.43(1−p)2 = 0,

that is,

0.53p2 + 1.16p(1 − p) = 5.43(1 − p)2. (4)

The left-hand side of (4), LV(p) ≡ 0.53p2 + 1.16p(1 − p), consists of two terms:

• The first term, 0.53p2, represents the expected payoff loss of choosing P when

the other two agents select P with probability p under the voluntary contribution

mechanism.

13Incidentally, in Figure 5, there are three pure Nash equilibria under which only one agent chooses
P.
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• The second term, 1.16p(1−p), expresses another expected payoff loss of choosing

P when one of the other two agents selects P with probability p and the other

chooses NP with probability 1 − p under the voluntary contribution mechanism.

On the other hand, the right-hand side of (4), GV(p) ≡ 5.43(1 − p)2, denotes the

expected payoff gain of choosing P when the other two agents select NP with probability

1 − p under the voluntary contribution mechanism (see Figure 6). There is a unique

mixed strategy equilibrium, at which the expected payoff loss LV equals the expected

payoff gain GV, given by 0.6956.14

Comparison between two mechanisms. Note that the equilibrium participation

probability under the voluntary contribution mechanism, 0.6956, is greater than that

under any Pareto-efficient mechanism, 0.6705. As per Figure 6, the expected payoff

loss under any Pareto-efficient mechanism, LPE(p), is higher than that under the vol-

untary contribution mechanism, LV(p), for a sufficiently large value of p. Moreover,

the expected payoff gains under the two mechanisms are the same, GPE = GV, and

decreasing in p. Therefore, the equilibrium participation probability under any Pareto-

efficient mechanism at which LPE intersects GPE is lower than that under the voluntary

contribution mechanism at which LV intersects GV. Intuitively, the incentive of deviat-

ing from participation under any Pareto-efficient mechanism is higher than that under

the voluntary contribution mechanism. This is because the provision level of the pub-

lic good under any Pareto-efficient mechanism is higher than that under the voluntary

contribution mechanism, which leads to a greater equilibrium participation probabil-

ity under the voluntary contribution mechanism than that under any Pareto-efficient

mechanism.

Given this observation, it is natural to ask the following question. How often is

the equilibrium participation probability under the voluntary contribution mechanism

greater than that under any Pareto-efficient mechanism? In fact, if there are at least

three agents, the equilibrium participation probability under the voluntary contribu-

tion mechanism is greater than that under any Pareto-efficient mechanism unless both

equilibrium participation probabilities are equal to one. Interestingly, both the ex-

pected equilibrium payoff and the expected equilibrium provision level of the public

good under the voluntary contribution mechanism become higher than those under

any Pareto-efficient mechanism when the number of agents and the value of the public

good are sufficiently large. We explain these facts in Section 5.
14Incidentally, in Figure 7, there are three pure Nash equilibria under which only one agent chooses

P.
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4 Symmetric mixed strategy Nash equilibrium

This section derives a symmetric mixed strategy Nash equilibrium in the participation

game under any Pareto-efficient mechanism and the voluntary contribution mechanism.

In the symmetric mixed strategy Nash equilibrium, all agents randomize P (partici-

pation) and NP (non-participation) with the same probability. Note that this mixed

strategy is an evolutionarily stable strategy (Maynard Smith, 1982).

4.1 Pareto-efficient mechanism

We here consider any Pareto-efficient mechanism. Let p ∈ [0, 1] be the probability of

participation under a symmetric mixed strategy profile. Given α ∈ ]0, 1[ and n ≥ 2,

let UPE
P (p,α, n) be each agent’s expected payoff of choosing P when the other agents

choose P with probability p under any Pareto-efficient mechanism. Explicitly,

UPE
P (p,α, n) ≡ ω(1 − α)1−ααα

n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−k(k + 1)1−α,

where
(

r
t

)
≡ r!

t!(r−t)! is the binomial coefficient. Similarly, let UPE
NP (p,α, n) be each agent’s

expected payoff of choosing NP when the other agents choose P with probability p under

any Pareto-efficient mechanism. Explicitly,

UPE
NP (p,α, n) ≡ ω(1 − α)1−α

n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−kk1−α.

At a non-degenerate mixed strategy Nash equilibrium, the expected payoff of choosing

P should be equal to that of choosing NP.

We now formally prove the existence and uniqueness of a symmetric mixed strat-

egy Nash equilibrium in the participation game under any Pareto-efficient mechanism.

Moreover, we show that as the number of agents increases, the equilibrium participa-

tion probability decreases and then converges to 0 as the number of agents goes to

infinity.

Theorem 1. Let α ∈ ]0, 1[ and n ≥ 2. Then:

(i) There is a unique symmetric mixed strategy Nash equilibrium pPE(α, n) in the

participation game under any Pareto-efficient mechanism.

(ii) If pPE(α, n+1) < 1, then pPE(α, n) > pPE(α, n+1). Moreover, lim
k→∞

pPE(α, k) = 0.
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α
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9623 0.9502 0.9553 0.9731
3 1.0000 1.0000 0.7885 0.6965 0.6589 0.6529 0.6705 0.7108 0.7820
4 1.0000 0.6981 0.5558 0.4970 0.4760 0.4785 0.5005 0.5440 0.6229
5 0.8611 0.5336 0.4278 0.3849 0.3710 0.3758 0.3970 0.4375 0.5123
6 0.6925 0.4316 0.3475 0.3137 0.3036 0.3090 0.3284 0.3651 0.4336
7 0.5792 0.3622 0.2924 0.2647 0.2568 0.2622 0.2798 0.3129 0.3754
8 0.4977 0.3121 0.2524 0.2288 0.2225 0.2277 0.2437 0.2737 0.3307
9 0.4363 0.2741 0.2220 0.2015 0.1962 0.2011 0.2158 0.2431 0.2954
10 0.3884 0.2443 0.1981 0.1800 0.1755 0.1801 0.1936 0.2186 0.2668
20 0.1852 0.1171 0.0954 0.0871 0.0853 0.0880 0.0953 0.1088 0.1353
30 0.1216 0.0770 0.0628 0.0574 0.0563 0.0582 0.0632 0.0724 0.0906
40 0.0905 0.0574 0.0468 0.0428 0.0420 0.0435 0.0473 0.0543 0.0681
50 0.0720 0.0457 0.0373 0.0341 0.0335 0.0347 0.0378 0.0434 0.0545
100 0.0357 0.0227 0.0185 0.0170 0.0167 0.0173 0.0188 0.0217 0.0273
500 0.0071 0.0045 0.0037 0.0034 0.0033 0.0034 0.0038 0.0043 0.0055

Table 1. Numerical results: the equilibrium participation probability under any Pareto-ef-
ficient mechanism, pPE(α, n).

The proof of Theorem 1 is provided in Appendix A. Table 1 illustrates that the

equilibrium participation probability under any Pareto-efficient mechanism decreases

as the number of agents increases, given each value α ∈ {0.1, . . . , 0.9}.

4.2 Voluntary contribution mechanism

We next consider the voluntary contribution mechanism. Let p ∈ [0, 1] be the prob-

ability of participation under a symmetric mixed strategy profile. Given α ∈ ]0, 1[

and n ≥ 2, let UV
P (p,α, n) be each agent’s expected payoff of choosing P when the

other agents choose P with probability p under the voluntary contribution mechanism.

Explicitly,

UV
P (p,α, n) ≡ ω(1 − α)1−ααα

n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−k k + 1

1 + kα
.

Similarly, let UV
NP(p,α, n) be each agent’s expected payoff of choosing NP when the

other agents choose P with probability p under the voluntary contribution mechanism.

