

No. 2019-3

M-convex Function Minimization
Under L1-Distance Constraint

and Its Application to Dock Re-allocation
in Bike Sharing System

Akiyoshi Shioura

February, 2019

Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, JAPAN
http://educ.titech.ac.jp/iee/

Department of Industrial Engineering and Economics

WWWooorrrkkkiiinnnggg PPPaaapppeeerrr

M-convex Function Minimization Under L1-Distance Constraint

and Its Application to Dock Re-allocation in Bike Sharing System∗

Akiyoshi Shioura†

February 4, 2019

Abstract

In this paper we consider a new problem of minimizing an M-convex function under
L1-distance constraint (MML1); the constraint is given by an upper bound for L1-distance
between a feasible solution and a given “center.” This is motivated by a nonlinear integer
programming problem for re-allocation of dock capacity in a bike sharing system discussed by
Freund et al. (2017). The main aim of this paper is to better understand the combinatorial
structure of the dock re-allocation problem through the connection with M-convexity, and
show its polynomial-time solvability using this connection. For this, we first show that the
dock re-allocation problem can be reformulated in the form of (MML1). We then present a
pseudo-polynomial-time algorithm for (MML1) based on steepest descent approach. We also
propose two polynomial-time algorithms for (MML1) by replacing the L1-distance constraint
with a simple linear constraint. Finally, we apply the results for (MML1) to the dock
re-allocation problem to obtain a pseudo-polynomial-time steepest descent algorithm and
also polynomial-time algorithms for this problem. The proposed algorithm is based on a
proximity-scaling algorithm for a relaxation of the dock re-allocation problem, which is of
interest in its own right.

1 Introduction

The concepts of M-convexity and M♮-convexity for functions in integer variables play a primary
role in the theory of discrete convex analysis [11]. M-convex function, introduced by Murota
[9, 10], is defined by a certain exchange axiom (see Section 2 for a precise definition), and enjoys
various nice properties as “discrete convexity” such as a local characterization for global mini-
mality, extensibility to ordinary convex functions, conjugacy, duality, etc. M♮-convex function
is introduced by Murota and Shioura [14] as a variant of M-convex function. While the class of
M♮-convex functions properly contains that of M-convex functions, the concept of M♮-convexity
is essentially equivalent to M-convexity in the sense that an M♮-convex function can be obtained
by the projection of some M-convex function (see, e.g., [11]). Minimization of an M-convex
function is the most fundamental optimization problem concerning M-convex functions, and a
common generalization of the separable convex resource allocation problem under a submodu-
lar constraint and some classes of nonseparable convex function minimization on integer lattice
points. M-convex function minimization can be solved by a steepest descent algorithm (or
greedy algorithm) that runs in pseudo-polynomial time [11, 12], and various polynomial-time
algorithms have been proposed [8, 15, 16, 18].

∗This work was supported by JSPS KAKENHI Grant Numbers 15K00030, 18K11177.
†Department of Industrial Engineering and Economics, Tokyo Institute of Technology, Tokyo 152-8550, Japan

shioura.a.aa@m.titech.ac.jp

1

In this paper, we consider a new problem of minimizing an M-convex function under the
L1-distance constraint, which is formulated as follows:

(MML1) Minimize f(x)
subject to

∑n
i=1 x(i) = θ,

∥x− xc∥1 ≤ 2γ,
x ∈ dom f,

where n, θ, γ are integers with n > 0 and γ ≥ 0, f : Zn → R ∪ {+∞} is an M-convex function
such that

∑n
i=1 x(i) = θ holds for every x ∈ Zn with f(x) < +∞, and xc is a vector (called

the “center”) with f(xc) < +∞ and
∑n

i=1 xc(i) = θ. This problem is motivated by a nonlinear
integer programming problem for re-allocation of dock-capacity in a bike sharing system [1].

In a bike sharing system, many bike stations are located around a city so that users can rent
and return bikes there. Each bike station has several docks and bikes; some docks are equipped
with bikes, and the other docks are kept open so that users can return bikes at the station.
The numbers of docks with bike and of open docks change as time passes, and it is possible
that some users cannot rent or return a bike at a station due to the shortage of bikes or open
docks, and in such situation users feel dissatisfied. To reduce users’ dissatisfaction, operators of
a bike sharing system need to re-allocate docks (and bikes) among bike stations appropriately.
Change to a new allocation, however, requires the movement of docks and bikes, which yields
some amount of cost. Therefore, it is desirable that a new allocation is not so different from the
current allocation. Hence, the task of operators in a bike sharing system is to minimize users’
dissatisfaction by changing the allocation of docks, while bounding the number of docks to be
moved in the re-allocation.

This problem, which we refer to as the dock re-allocation problem, is discussed by Freund,
Henderson, and Shmoys [1] and formulated as follows1:

(DR) Minimize
∑n

i=1 ci(d(i), b(i))
subject to

∑n
i=1(d(i) + b(i)) = D +B,∑n
i=1 b(i) ≤ B,∑n
i=1 |(d(i) + b(i))− (d̄(i) + b̄(i))| ≤ 2γ,

ℓ(i) ≤ d(i) + b(i) ≤ u(i) (i ∈ N),
d(i), b(i) ∈ Z+ (i ∈ N).

Here, N = {1, 2, . . . , n} denotes the set of bike stations. For a station i ∈ N , we denote by
b(i), d(i) ∈ Z+, respectively, the decision variables representing the numbers of docks with bike
and of open docks allocated at the station. The expected number of dissatisfied users at the
station i is represented by a function ci : Z2

+ → R in variables d(i) and b(i), and shown to have
the property of multimodularity (see Section 2 for the definition).

The first constraint in (DR) means that the total number of docks (i.e., docks with bike
and open docks) is equal to a fixed constant D + B. The second constraint gives an upper
bound for the total number of docks with bike. The third constraint, given in the form of L1-
distance constraint, means that the difference between the current and the new allocations of
docks should be small, where d̄(i) and b̄(i) denote, respectively, the numbers of docks with bike
and of open docks at the station i in the current allocation. In addition, the number of docks
d(i)+b(i) at each station i should be between lower and upper bounds [ℓ(i), u(i)], as represented
by the fourth constraint.

1While the first constraint is given as an inequality
∑n

i=1(di+ bi) ≤ D+B in [1], it is implicitly assumed in [1]
that the inequality holds with equality. Indeed, the algorithm in [1] applies only to the problem with the equality
constraint.

2

For the problem (DR), Freund et al. [1] propose a steepest descent (or greedy) algorithm that
repeatedly update a constant number of variables by ±1, and prove by using the multimodularity
of the objective function that the algorithm finds an optimal solution of (DR) in at most γ
iterations. Hence, the problem (DR) can be solved in pseudo-polynomial time.

Our Contribution The main aim of this paper is to better understand the combinato-
rial structure of the problem (DR) through the connection with M-convexity, and to provide
polynomial-time algorithms for (DR) by using the connection.

We first show that the dock re-allocation problem (DR) can be reformulated in the form of
the minimization of an M-convex function under the L1-distance constraint (MML1), where we
regard d(i) + b(i) as a single variable (see Section 3 for details).

We then consider the problem (MML1) and present a steepest descent algorithm that runs
in pseudo-polynomial time. While unconstrained M-convex function minimization (i.e., the
problem (MML1) without the L1-distance constraint) can be solved by a certain steepest descent
algorithm (see Section 2.2; see also [11, 12] for details), a naive application of the algorithm
does not work for the problem (MML1), due to the L1-distance constraint. Nevertheless, we
prove in Section 4 that if the center xc is used as an initial solution of the algorithm, then
the steepest descent algorithm finds an optimal solution in γ iterations. Moreover, we prove a
stronger statement that for each k = 0, 1, 2, . . ., the vector generated in the k-th iteration of the
steepest descent algorithm is an optimal solution of the M-convex function minimization under
the constraint ∥x−xc∥1 = 2k (i.e., the problem (MML1) with γ replaced with k). As a byproduct
of this result, we obtain new properties of the steepest descent algorithm for unconstrained M-
convex function minimization. In particular, we provide a nontrivial tight bound on the number
of iterations required by the algorithm, and show that the trajectory of the solutions generated
by the algorithm is a geodesic (i.e, a “shortest” path) to the nearest optimal solution from the
initial solution.