Explicitly,

UV
NP(p,α, n) ≡ ω(1 − α)1−α

n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−k

[
k

1 + α(k − 1)

]1−α

.
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α
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 1.0000 1.0000 1.0000 0.9861 0.9252 0.9020 0.9032 0.9222 0.9553
3 1.0000 1.0000 0.8533 0.7346 0.6876 0.6783 0.6956 0.7371 0.8089
4 1.0000 0.8921 0.6579 0.5678 0.5339 0.5315 0.5527 0.5982 0.6795
5 1.0000 0.7183 0.5322 0.4602 0.4343 0.4348 0.4561 0.5002 0.5806
6 1.0000 0.6005 0.4460 0.3863 0.3654 0.3672 0.3875 0.4287 0.5050
7 0.9714 0.5156 0.3836 0.3326 0.3151 0.3176 0.3365 0.3747 0.4462
8 0.8494 0.4517 0.3363 0.2919 0.2769 0.2797 0.2973 0.3325 0.3993
9 0.7545 0.4017 0.2994 0.2600 0.2470 0.2498 0.2662 0.2988 0.3611
10 0.6787 0.3617 0.2697 0.2344 0.2228 0.2257 0.2409 0.2713 0.3295
20 0.3382 0.1810 0.1353 0.1179 0.1125 0.1146 0.1234 0.1409 0.1751
30 0.2252 0.1206 0.0903 0.0787 0.0752 0.0768 0.0829 0.0951 0.1191
40 0.1688 0.0905 0.0677 0.0591 0.0565 0.0577 0.0624 0.0717 0.0902
50 0.1350 0.0724 0.0542 0.0473 0.0452 0.0462 0.0501 0.0576 0.0726
100 0.0674 0.0362 0.0271 0.0237 0.0227 0.0232 0.0251 0.0290 0.0367
500 0.0135 0.0072 0.0054 0.0047 0.0045 0.0047 0.0051 0.0058 0.0074

Table 2. Numerical results: the equilibrium participation probability under the voluntary
contribution mechanism, pV(α, n).

At a non-degenerate mixed strategy Nash equilibrium, the expected payoff of choosing

P should be equal to that of choosing NP.

We then obtain the same existence and uniqueness result as in Theorem 1. Similarly

to the Pareto-efficient mechanism, the equilibrium participation probability under the

voluntary contribution mechanism is monotonically decreasing in the number of agents

and then converges to 0 as the number of agents goes to infinity.

Theorem 2. Let α ∈ ]0, 1[ and n ≥ 2. Then:

(i) There is a unique symmetric mixed strategy Nash equilibrium pV(α, n) in the

participation game under the voluntary contribution mechanism.

(ii) If pV(α, n + 1) < 1, then pV(α, n) > pV(α, n + 1). Moreover, lim
k→∞

pV(α, k) = 0.

The proof of Theorem 2 is provided in Appendix B. Table 2 illustrates that the

equilibrium participation probability under the voluntary contribution mechanism de-

creases as the number of agents increases, given each value α ∈ {0.1, . . . , 0.9}.

5 Numerical comparison

This section presents the results of our numerical comparison of the voluntary contri-

bution mechanism with any Pareto-efficient mechanism from the viewpoints of partic-
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ipation probabilities, expected provision levels of a public good, and expected payoffs,

respectively.

5.1 Equilibrium participation probability

In Section 3, we showed that for two agents, the equilibrium participation probability

under the voluntary contribution mechanism is lower than that under any Pareto-

efficient mechanism using the specific values of α. In fact, this result holds for any

values of α. The proof of the following theorem is provided in Appendix C.

Theorem 3. For each α ∈ ]0, 1[, pV(α, 2) ≤ pPE(α, 2) and for some α ∈ ]0, 1[,

pV(α, 2) < pPE(α, 2).

However, as mentioned in Section 3, this is no longer true for three or more agents.

To see this, we introduce the following notion. Given α ∈ ]0, 1[ and n ≥ 2, let

PP(α, n) ≡ pV(α, n)

pPE(α, n)

be the ratio of the equilibrium participation probability under the voluntary contribu-

tion mechanism to that under any Pareto-efficient mechanism for (α, n). We call this

the participation probability ratio.

Table 3 reports the participation probability ratio PP(α, n) when α varies from 0.1

to 0.9 and n from 2 to 500. Figure 8 shows the graphs of PP(α, n) when n = 2, 3, 10, 20,

50 and α varies from 0 to 1. Both Table 3 and Figure 8 reveal that whenever n ≥ 3 and

pV(α, n) < 1, PP(α, n) > 1 (in Table 3, PP(α, n) > 1 is highlighted in gray), that is,

the equilibrium participation probability under the voluntary contribution mechanism

is greater than that under any Pareto-efficient mechanism. Moreover, we observe from

Table 3 and Figure 8 that the region of α for which PP(α, n) > 1 increases as the

number of agents increases.

5.2 Equilibrium expected provision level of a public good

Next, we numerically compute the equilibrium expected provision levels of a public

good under the voluntary contribution mechanism and any Pareto-efficient mechanism.

Given α ∈ ]0, 1[ and n ≥ 2, let yPE(α, n) (respectively, yV(α, n)) be the equilibrium

expected provision level of a public good under any Pareto-efficient mechanism (respec-

tively, the voluntary contribution mechanism). To compare yPE(α, n) and yV(α, n), we
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α
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 1.0000 1.0000 1.0000 0.9861 0.9252 0.9373 0.9506 0.9653 0.9817
3 1.0000 1.0000 1.0822 1.0547 1.0435 1.0388 1.0374 1.0370 1.0344
4 1.0000 1.2778 1.1836 1.1424 1.1217 1.1107 1.1044 1.0996 1.0909
5 1.1612 1.3461 1.2439 1.1958 1.1706 1.1567 1.1489 1.1431 1.1332
6 1.4439 1.3915 1.2836 1.2313 1.2035 1.1883 1.1799 1.1742 1.1646
7 1.6771 1.4235 1.3117 1.2566 1.2271 1.2111 1.2026 1.1974 1.1886
8 1.7065 1.4473 1.3325 1.2755 1.2449 1.2284 1.2199 1.2152 1.2074
9 1.7292 1.4657 1.3487 1.2901 1.2587 1.2419 1.2336 1.2293 1.2224
10 1.7472 1.4804 1.3615 1.3018 1.2698 1.2528 1.2446 1.2408 1.2348
20 1.8267 1.5452 1.4186 1.3541 1.3196 1.3020 1.2949 1.2941 1.2936
30 1.8527 1.5665 1.4373 1.3713 1.3362 1.3185 1.3120 1.3125 1.3143
40 1.8656 1.5770 1.4467 1.3799 1.3444 1.3268 1.3206 1.3218 1.3249
50 1.8733 1.5833 1.4522 1.3851 1.3494 1.3318 1.3258 1.3274 1.3313
100 1.8886 1.5958 1.4633 1.3953 1.3593 1.3417 1.3362 1.3387 1.3442
500 1.8999 1.6031 1.4728 1.4065 1.3675 1.3517 1.3467 1.3464 1.3547

Table 3. Numerical results: the participation probability ratio, PP(α, n).

Figure 8. Graphs of PP(α, n) for n = 2, 3, 10, 20, 50.
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introduce the following notion. Given α ∈ ]0, 1[ and n ≥ 2, let

PL(α, n) ≡ yV(α, n)

yPE(α, n)

be the ratio of the equilibrium expected provision level of a public good under the

voluntary contribution mechanism to that under any Pareto-efficient mechanism for

(α, n). We call this the expected provision level ratio.