While the problem (MML1) can be solved by a steepest descent algorithm, its running time is
pseudo-polynomial time. To obtain faster algorithms, we present in Section 5 two approaches to
solve (MML1) in polynomial time. For this, we show that by using a minimizer of the M-convex
objective function, the L1-distance constraint in (MML1) can be replaced with a simple linear
constraint; the two approaches proposed in this section solve the M-convex function minimization
under the simple linear constraint instead of the original problem. The first approach is to reduce
the problem to the minimization of the sum of two M-convex functions, for which polynomial-
time algorithms are available. The second approach is based on the reduction to the minimization
of another M-convex function with smaller number of variables, and the resulting algorithm is
faster than the first approach.

Finally, in Section 6 we apply the algorithms for (MML1) presented in Sections 4 and 5 to
the dock re-allocation problem (DR), which can be regarded as a special case of (MML1). We
aim at obtaining fast algorithms by making use of the special structure of (DR).

In Section 6.1, we discuss an application of the steepest descent algorithm in Section 4
to (DR). A naive application of the algorithm takes O(n3 log(B/n)) time in each iteration
since it requires O(n log(B/n)) time for the evaluation of the M-convex function f used in
the reformulation of (DR). To reduce the time complexity, we present a useful property of the
M-convex function f that the update of function value f(x) can be done quickly in O(log n)
time if the vector x is updated to a vector in a neighborhood. Furthermore, we make full use
of this property to implement the steepest descent algorithm so that the algorithm works for
the original formulation and each iteration requires O(log n) time only. We also discuss the
connection with the steepest descent algorithm in [1], and show that the fast implementation of

3

our algorithm is nothing but the steepest descent algorithm in [1].
Section 6.2 is devoted to polynomial-time algorithms for (DR). While the polynomial-time

solvability of (DR) follows from the results in Section 5, a naive application of an algorithm in
Section 5 leads to a polynomial-time but rather slow algorithm for (DR); a faster implementation
is difficult this time since the algorithms in Section 4 are more involved. Instead, we use an idea
in Section 5 and the structure of (DR) to obtain a faster polynomial-time algorithm. For this,
we replace the L1-distance constraint in (DR) with a simple linear constraint, as in Section 5.
This new formulation, together with the use of a new problem parameter, makes it possible to
decompose the problem (DR) into two independent subproblems, both of which can be reduced
to M-convex function minimization and therefore can be solved efficiently. We show that an
algorithm based on this approach runs in O(n log n log((D + B)/n) logB) time. To obtain this
time bound, we prove a proximity theorem for a relaxation of the problem (DR) and devise a
proximity-scaling algorithm for the relaxation in Section 6.3; the proximity theorem and the
algorithm are of interest in their own right.

We finally point out that quite recently, Freund et al. [2] also propose a wealy-polynomial-
time algorithm for (DR). Their approach is based on proximity-scaling and different from ours.

2 Preliminaries on M-convexity

Throughout the paper, let n be a positive integer with n ≥ 2 and N = {1, 2, . . . , n}. We denote
by R the set of real numbers, and by Z (resp., by Z+) the sets of integers (resp., nonnegative
integers); Z++ denotes the set of positive integers.

Let x = (x(1), x(2), . . . , x(n)) ∈ Rn be a vector. We denote supp+(x) = {i ∈ N | x(i) > 0}
and supp−(x) = {i ∈ N | x(i) < 0}. For a subset Y ⊆ N , we denote x(Y) =

∑
i∈Y x(i). We

define ∥x∥1 =
∑

i∈N |x(i)| and ∥x∥∞ = maxi∈N |x(i)|.
We define 0 = (0, 0, . . . , 0) ∈ Zn. For Y ⊆ N , we denote by χY ∈ {0, 1}n the characteristic

vector of Y , i.e., χY (i) = 1 if i ∈ Y and χY (i) = 0 otherwise. In particular, we denote χi = χ{i}
for every i ∈ N . We also denote χ0 = 0. Inequality x ≤ y for vectors x, y ∈ Rn means
component-wise inequality x(i) ≤ y(i) for all i ∈ N . For two vectors x, y ∈ Zn with x ≤ y, we
denote [x, y] = {z ∈ Zn | x ≤ z ≤ y}.