Table 4 reports the expected provision level ratio PL(α, n) when α varies from 0.1

to 0.9 and n from 2 to 500. Figure 9 shows the graphs of PL(α, n) when n = 2, 3,

10, 20, 50 and α varies from 0 to 1. Then, both Table 4 and Figure 9 reveal that, if

α = 0.1 and n ≥ 7, then PL(α, n) > 1 (in Table 4, PL(α, n) > 1 is highlighted in gray),

that is, the equilibrium expected provision level of a public good under the voluntary

contribution mechanism is higher than that under any Pareto-efficient mechanism.

5.3 Equilibrium expected payoff

Finally, we numerically compute the equilibrium expected payoffs under the voluntary

contribution mechanism and any Pareto-efficient mechanism. Given α ∈ ]0, 1[ and

n ≥ 2, let UPE(α, n) (respectively, UV(α, n)) be the expected payoff under any Pareto-

efficient mechanism (respectively, the voluntary contribution mechanism). To compare

UPE(α, n) and UV(α, n), we introduce the following notion. Given α ∈ ]0, 1[ and n ≥ 2,

let

EP(α, n) ≡ UV(α, n)

UPE(α, n)

be the ratio of the equilibrium expected payoff under the voluntary contribution mech-

anism to that under any Pareto-efficient mechanism for (α, n). We call this the expected

payoff ratio.

Table 5 reports the expected payoff ratio EP(α, n) when α varies from 0.1 to 0.9

and n from 2 to 500. Figure 10 shows the graphs of EP(α, n) when n = 2, 3, 10, 20,

50 and α varies from 0 to 1. Then, both Table 5 and Figure 10 reveal that, if either

(i) α = 0.1 and n ≥ 6 or (ii) α = 0.2 and n ≥ 20, then EP(α, n) > 1 (in Table 5,

EP(α, n) > 1 is highlighted in gray), that is, the equilibrium expected payoff under

the voluntary contribution mechanism is higher than that under any Pareto-efficient

mechanism.15

15Strictly speaking, in the case of α = 0.2, the expected payoff ratio is greater than 1 when there
are at least 11 agents (EP(0.2, 11) ≈ 1.0010 > 1).
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α
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.9091 0.8333 0.7692 0.7083 0.6399 0.6203 0.5971 0.5697 0.4886
3 0.8333 0.7143 0.7242 0.6843 0.6474 0.6081 0.5637 0.5116 0.4478
4 0.7692 0.8369 0.7637 0.7123 0.6656 0.6172 0.5631 0.5000 0.4216
5 0.8295 0.8672 0.7872 0.7298 0.6779 0.6246 0.5653 0.4960 0.4098
6 0.9626 0.8870 0.8027 0.7415 0.6865 0.6300 0.5674 0.4944 0.4032
7 1.0603 0.9009 0.8135 0.7499 0.6926 0.6340 0.5693 0.4936 0.3990
8 1.0742 0.9112 0.8216 0.7561 0.6973 0.6372 0.5708 0.4932 0.3962
9 1.0848 0.9192 0.8278 0.7609 0.7009 0.6397 0.5720 0.4930 0.3941
10 1.0932 0.9254 0.8328 0.7648 0.7038 0.6417 0.5731 0.4929 0.3925
20 1.1300 0.9531 0.8546 0.7820 0.7170 0.6509 0.5781 0.4931 0.3863
30 1.1419 0.9620 0.8617 0.7876 0.7213 0.6540 0.5799 0.4933 0.3845
40 1.1478 0.9665 0.8652 0.7904 0.7235 0.6556 0.5808 0.4935 0.3836
50 1.1513 0.9691 0.8674 0.7921 0.7248 0.6566 0.5814 0.4936 0.3831
100 1.1583 0.9744 0.8715 0.7955 0.7275 0.6585 0.5825 0.4938 0.3822
500 1.1638 0.9786 0.8749 0.7981 0.7295 0.6600 0.5835 0.4940 0.3814

Table 4. Numerical results: the expected provision level ratio, PL(α, n).

Figure 9. Graphs of PL(α, n) for n = 2, 3, 10, 20, 50.
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α
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 0.9734 0.9572 0.9470 0.9385 0.9251 0.9373 0.9506 0.9653 0.9817
3 0.9301 0.8898 0.9190 0.9139 0.9358 0.9248 0.9358 0.9505 0.9703
4 0.8836 0.9697 0.9309 0.9195 0.9187 0.9234 0.9324 0.9458 0.9658
5 0.9332 0.9801 0.9376 0.9232 0.9201 0.9232 0.9310 0.9436 0.9634
6 1.0426 0.9868 0.9419 0.9256 0.9212 0.9233 0.9302 0.9423 0.9619
7 1.1226 0.9914 0.9449 0.9273 0.9220 0.9234 0.9298 0.9414 0.9609
8 1.1278 0.9947 0.9471 0.9286 0.9227 0.9235 0.9295 0.9408 0.9602
9 1.1318 0.9973 0.9487 0.9296 0.9231 0.9236 0.9293 0.9404 0.9596
10 1.1349 0.9993 0.9500 0.9304 0.9235 0.9237 0.9291 0.9400 0.9592
20 1.1481 1.0080 0.9558 0.9338 0.9253 0.9242 0.9286 0.9386 0.9574
30 1.1524 1.0108 0.9576 0.9350 0.9260 0.9244 0.9285 0.9382 0.9568
40 1.1544 1.0122 0.9584 0.9356 0.9262 0.9246 0.9284 0.9380 0.9566
50 1.1556 1.0130 0.9590 0.9358 0.9264 0.9246 0.9283 0.9379 0.9564
100 1.1581 1.0146 0.9601 0.9364 0.9269 0.9469 0.9284 0.9376 0.9560
500 1.1596 1.0146 0.9613 0.9382 0.9269 0.9255 0.9288 0.9371 0.9559

Table 5. Numerical results: the expected payoff ratio, EP(α, n).

Figure 10. Graphs of EP(α, n) for n = 2, 3, 10, 20, 50.
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6 Concluding remarks

We compared the performance of the voluntary contribution mechanism with that of

any Pareto-efficient mechanism when each agent can choose whether she participates

in a mechanism. In our two-stage game with voluntary participation, the equilibrium

participation probability under the voluntary contribution mechanism becomes greater

than that under any Pareto-efficient mechanism as the number of agents in the econ-

omy increases. Moreover, both the equilibrium expected payoff of each agent and the

equilibrium expected provision level of the public good under the voluntary contribu-

tion mechanism become higher than those under any Pareto-efficient mechanism when

the number of agents and the value of the public good are sufficiently large.

These results under voluntary participation contrast with those under compulsory

participation: both the Nash equilibrium payoff of each agent and the Nash equilib-

rium provision level of the public good under the voluntary contribution mechanism

are always lower than those under any Pareto-efficient mechanism when all agents are

compelled to participate in the mechanisms. Our results suggest that the voluntary

contribution mechanism, which cannot realize Pareto-efficient allocations under com-

pulsory participation, might be superior to any Pareto-efficient mechanism when all

agents have the ability not to participate. This leads us to re-examine the perfor-

mances of mechanisms that are well behaved under compulsory participation.

However, there remain several open questions to be examined.

1. Other classes of preferences. We focused on symmetric Cobb-Douglas prefer-

ences but it would be interesting to examine what happens for other classes of

preferences, such as quasi-linear and CES preferences.

2. Public project problem. We considered that the amount of the public good is

continuous, whereas Palfrey and Rosenthal (1984), Dixit and Olson (2000), and

Koriyama (2009) investigated participation games for a discrete public project.

As such, we could compare the performance of the voluntary contribution (or

provision point) mechanism with that of a Pareto-efficient mechanism in a public

project environment with voluntary participation.