2.1 M-convex and Multimodular Functions

Let f : Zn → R ∪ {+∞} be a function. The effective domain of f is defined by dom f = {x ∈
Zn | f(x) < +∞}, and the set of minimizers of f is denoted by argmin f . Function f is said to
be M♮-convex if it satisfies the following exchange property:

(M♮-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) ∪ {0} :

f(x) + f(y) ≥ f(x− χi + χj) + f(y + χi − χj).

For an M♮-convex function f , if dom f is contained in a hyperplane {x ∈ Zn | x(N) = θ} for
some θ ∈ Z, then f is called an M-convex function, in particular. It is known (see, e.g., [11])
that a function f is M-convex if and only if it satisfies the following exchange property:

(M-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) :

f(x) + f(y) ≥ f(x− χi + χj) + f(y + χi − χj).

M-convex functions can be characterized by a seemingly weaker exchange property.

4

Theorem 2.1 ([11, Theorem 6.4]). A function f : Zn → R ∪ {+∞} is M-convex if and only if
it satisfies the following condition:

∀x, y ∈ dom f with x ̸= y, ∃i ∈ supp+(x− y), ∃j ∈ supp−(x− y) :

f(x) + f(y) ≥ f(x− χi + χj) + f(y + χi − χj).

M♮-convexity of a function implies the following exchange properties.

Theorem 2.2 ([14]). Let f : Zn → R ∪ {+∞} be an M♮-convex function and x, y ∈ dom f .
(i) If x(N) ≤ y(N), then for every i ∈ supp+(x − y) there exists some j ∈ supp−(x − y) such
that

f(x) + f(y) ≥ f(x− χi + χj) + f(y + χi − χj).

(ii) If x(N) < y(N), then there exists some j ∈ supp−(x− y) such that

f(x) + f(y) ≥ f(x+ χj) + f(y − χj).

We then explain the concept of multimodularity and its connection with M♮-convexity. A
function φ : Z2

+ → R in two variables is calledmultimodular if it satisfies the following conditions:

φ(η + 1, ζ + 1)− φ(η + 1, ζ) ≥ φ(η, ζ + 1)− φ(η, ζ) (∀η, ζ ∈ Z+),

φ(η − 1, ζ + 1)− φ(η − 1, ζ) ≥ φ(η, ζ)− φ(η, ζ − 1) (∀η, ζ ∈ Z++),

φ(η + 1, ζ − 1)− φ(η, ζ − 1) ≥ φ(η, ζ)− φ(η − 1, ζ) (∀η, ζ ∈ Z++).

For functions in two variables, multimodularity and M♮-convexity are essentially equivalent.

Proposition 2.3 (cf. [7]). A function φ : Z2
+ → R in two variables is multimodular if and only

if the function f : Z2 → R ∪ {+∞} given by

dom f = Z2
+, f(α, β) = φ(α, β) ((α, β) ∈ dom f) (2.1)

is M♮-convex.

This relationship and Theorem 2.2 immediately imply the following property of multimodular
functions.

Proposition 2.4. Let φ : Z2 → R ∪ {+∞} be an M♮-convex function, and η, ζ, η′, ζ ′ ∈ Z.
(i) If η > η′ and ζ < ζ ′, then it holds that

φ(η, ζ) + φ(η′, ζ ′) ≥ φ(η − 1, ζ + 1) + φ(η′ + 1, ζ ′ − 1). (2.2)

(ii) If η > η′ and η + ζ > η′ + ζ ′, then it holds that

φ(η, ζ) + φ(η′, ζ ′) ≥ φ(η − 1, ζ) + φ(η′ + 1, ζ ′). (2.3)

Proof. We first prove the claim (i). If η + ζ ≤ η′ + ζ ′ Theorem 2.2 (i) immediately implies the
inequality (2.2). If η + ζ ≥ η′ + ζ ′, then we can also obtain the inequality (2.2) from Theorem
2.2 (i) by interchanging the roles of (η, ζ) and (η′, ζ ′).

We then prove the claim (ii). If ζ < ζ ′, then the inequality (2.3) follows immediately from
Theorem 2.2 (ii). If ζ ≥ ζ ′, then the inequality (2.3) follows immediately from (M♮-EXC).

5

2.2 Minimization of an M-convex Function

We review some known results for the minimization of an M-convex function. A minimizer of
an M-convex function can be characterized by a local optimality condition.

Theorem 2.5 (cf. [11, Theorem 6.26]). For an M-convex function f : Zn → R∪{+∞}, a vector
x∗ ∈ dom f is a minimizer of f if and only if f(x∗ − χi + χj) ≥ f(x∗) (∀i, j ∈ N).

This theorem immediately implies that the minimization of an M-convex function can be
solved by the following steepest descent algorithm (see, e.g., [11, Section 10.1.1]):

Algorithm SteepestDescent
Step 0: Let x0 ∈ dom f be an appropriately chosen initial vector. Set k := 1.
Step 1: If f(xk−1 + χi − χj) ≥ f(xk−1) for every i, j ∈ N , then output xk−1 and stop.
Step 2: Find ik, jk ∈ N that minimize f(xk−1 + χik − χjk).
Step 3: Set xk := xk−1 + χik − χjk , k := k + 1, and go to Step 1.

Theorem 2.6 (cf. [11, Section 10.1.1]). Let f : Zn → R ∪ {+∞} be an M-convex function
f : Zn → R ∪ {+∞} that has a minimizer, i.e.. argmin f ̸= ∅. Then, the algorithm Steepest-
Descent outputs a minimizer of f after a finite number of iterations.

Polynomial-time algorithms based on proximity-scaling approach are proposed for M-convex
function minimization [8, 15, 16, 18], and the current best time complexity bound is given as
follows. For a set S ⊆ Zn, we define the L∞-diameter of S by

L = max{∥x− y∥∞ | x, y ∈ S}. (2.4)

Theorem 2.7 ([16, 18]). Minimization of an M-convex function f : Zn → R ∪ {+∞} can be
done in O(n3 log(L/n)F) time, where L is the L∞-diameter of dom f and F denotes the time
to evaluate the function value of f .

3 Reformulation of Dock Re-allocation Problem as (MML1)

We consider the dock re-allocation problem (DR) explained in Section 1. Using vector notation,
the problem (DR) can be simply rewritten as follows:

(DR) Minimize c(d, b)
subject to d(N) + b(N) = D +B,

b(N) ≤ B,
∥(d+ b)− (d̄+ b̄)∥1 ≤ 2γ,
ℓ ≤ d+ b ≤ u,
d, b ∈ Zn

+,

where c : Zn
+×Zn

+ → R is a function given by c(d, b) =
∑n

i=1 ci(d(i), b(i)) ((d, b) ∈ Zn
+×Zn

+). In
this section, we show that (DR) can be reformulated as the problem (MML1).

For the reformulation, we define a function f : Zn → R ∪ {+∞} by

dom f = {x ∈ Zn | x(N) = D +B, ℓ ≤ x ≤ u},
f(x) = min{c(d, b) | d, b ∈ Zn

+, d+ b = x, b(N) ≤ B} (x ∈ dom f). (3.1)

Theorem 3.1. Function f in (3.1) is M-convex.

6

Proof of Theorem 3.1 is given at the end of this section. With this function f , the problem (DR)
can be reformulated as

Minimize f(x)
subject to x(N) = D +B,

∥x− (d̄+ b̄)∥1 ≤ 2γ,
x ∈ dom f.

Hence, (DR) is reformulated as (MML1).
We now give a proof of Theorem 3.1.

Proof of Theorem 3.1. By Theorem 2.1 (i), it suffices to show that the following condition holds
for every distinct vectors x′, x′′ ∈ dom f :

∃i ∈ supp+(x′ − x′′),∃j ∈ supp−(x′ − x′′) such that

f(x′) + f(x′′) ≥ f(x′ − χi + χj) + f(x′′ + χi − χj). (3.2)

For x ∈ dom f , we denote

S(x) = {(d, b) ∈ Zn
+ × Zn

+ | y + z = x, b(N) ≤ B}.

Let (d′, b′) ∈ S(x′) (resp., (d′′, b′′) ∈ S(x′′)) be a pair of vectors such that f(x′) = c(d′, b′) (resp.,
f(x′′) = c(d′′, b′′)). We denote

N+ = supp+(x′ − x′′), N− = supp−(x′ − x′′), N0 = N \ (N+ ∪N−).