3. Considering a more general class of mechanisms. We focused on comparing two

types of mechanisms, the voluntary contribution mechanism and any Pareto-

efficient mechanism. Saijo and Yamato (2010) studied a wide class of mechanisms

that are necessarily neither individually rational nor Pareto-efficient and estab-

lished impossibility results on voluntary participation under the mechanisms in
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the class. As such, we could examine which mechanism in a larger class is the

second-best under voluntary participation.

4. Political process. Johansen (1977) argued that there is little evidence that public

goods have never been provided through revelation of preferences. In fact, prefer-

ence revelation mechanisms seem less practical because the mechanism designer

has to spend a fair amount of time and effort to collect information from each

agent. Johansen pointed out that in many realistic environments, public goods

have been provided through political processes such as representative democracy.

Thus, it is an interesting open question to incorporate political processes and ex-

amine a two-stage game on voluntary participation in a mechanism for providing

a non-excludable public good.

5. Experimental studies. It would be intriguing to conduct an experimental compar-

ison of the voluntary contribution mechanism and a Pareto-efficient mechanism

with voluntary participation to test the validity of our theoretical results and

verify which mechanism would work better in a laboratory.

These questions are scope for future research.

A Appendix: Proof of Theorem 1

Let

hPE(p,α, n) ≡
[
UPE

P (p, α, n) − UPE
NP (p,α, n)

] 1

ω(1 − α)1−α

=
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−kgPE(α, k),

where

gPE(α, k) ≡ αα(k + 1)1−α − k1−α.

Before proving Theorem 1, we provide a useful lemma.

Lemma 1. For each α ∈ ]0, 1[, ∂gPE

∂k (α, k) < 0.

Proof. Differentiating gPE with respect to k, we obtain

∂gPE

∂k
(α, k) = αα(1 − α)(k + 1)−α − (1 − α)k−α
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= (1 − α)

[(
α

k + 1

)α

−
(

1

k

)α]
.

Since α ∈ ]0, 1[, we have
(

α
k+1

)α
<

(
1
k

)α
, which implies ∂gPE

∂k (α, k) < 0.

A.1 Proof of statement (i)

Differentiation of hPE with respect to p yields

∂hPE

∂p
(p,α, n) =

n−2∑

k=0

(n − 1)

(
n − 2

k

)
pk(1 − p)n−2−k

[
gPE(α, k + 1) − gPE(α, k)

]
.

It then follows from Lemma 1 that gPE(α, k + 1) − gPE(α, k) < 0. This implies
∂hPE

∂p (p,α, n) < 0. Note that limp↓0 hPE(p, α, n) = αα > 0. If there is p̂ ∈ ]0, 1[ with

hPE(p̂,α, n) = 0, then the intermediate-value theorem ensures that such p̂ uniquely

exists. If there is no p̂ ∈ ]0, 1[ with hPE(p̂,α, n) = 0, then for each p ∈ [0, 1],

hPE(p,α, n) > 0, that is, UPE
P (p,α, n) > UPE

NP (p,α, n). This implies pPE(α, n) = 1.

Hence, we can conclude that there is a unique symmetric mixed strategy equilibrium.

✷

A.2 Proof of statement (ii)

Note that limp↓0 hPE(p,α, n) = limp↓0 hPE(p,α, n + 1) = αα > 0 and both hPE( · ,α, n)

and hPE( · ,α, n + 1) are continuous in p. Moreover, as we have shown in the proof of

statement (i) of Theorem 1, ∂hPE

∂p (p,α, n) < 0 and ∂hPE

∂p (p,α, n + 1) < 0. Thus, in order

to show that pPE(α, n) > pPE(α, n + 1) whenever pPE(α, n + 1) < 1, it is sufficient to

show that hPE(p, α, n + 1) = 0 implies hPE(p,α, n) > 0.

Suppose that hPE(p,α, n + 1) = 0. Let ∆PE(p,α, n) ≡ 2 × (1 − p)hPE(p,α, n) −
hPE(p,α, n + 1). Since hPE(p,α, n + 1) = 0, ∆PE(p,α, n) > 0 implies hPE(p,α, n) > 0.

Thus, we now show that ∆PE(p,α, n) > 0. Then, ∆PE(p,α, n) can be rewritten as

∆PE(p,α, n) = 2(1 − p)hPE(p,α, n) −
n∑

k=0

(
n

k

)
pk(1 − p)n−kgPE(α, k)

= 2(1 − p)hPE(p,α, n) − pngPE(α, n) −
n−1∑

k=0

n!

k!(n − k)!
pk(1 − p)n−kgPE(α, k)

= 2(1 − p)hPE(p,α, n) − pngPE(α, n)

26



−
n−1∑

k=0

[
(n − 1)!

(k − 1)!(n − k − 1)!

(
1

k
+

1

n − k

)]
pk(1 − p)n−kgPE(α, k)

= 2(1 − p)hPE(p,α, n) − pngPE(α, n)

−
n−1∑

k=0

[
(n − 1)!

k!(n − k − 1)!
+

(n − 1)!

(k − 1)!(n − k)!

]
pk(1 − p)n−kgPE(α, k)

= (1 − p)hPE(p,α, n) + (1 − p)
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−kgPE(α, k)

− pngPE(α, n) −
n−1∑

k=0

[(
n − 1

k

)
+

(
n − 1

k − 1

)]
pk(1 − p)n−kgPE(α, k)

= (1 − p)hPE(p,α, n) +
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−kgPE(α, k)

− pngPE(α, n) −
n−1∑

k=0

[(
n − 1

k

)
+

(
n − 1

k − 1

)]
pk(1 − p)n−kgPE(α, k)

= (1 − p)hPE(p,α, n) − pngPE(α, n)

−
n−1∑

k=0

[(
n − 1

k

)
+

(
n − 1

k − 1

)
−

(
n − 1

k

)]
pk(1 − p)n−kgPE(α, k)

= (1 − p)
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−kgPE(α, k) − pngPE(α, n)

−
n−1∑

k=0

(
n − 1

k − 1

)
pk(1 − p)n−kgPE(α, k)

=
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)

−
n−1∑

k=0

(
n − 1

k − 1

)
pk(1 − p)n−kgPE(α, k)

=
n−1∑

k=0

[(
n − 1

k

)
−

(
n − 1

k − 1

)]
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)

=
n−1∑

k=0

[
(n − 1)!

k!(n − 1 − k)!
− (n − 1)!

(k − 1)!(n − k)!

]
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)

=
n−1∑

k=0

[
(n − 1)!(n − k)

k!(n − k)!
− (n − 1)!k

k!(n − k)!

]
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)

=
n−1∑

k=0

[
(n − 1)!(n − 2k)

k!(n − k)!

]
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)
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=
n−1∑

k=0

[
n − 2k

n

n!

k!(n − k)!

]
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)

=
n−1∑

k=0

n − 2k

n

(
n

k

)
pk(1 − p)n−kgPE(α, k) − pngPE(α, n)

=
n∑

k=0

n − 2k

n

(
n

k

)
pk(1 − p)n−kgPE(α, k).

Let k∗ > 0 be such that gPE(α, k∗) < 0 and gPE(α, k∗ − 1) ≥ 0. Then, Lemma 1,

together with hPE(p,α, n + 1) = 0, implies that such k∗ exists and

G1. for each k ∈ {0, . . . , k∗ − 2}, gPE(α, k) > 0;

G2. gPE(α, k∗ − 1) ≥ 0; and

G3. for each k ∈ {k∗, . . . , n}, gPE(α, k) < 0.

Let λ ≡ n−2k∗

n . For each x ∈ R, let ⌈x⌉ be the smallest integer greater than or equal

to x. For each {r, t} ⊂ R with 0 ≤ r ≤ t ≤ n, let

∆PE
r,t (p,α, n) ≡

t∑

k=r

n − 2k

n

(
n

k

)
pk(1 − p)n−kgPE(α, k); (5)

hPE
r,t (p,α, n + 1) ≡

t∑

k=r

(
n

k

)
pk(1 − p)n−kgPE(α, k). (6)

There are three cases.

• Case 1: k∗ < n
2
. By using (6), hPE(p,α, n + 1) can be rewritten as

hPE(p, α, n + 1) = hPE
0,k∗−1(p,α, n + 1)

︸ ︷︷ ︸
≥ 0 by G1 and G2

+ hPE
k∗,⌈n

2 ⌉−1
(p,α, n + 1)

︸ ︷︷ ︸
< 0 by G3

+ hPE

⌈n
2 ⌉,n

(p,α, n + 1)
︸ ︷︷ ︸

< 0 by G3

.

Since hPE(p,α, n + 1) = 0,

hPE
0,k∗−1(p,α, n + 1) = −

[
hPE

k∗,⌈n
2 ⌉−1

(p,α, n + 1) + hPE

⌈n
2 ⌉,n

(p,α, n + 1)
]

> 0.

Note that λ = n−2k∗

n > 0 because n > 2k∗. Then,

λhPE
0,k∗−1(p,α, n + 1) = −λ

[
hPE

k∗,⌈n
2 ⌉−1

(p,α, n + 1) + hPE

⌈n
2 ⌉,n

(p,α, n + 1)
]
. (7)
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Since −λhPE

⌈n
2 ⌉,n

(p,α, n + 1) > 0, (7) implies that

λhPE
0,k∗−1(p,α, n + 1) > −λhPE

k∗,⌈n
2 ⌉−1

(p,α, n + 1). (8)

Note that by n > 2k∗,

• for each k ∈ {0, . . . , k∗ − 1}, n−2k
n > n−2k∗

n = λ;

• for each k ∈
{
k∗, . . . ,

⌈
n
2

⌉
− 1

}
, λ = n−2k∗

n ≥ n−2k
n .

It then follows from (5) and (8) that

∆PE
0,k∗−1(p,α, n) > λhPE

0,k∗−1(p,α, n + 1)

> −λhPE
k∗,⌈n

2 ⌉−1
(p,α, n + 1)

≥ −∆PE
k∗,⌈n

2 ⌉−1
(p,α, n).

Hence, ∆PE(p,α, n) = ∆PE
0,k∗−1(p,α, n) + ∆PE

k∗,⌈n
2 ⌉−1

(p, α, n)
︸ ︷︷ ︸

>0

+ ∆PE

⌈n
2 ⌉,n

(p, α, n)
︸ ︷︷ ︸

>0

> 0.

• Case 2: k∗ > n
2
. By using (6), hPE(p,α, n + 1) can be rewritten as

hPE(p, α, n + 1) = hPE
0,⌈n

2 ⌉−2
(p,α, n + 1)

︸ ︷︷ ︸
> 0 by G1

+ hPE

⌈n
2 ⌉−1,k∗−1

(p,α, n + 1)
︸ ︷︷ ︸

≥ 0 by G1 and G2

+ hPE
k∗,n(p,α, n + 1)

︸ ︷︷ ︸
< 0 by G3

.

Since hPE(p,α, n + 1) = 0,

−
[
hPE

0,⌈n
2 ⌉−2

(p,α, n + 1) + hPE

⌈n
2 ⌉−1,k∗−1

(p,α, n + 1)
]

= hPE
k∗,n(p,α, n + 1).

Note that λ = n−2k∗

n < 0 because 2k∗ > n. It then follows that

−λ
[
hPE

0,⌈n
2 ⌉−2

(p,α, n + 1) + hPE

⌈n
2 ⌉−1,k∗−1

(p,α, n + 1)
]

= λhPE
k∗,n(p,α, n + 1) > 0. (9)

Since −λhPE
0,⌈n

2 ⌉−2
(p,α, n + 1) > 0, (9) implies that

−λhPE

⌈n
2 ⌉−1,k∗−1

(p,α, n + 1) < λhPE
k∗,n(p,α, n + 1). (10)

Note that by 2k∗ > n,

• for each k ∈ {k∗ + 1, . . . , n}, 0 > λ = n−2k∗

n > n−2k
n ;
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• for each k ∈
{⌈

n
2

⌉
− 1, . . . , k∗ − 1

}
, n−2k

n > n−2k∗

n = λ.

It then follows from (5) and (10) that

∆PE
k∗,n(p, α, n) > λhPE

k∗,n(p,α, n + 1)

> −λhPE

⌈n
2 ⌉−1,k∗−1

(p,α, n + 1)

≥ −∆PE

⌈n
2 ⌉−1,k∗−1

(p, α, n).

Hence, ∆PE(p,α, n) = ∆PE
0,⌈n

2 ⌉−2
(p,α, n)

︸ ︷︷ ︸
>0

+ ∆PE

⌈n
2 ⌉−1,k∗−1

(p,α, n) + ∆PE
k∗,n(p, α, n)

︸ ︷︷ ︸
>0

> 0.

• Case 3: k∗ = n
2
. Then, ∆PE

k∗,k∗ = n−2k∗

n

(
n−1
k∗

)
pk∗

(1 − p)n−k∗
gPE(α, k∗) = 0. Thus, we

obtain ∆PE(p,α, n) = ∆PE
0,k∗−1(p, α, n) + ∆PE

k∗+1,n(p,α, n). Note that by 2k∗ = n,

• for each k ∈ {0, . . . , k∗ − 1}, n−2k
n > 0;

• for each k ∈ {k∗ + 1, . . . , n}, n−2k
n < 0.

Hence, by (5) and G1–G3, ∆PE(p,α, n) = ∆PE
0,k∗−1(p,α, n)

︸ ︷︷ ︸
>0

+ ∆PE
k∗+1,n(p,α, n)

︸ ︷︷ ︸
>0

> 0.

From Cases 1–3, ∆PE(p,α, n) > 0. Recall that ∆PE(p,α, n) = 2(1−p)hPE(p,α, n)−
hPE(p,α, n + 1). Since hPE(p,α, n + 1) = 0, ∆PE(p,α, n) > 0 implies hPE(p,α, n) > 0.

Finally, we observe that limk→∞ pPE(α, k) = 0 because the sequence {pPE(α, k)}k≥2

is monotonically decreasing and bounded by 0 from below. ✷

B Appendix: Proof of Theorem 2

Let

hV(p,α, n) ≡
[
UV

P (p,α, n) − UV
NP(p, α, n)

] 1

ω(1 − α)1−α

=
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−kgV(α, k),

where

gV(α, k) ≡ αα(k + 1)

1 + kα
−

[
k

1 + α(k − 1)

]1−α

.
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Figure 11. Graph of gV(0.5, k).

Note that limα↓0 gV(α, k) = 1.

In contrast to the function gPE, the function gV is not monotonically decreasing in

k and is a somewhat complicated form (Figure 11 illustrates the form of the function

gV(0.5, k)). Due to this fact, we cannot prove Theorem 2 by applying the same proof

techniques in Theorem 1. Thus, we provide three useful lemmas regarding the form of

gV. The first lemma (Lemma 2) states that for each α ∈ ]0, 1[, gV(α, 0) is positive. The

second lemma (Lemma 3) states that for each k ≥ 1, the graph of the function gV( · , k)

intersects the horizontal axis only once at some value α̂ ∈ ]0, 1[. This, together with

the facts that gV( · , k) is continuous in α and limα↓0 gV(α, k) = 1, implies that the

derivative of gV( · , k) evaluated at α̂ is negative. The third lemma (Lemma 4) states

that for each α ∈ ]0, 1[ and each k ≥ 0, gV(α, k+1) = 0 implies gV(α, k) > 0. Figure 12

illustrates these lemmas. By these three lemmas, for each α ∈ ]0, 1[, if hV(p,α, n) = 0,

then we can find k∗ > 0 such that if k ≥ k∗, gV(α, k) < 0; otherwise, gV(α, k) ≥ 0. By

invoking this fact, we can prove Theorem 2 in a similar way in the proof of Theorem 1.