We have N+ ̸= ∅ and N− ̸= ∅ since x′ and x′′ are distinct vectors with x′(N) = x′′(N). In the
following, we consider only the case with b′(N) = b′′(N) = B since the remaining case can be
proved similarly and more easily. Note that this assumption and the equation x′(N) = x′′(N)
implies d′(N) = d′′(N).

We first show by using Proposition 2.4 that the condition (3.2) holds if at least one of the
following four conditions holds:

(C1) N+ ∩ supp+(d′ − d′′) ̸= ∅, N− ∩ supp−(d′ − d′′) ̸= ∅,
(C2) N+ ∩ supp+(b′ − b′′) ̸= ∅, N− ∩ supp−(b′ − b′′) ̸= ∅,
(C3) N+ ∩ supp+(d′ − d′′) ̸= ∅, N− ∩ supp−(b′ − b′′) ̸= ∅, N0 ∩ supp−(d′ − d′′) ̸= ∅,
(C4) N+ ∩ supp+(b′ − b′′) ̸= ∅, N− ∩ supp−(d′ − d′′) ̸= ∅, N0 ∩ supp−(b′ − b′′) ̸= ∅.

In the following, we give a proof for only the case with (C3); the proof for other cases are
similar and omitted. Let i, j, s ∈ N be distinct elements such that

i ∈ N+ ∩ supp+(d′ − d′′), j ∈ N− ∩ supp−(b′ − b′′), s ∈ N0 ∩ supp−(d′ − d′′).

Since N0 ∩ supp−(d′− d′′) = N0 ∩ supp+(b′− b′′), we have s ∈ supp+(b′− b′′). We define vectors
d̃′, d̃′′, b̃′, b̃′′, x̃′, x̃′′ ∈ Zn by

d̃′ = d′ − χi + χs, d̃′′ = d′′ + χi − χs,

b̃′ = b′ + χj − χs, b̃′′ = b′′ − χj + χs,

x̃′ = d̃′ + b̃′ (= x′ − χi + χj), x̃′′ = d̃′′ + b̃′′(= x′′ + χi − χj).

7

Since

x̃′(i) = x′(i)− 1 ≥ x′′(i), x̃′(j) = x′(j) + 1 ≤ x′′(j),

x̃′′(i) = x′′(i) + 1 ≤ x′(i), x̃′′(j) = x′′(j)− 1 ≥ x′(j),

x̃′(N) = x′(N) = D +B, x̃′′(N) = x′′(N) = D +B,

b̃′(N) = b′(N) = B, b̃′′(N) = b′′(N) = B,

it holds that x̃′, x̃′′ ∈ dom f , (d̃′, b̃′) ∈ S(x̃′), and (d̃′′, b̃′′) ∈ S(x̃′′). Hence, we have

f(x̃′) ≤ c(d̃′, b̃′), f(x̃′′) ≤ c(d̃′′, b̃′′). (3.3)

By the choice of i, j, s ∈ N , the following inequalities follow from Proposition 2.4:

ci(d
′(i), b′(i)) + ci(d

′′(i), b′′(i))

≥ ci(d
′(i)− 1, b′(i)) + ci(d

′′(i) + 1, b′′(i)) = ci(d̃
′(i), b̃′(i)) + ci(d̃

′′(i), b̃′′(i)),

cj(d
′(j), b′(j)) + cj(d

′′(j), b′′(j))

≥ cj(d
′(j), b′(j) + 1) + cj(d

′′(j), b′′(j)− 1) = cj(d̃
′(j), b̃′(j)) + cj(d̃

′′(j), b̃′′(j)),

cs(d
′(s), b′(s)) + cs(d

′′(s), b′′(s))

≥ cs(d
′(s) + 1, b′(s)− 1) + cs(d

′′(s)− 1, b′′(s) + 1) = cs(d̃
′(s), b̃′(s)) + cs(d̃

′′(s), b̃′′(s)).

From these inequalities and (3.3), the inequality (3.2) can be obtained as follows:

f(x′) + f(x′′) = c(d′, b′) + c(d′′, b′′)

≥ c(d̃′, b̃′) + c(d̃′′, b̃′′)

≥ f(x̃′) + f(x̃′′) = f(x′ − χi + χj) + f(x′′ + χi − χj).