Lemma 2. For each α ∈ ]0, 1[, gV(α, 0) > 0.

Proof. Let α ∈ ]0, 1[. Then, gV(α, 0) = αα > 0.

Lemma 3. For each k ≥ 1, there is a unique value α̂ ∈ ]0, 1[ such that gV(α̂, k) = 0.

Moreover, ∂gV

∂α (α̂, k) < 0.

Proof. Let

gV
⊕(α, k) ≡ αα(k + 1)

1 + kα
and gV

⊖(α, k) ≡
[

k

1 + (k − 1)α

]1−α

.
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Figure 12. Graphs of gV(α, k) for k = 0, 1, 2, 3.

Note that gV(α, k) = gV
⊕(α, k) − gV

⊖(α, k). Then, we obtain

∂gV
⊕

∂α
(α, k) = −k(k + 1)αα

(1 + kα)2
+

(k + 1)αα(1 + ln α)

1 + kα
;

∂2gV
⊕

∂α2
(α, k) =

2k2αα(k + 1)

(1 + kα)3
+

(k + 1)αα−1

1 + kα
− 2k(k + 1)αα(1 + ln α)

(1 + kα)2
+

(k + 1)αα(1 + ln α)2

1 + kα

=
(k + 1)αα

1 + kα

{[
k

1 + kα
− (ln α + 1)

]2

+
k2

(1 + kα)2
+

1

α

}
;

∂gV
⊖

∂α
(α, k) = −

[
k

1 + (k − 1)α

]1−α [
ln

k

1 + (k − 1)α
+

(k − 1)(α − 1)

1 + (k − 1)α

]
;

∂2gV
⊖

∂α2
(α, k) =

{
2(k − 1)

1 + (k − 1)α
+

(1 − α)(k − 1)2

[1 + (k − 1)α]2

} [
k

1 + (k − 1)α

]1−α

+

[
− ln

k

1 + (k − 1)α
− (k − 1)(α − 1)

1 + (k − 1)α

]2 [
k

1 + (k − 1)α

]1−α

.

There are two cases.

• Case 1: k = 1. Then, limα↓0
∂gV

∂α (α, k) = −∞ < 0, limα↑1
∂gV

∂α (α, k) = 1
2 > 0, and

∂2gV

∂α2 (α, k) > 0. Since limα↓0 gV(α, k) = 1 > 0, limα↑1 gV(α, k) = 0, and gV is continuous

in α, these imply that there is a unique value α̂ ∈ ]0, 1[ with gV(α̂, k) = 0.

• Case 2: k ≥ 2. Then, limα↓0
∂gV

⊕
∂α (α, k) = −∞ < 0, limα↑1

∂gV
⊕

∂α (α, k) = 1 − k
1+k > 0,

limα↓0
∂gV

⊖
∂α (α, k) = −k(k − 1 + ln k) < 0, limα↑1

∂gV
⊖

∂α (α, k) = 0,
∂2gV

⊕
∂α2 (α, k) > 0, and
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∂2gV
⊖

∂α2 (α, k) > 0. These facts imply that there is a unique value α̂ ∈ ]0, 1[ such that

gV
⊕(α̂, k) = gV

⊖(α̂, k), that is, gV(α̂, k) = 0, since limα↑1 gV
⊕(α, k) = limα↑1 gV

⊖(α, k) = 1,

limα↓0 gV
⊕(α, k) = k + 1 > limα↓0 gV

⊖(α, k) = k > 1, and both g⊕ and g⊖ are continuous

in α.

Moreover, gV(α̂, k) = 0 implies ∂gV

∂α (α̂, k) < 0 because limα↓0 gV(α, k) > 0 and gV is

continuous in α.

Lemma 4. For each α ∈ ]0, 1[ and each k ≥ 0, if gV(α, k + 1) = 0, then gV(α, k) > 0.

Proof. Let α ∈ ]0, 1[ and k ≥ 0 be such that gV(α, k + 1) = 0. Then,

gV(α, k + 1) =
αα(k + 2)

1 + (k + 1)α
−

(
k + 1

1 + kα

)1−α

= 0,

that is,

αα(k + 1) =

(
k + 1

1 + kα

)1−α

[1 + (k + 1)α] − αα. (11)

By (11), gV(α, k) can be rewritten as

gV(α, k) =
αα(k + 1)

1 + kα
−

[
k

1 + (k − 1)α

]1−α

=
1

1 + kα

{(
k + 1

1 + kα

)1−α

[1 + (k + 1)α] − αα

}
−

[
k

1 + (k − 1)α

]1−α

=
(1 + kα) + α

1 + kα

(
k + 1

1 + kα

)1−α

− αα

1 + kα
−

[
k

1 + (k − 1)α

]1−α

=

(
k + 1

1 + kα

)1−α

+
α

1 + kα

(
k + 1

1 + kα

)1−α

− αα

1 + kα
−

[
k

1 + (k − 1)α

]1−α

=

(
k + 1

1 + kα

)1−α

−
[

k

1 + (k − 1)α

]1−α

− α

1 + kα

[(
1

α

)1−α

−
(

k + 1

1 + kα

)1−α
]

.

(12)

Let a ≡ 1
α , b ≡ k+1

1+kα , and c ≡ k
1+(k−1)α . Note that a > b > c and

b − c =
k + 1

1 + kα
− k

1 + (k − 1)α

=
1 − α

(1 + kα)[1 + (k − 1)α]
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=
α

1 + (k − 1)α

[
1 − α + kα − kα

α(1 + kα)

]

=
α

1 + (k − 1)α

(
1

α
− k + 1

1 + kα

)

=
α

1 + (k − 1)α
(a − b) . (13)

Let f : R+ → R+ be a function defined by f(x) = x1−α. Then, by (12),

gV(α, k) = [f(b) − f(c)] − α

1 + kα
[f(a) − f(b)]. (14)

Since f is strictly concave,

f(b) − f(c)

b − c
>

f(a) − f(b)

a − b
.

By (13), this can be rewritten as

f(b) − f(c)
α

1+(k−1)α (a − b)
>

f(a) − f(b)

a − b
.

Since a − b > 0 and α
1+(k−1)α > α

1+kα ,

f(b) − f(c) >
α

1 + (k − 1)α
[f(a) − f(b)] >

α

1 + kα
[f(a) − f(b)].

By (14), this implies gV(α, k) > 0.

B.1 Proof of statement (i)

Note that limp↓0 hV(p,α, n) > 0 and hV is continuous in p. If there is no p̂ ∈ ]0, 1[

with hV(p̂,α, n) = 0, then for each p ∈ [0, 1], hV(p,α, n) > 0, that is, UV
P (p,α, n) >

UV
NP(p,α, n). This implies pV(α, n) = 1.

We now consider the case where there is p̂ ∈ ]0, 1[ with hV(p̂,α, n) = 0. Pick any

p̂ ∈ ]0, 1[ with hV(p̂,α, n) = 0. Then, it is sufficient to show that ∂hV

∂p (p̂,α, n) < 0,

because this, together with the facts that limp↓0 hV(p,α, n) > 0 and hV is continuous

in p, implies that there is a unique symmetric mixed strategy equilibrium. We proceed

in two steps.

Step 1: hV(p̂, α, n − 1) > 0. Since limα↓0 gV(α, k) > 0 and gV is continuous in

α, by Lemmas 3 and 4, gV(α, k) < 0 implies gV(α, k + 1) < 0. This, together with

hV(p̂,α, n) = 0 and Lemma 2, implies that there exists k∗ > 0 such that
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• for each k ∈ {0, . . . , k∗ − 1}, gV(α, k) ≥ 0;

• for each k ∈ {k∗, . . . , n − 1}, gV(α, k) < 0.

There are two cases.

• Case 1: k∗ ̸= n − 1. Then, hV(p̂,α, n) = 0 is equivalent to

k∗−1∑

k=0

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k) = −

n−1∑

k=k∗

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k) > 0.

This equality can be rearranged to give

(n − 1)(1 − p̂)
k∗−1∑

k=0

1

n − 1 − k

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k)

= −(n − 1)(1 − p̂)
n−2∑

k=k∗

1

n − 1 − k

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) − p̂n−1gV(α, n − 1),

or equivalently,

k∗−1∑

k=0

1

n − 1 − k

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k)

= −
n−2∑

k=k∗

1

n − 1 − k

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) + γ,

where γ ≡ − p̂n−1gV(α,n−1)
(n−1)(1−p̂) > 0. Note that if j > k∗ > ℓ, then 1

n−1−j > 1
n−1−k∗ > 1

n−1−ℓ .

Therefore,

k∗−1∑

k=0

1

n − 1 − k∗

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k)

> −
n−2∑

k=k∗

1

n − 1 − k∗

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) +

γ

n − 1 − k∗ .

That is,

k∗−1∑

k=0

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) > −

n−2∑

k=k∗

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) + γ.
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Hence, we obtain

hV(p̂,α, n − 1) =
k∗−1∑

k=0

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) +

n−2∑

k=k∗

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k)

> γ

> 0,

which is the desired conclusion.

• Case 2: k∗ = n − 1. Then, hV(p̂,α, n) = 0 is equivalent to

n−2∑

k=0

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k) = −p̂n−1gV(α, n − 1) > 0.

This equality can be rearranged to give

(n − 1)(1 − p̂)
n−2∑

k=0

1

n − 1 − k

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) = −p̂n−1gV(α, n − 1),

or equivalently,

n−2∑

k=0

1

n − 1 − k

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) = γ,

where γ ≡ − p̂n−1gV(α,n−1)
(n−1)(1−p̂) > 0. Note that if n − 2 > k, then 1 > 1

n−1−k . Therefore,

n−2∑

k=0

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k) > γ > 0.

Since hV(p̂,α, n−1) =
∑n−2

k=0

(
n−2

k

)
p̂k(1− p̂)n−2−kgV(α, k), this implies hV(p̂,α, n−1) >

0.

Step 2: ∂hV

∂p
(p̂, α, n) < 0. Then, hV(p,α, n) can be rewritten as

hV(p,α, n) =
n−1∑

k=0

(
n − 1

k

)
pk(1 − p)n−1−kgV(α, k)

= pn−2

[(
n − 1

n − 1

)
pgV(α, n − 1) +

(
n − 1

n − 2

)
(1 − p)gV(α, n − 2)

]
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+ (1 − p)n−2

[(
n − 1

0

)
(1 − p)gV(α, 0) +

(
n − 1

1

)
pgV(α, 1)

]

+
n−3∑

k=2

(
n − 1

k

)
pk(1 − p)n−1−kgV(α, k)

= pn−2
[
pgV(α, n − 1) + (n − 1)(1 − p)gV(α, n − 2)

]

+ (1 − p)n−2
[
(1 − p)gV(α, 0) + (n − 1)pgV(α, 1)

]

+
n−3∑

k=2

(
n − 1

k

)
pk(1 − p)n−1−kgV(α, k)

= pn−2 ×
{

p
[
gV(α, n − 1) − gV(α, n − 2)

]
+ (n − 1)gV(α, n − 2)

+ [1 − (n − 1)] pgV(α, n − 2)

}

+ (1 − p)n−2
{

p
[
gV(α, 1) − gV(α, 0)

]
+ gV(α, 0) + [(n − 1) − 1] pgV(α, 1)

}

+
n−3∑

k=2

(
n − 1

k

)
pk(1 − p)n−1−kgV(α, k)

= p
{

pn−2
[
gV(α, n − 1) − gV(α, n − 2)

]
+ (1 − p)n−2

[
gV(α, 1) − gV(α, 0)

]}

+ pn−2 [(n − 1) − (n − 2)p] gV(α, n − 2)

+ (1 − p)n−2
[
gV(α, 0) + (n − 2)pgV(α, 1)

]

+
n−3∑

k=2

(
n − 1

k

)
pk(1 − p)n−1−kgV(α, k).

Then, hV(p̂,α, n) = 0 is equivalent to

p̂n−2
[
gV(α, n − 1) − gV(α, n − 2)

]
+ (1 − p̂)n−2

[
gV(α, 1) − gV(α, 0)

]

= −1

p̂
×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p̂n−2 [(n − 1) − (n − 2)p̂] gV(α, n − 2)

+ (1 − p̂)n−2
[
gV(α, 0) + (n − 2)p̂gV(α, 1)

]

+
n−3∑

k=2

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (15)

Differentiation of hV with respect to p and evaluating at p = p̂ yields

∂hV

∂p
(p̂,α, n) = (n − 1)

n−2∑

k=0

(
n − 2

k

)
p̂k(1 − p̂)n−2−k

[
gV(α, k + 1) − gV(α, k)

]

= (n − 1)
n−3∑

k=1

(
n − 2

k

)
p̂k(1 − p̂)n−2−k

[
gV(α, k + 1) − gV(α, k)

]
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+ (n − 1) ×
{

p̂n−2
[
gV(α, n − 1) − gV(α, n − 2)

]

+ (1 − p̂)n−2
[
gV(α, 1) − gV(α, 0)

]
}

.

By using (15), we obtain

∂hV

∂p̂
(p̂,α, n) = (n − 1)

n−3∑

k=1

(
n − 2

k

)
p̂k(1 − p̂)n−2−k

[
gV(α, k + 1) − gV(α, k)

]

− n − 1

p̂
×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p̂n−2 [(n − 1) − (n − 2)p̂] gV(α, n − 2)

+ (1 − p̂)n−2
[
gV(α, 0) + (n − 2)p̂gV(α, 1)

]

+
n−3∑

k=2

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= −n − 1

p̂
× Ω, (16)

where

Ω ≡
n−3∑

k=1

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−k

[
gV(α, k) − gV(α, k + 1)

]

+ p̂n−2 [(n − 1) − p̂(n − 2)] gV(α, n − 2) + (1 − p̂)n−2
[
gV(α, 0) + (n − 2)p̂gV(α, 1)

]

+
n−3∑

k=2

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k).

Note here that

Ω =
n−3∑

k=2

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−kgV(α, k) −

n−4∑

k=1

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−kgV(α, k + 1)

+ p̂n−2

[
(n − 1) − p̂(n − 2) − (1 − p̂)

(
n − 2

n − 3

)]
gV(α, n − 2)

+ p̂(1 − p̂)n−3

[
(1 − p̂)(n − 2) + p̂

(
n − 2

1

)]
gV(α, 1)

+ (1 − p̂)n−2gV(α, 0) +
n−3∑

k=2

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k)

=
n−3∑

k=2

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−kgV(α, k) −

n−3∑

k=2

(
n − 2

k − 1

)
p̂k(1 − p̂)n−1−kgV(α, k)

+ p̂n−2

{[
(n − 1) −

(
n − 2

n − 3

)]
+ p̂

[
−(n − 2) +

(
n − 2

n − 3

)]}
gV(α, n − 2)
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+ p̂(1 − p̂)n−3

{
(n − 2) + p̂

[(
n − 2

1

)
− (n − 2)

]}
gV(α, 1)

+ (1 − p̂)n−2gV(α, 0) +
n−3∑

k=2

(
n − 1

k

)
p̂k(1 − p̂)n−1−kgV(α, k)

= p̂n−2 {[(n − 1) − (n − 2)] + [−(n − 2) + (n − 2)] p̂} gV(α, n − 2)

+ p̂(1 − p̂)n−3 {(n − 2) + [(n − 2) − (n − 2)] p̂} gV(α, 1) + (1 − p̂)n−2gV(α, 0)

+
n−3∑

k=2

⎡

⎢⎢⎣

(
n − 1

k

)
p̂k(1 − p̂)n−1−k −

(
n − 2

k − 1

)
p̂k(1 − p̂)n−1−k

+

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−k

⎤

⎥⎥⎦ gV(α, k)

= p̂n−2gV(α, n − 2) + (1 − p̂)n−2gV(α, 0) + (n − 2)p̂(1 − p̂)n−3gV(α, 1)

+
n−3∑

k=2

⎡

⎢⎢⎣

(
n − 1

k

)
p̂k(1 − p̂)n−1−k − k

n − 1

(
n − 1

k

)
p̂k(1 − p̂)n−1−k

+

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−k

⎤

⎥⎥⎦ gV(α, k)

= p̂n−2gV(α, n − 2) + (1 − p̂)n−2gV(α, 0) + (n − 2)p̂(1 − p̂)n−3gV(α, 1)

+
n−3∑

k=2

[
n − 1 − k

n − 1

(
n − 1

k

)
p̂k(1 − p̂)n−1−k +

(
n − 2

k

)
p̂k+1(1 − p̂)n−2−k

]
gV(α, k)

= p̂n−2gV(α, n − 2) + (1 − p̂)n−2gV(α, 0) + (n − 2)p̂(1 − p̂)n−3gV(α, 1)

+
n−3∑

k=2

[(
n − 2

k

)
p̂k(1 − p̂)n−1−k +

p̂

1 − p̂

(
n − 2

k

)
p̂k(1 − p̂)n−1−k

]
gV(α, k)

= p̂n−2gV(α, n − 2) + (1 − p̂)n−2gV(α, 0) + (n − 2)p̂(1 − p̂)n−3gV(α, 1)

+
1

1 − p̂

n−3∑

k=2

(
n − 2

k

)
p̂k(1 − p̂)n−1−kgV(α, k)

=

(
n − 2

n − 2

)
p̂n−2gV(α, n − 2) +

(
n − 2

0

)
(1 − p̂)n−2gV(α, 0)

+

(
n − 2

1

)
p̂(1 − p̂)n−3gV(α, 1) +

n−3∑

k=2

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k)

=
n−2∑

k=0

(
n − 2

k

)
p̂k(1 − p̂)n−2−kgV(α, k)

= hV(p̂,α, n − 1).
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By using this, we rewrite (16) as

∂hV

∂p̂
(p̂,α, n) = −n − 1

p̂
× hV(p̂,α, n − 1).

Since hV(p̂,α, n − 1) > 0 by Step 1, we have ∂hV

∂p (p̂,α, n) < 0. ✷

B.2 Proof of statement (ii)

Note that limp↓0 hV(p,α, n) = limp↓0 hV(p,α, n+1) = αα > 0 and both hV( · ,α, n) and

hV( · ,α, n + 1) are continuous in p. Moreover, pV(α, n + 1) < 1 implies hV(pV(α, n +

1), α, n + 1) = 0. Recall the proof of statement (i) of Theorem 2. Then, ∂hV

∂p (pV(α, n +

1), α, n+1) < 0. If there is p̂ ∈ ]0, 1[ with hV(p̂,α, n) = 0, then ∂hV

∂p (p̂,α, n) < 0. Thus,

in order to show that pV(α, n) > pV(α, n+1) whenever pV(α, n+1) < 1, it is sufficient

to show that hV(p,α, n + 1) = 0 implies hV(p,α, n) > 0.

Suppose that hPE(p,α, n + 1) = 0. Let ∆V(p,α, n) ≡ 2 × (1 − p)hV(p,α, n) −
hV(p,α, n + 1). Since ∆V(p,α, n) > 0 implies hV(p,α, n) > 0, we now show that

∆V(p,α, n) > 0. Let k∗ > 0 be such that gV(α, k∗) < 0 and gV(α, k∗ − 1) ≥ 0. Since

hPE(p,α, n + 1) = 0, Lemmas 2–4 ensures that such k∗ exists. Moreover, it holds the

followings: (i) for each k ∈ {0, . . . , k∗ − 2}, gV(α, k) > 0; (ii) gV(α, k∗ − 1) ≥ 0; and

(iii) for each k ∈ {k∗, . . . , n}, gV(α, k) < 0. Then, using similar arguments as those

employed in the proof of statement (ii) of Theorem 1, we can prove that ∆V(p,α, n) > 0.

Moreover, we observe that limk→∞ pV(α, k) = 0 because the sequence {pV(α, k)}k≥2 is

monotonically decreasing and bounded by 0 from below. ✷

C Appendix: Proof of Theorem 3

We proceed in three steps.

Step 1: For each α ∈ ]0, 1[, ∂hV

∂p
(p, α, 2) < 0. Note that

∂hV

∂p
(p,α, 2) = gV(α, 1) − gV(α, 0)

=
2αα

1 + α
− 1 − αα

=
2αα − (1 + α) − αα(1 + α)

1 + α

=
(αα − 1) − α(1 + αα)

1 + α
.
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Since α ∈]0, 1[, we have αα − 1 < 0, which implies ∂hV

∂p (p,α, 2) < 0.

Step 2: For each α ∈ ]0, 1[, 1 + α > 2α. Let ϕ(α) ≡ 1 + α and ψ(α) ≡ 2α.

Note that limα↓0 ϕ(α) = limα↓0 ψ(α) = 1 and limα↑1 ϕ(α) = limα↑1 ψ(α) = 2. Then,

ϕ′(α) = 1 > 0, ϕ′′(α) = 0, ψ′(α) = 2α ln 2 > 0, and ψ′′(α) = 2α (ln 2)2 > 0. Since

both ϕ and ψ are continuous, we have that for each α ∈ ]0, 1[, ϕ(α) > ψ(α), that is,

1 + α > 2α.

Step 3: Concluding. Let α ∈ ]0, 1[. As we have shown in proof of statement (i)

of Theorem 1, ∂hPE

∂p (p,α, 2) < 0. Moreover, by Step 1, ∂hV

∂p (p,α, 2) < 0. Thus,

hPE(p,α, 2) − hV(p,α, 2) > 0 implies that if pV(α, 2) = 1, then pPE(α, 2) = 1; oth-

erwise, pPE(α, 2) > pV(α, 2). We now show that hPE(p,α, 2) − hV(p,α, 2) > 0. Then,

hPE(p,α, 2) − hV(p,α, 2) = (1 − p)[gPE(α, 0) − gV(α, 0)] + p[gPE(α, 1) − gV(α, 1)]

= (1 − p)(αα − αα) + p

[
2αα

2α
− 1 −

(
2αα

1 + α
− 1

)]

= p2αα

[
(1 + α) − 2α

2α(1 + α)

]
.

By Step 2, (1 + α) − 2α > 0. This implies hPE(p,α, 2) − hV(p,α, 2) > 0. ✷
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