To conclude the proof, we show that at least one of the four conditions (C1)–(C4) holds. It
follows from the equations x′(h) = d′(h) + b′(h) and x′′(h) = d′′(h) + b′′(h) for h ∈ N that

N+ ⊆ supp+(d′ − d′′) ∪ supp+(b′ − b′′), (3.4)

N− ⊆ supp−(d′ − d′′) ∪ supp−(b′ − b′′). (3.5)

Sine N+ and N− are non-empty sets, (3.4) and (3.5) imply that

N+ ∩ supp+(d′ − d′′) ̸= ∅ or N+ ∩ supp+(b′ − b′′) ̸= ∅, (3.6)

N− ∩ supp−(d′ − d′′) ̸= ∅ or N− ∩ supp−(b′ − b′′) ̸= ∅. (3.7)

Assume that neither of conditions (C1) and (C2) holds. Then, we have

N+ ∩ supp+(d′ − d′′) = ∅ or N− ∩ supp−(d′ − d′′) = ∅,
N+ ∩ supp+(b′ − b′′) = ∅ or N− ∩ supp−(b′ − b′′) = ∅,

which, together with (3.6) and (3.7), imply that the following two cases are possible:

(a) N+ ∩ supp+(d′ − d′′) ̸= ∅, N− ∩ supp−(d′ − d′′) = ∅, N+ ∩ supp+(b′ − b′′) = ∅,
and N− ∩ supp−(b′ − b′′) ̸= ∅,
(b) N+ ∩ supp+(d′ − d′′) = ∅, N− ∩ supp−(d′ − d′′) ̸= ∅, N+ ∩ supp+(b′ − b′′) ̸= ∅,
and N− ∩ supp−(b′ − b′′) = ∅.

8

We will show that (a) implies (C3), and (b) implies (C4); below we prove the former implication
only since the latter can be proven in a similar way.

Suppose that the condition (a) holds. It suffices to show that N0 ∩ supp−(d′ − d′′) ̸= ∅.
Since ∅ ̸= N+ ⊆ supp+(d′ − d′′) and N− ⊆ N \ supp−(d′ − d′′), we have d′(N+) > d′′(N+) and
d′(N−) ≥ d′′(N−), which, together with d′(N) = d′′(N), implies

d′(N0) = d′(N)− d′(N+)− d′(N−) < d′′(N)− d′′(N+)− d′′(N−) = d′′(N0).

Hence, N0 ∩ supp−(d′ − d′′) ̸= ∅ follows.

4 Steepest Descent Algorithm for (MML1)

4.1 Algorithm

In this section, we show that an optimal solution of the problem (MML1) can be obtained
by using a variant of the steepest descent algorithm SteepestDescent in Section 2.2 for
unconstrained M-convex function minimization. While we are mainly interested in the case
where the center xc is a feasible solution to (MML1), we also consider the case with infeasible xc.
Since we consider only vectors x with ∥x− xc∥1 ≤ 2γ in (MML1), we may assume, without loss
of generality, that the effective domain dom f of the function f is bounded; this assumption
implies that argmin f ̸= ∅, in particular.

Let σ ∈ Z+ be the half of L1-distance between xc and a nearest vector in dom f , and τ ∈ Z+

the half of L1-distance between xc and a nearest minimizer of f , i.e.,

σ = (1/2)min{∥x− xc∥1 | x ∈ dom f}, τ = (1/2)min{∥x− xc∥1 | x ∈ argmin f}. (4.1)

We have σ = 0 if xc is a feasible solution.
For every integer k with k ≥ σ, we denote by (MML1(k)) the problem (MML1) with the

constant γ in the L1-distance constraint is replaced with the parameter k. That is, (MML1(k))
is given as follows:

(MML1(k)) Minimize f(x)
subject to x(N) = θ,

∥x− xc∥1 ≤ 2k,
x ∈ dom f.

We first present some properties of optimal solutions for the problem (MML1(k)). For every
integer k with k ≥ σ, we denote by Mk ⊆ Zn and by µk ∈ R, respectively, the set of optimal
solutions and the optimal value of the problem (MML1(k)). Note that for every k ≥ τ , we have

Mk = {x ∈ argmin f | ∥x− xc∥1 ≤ 2k}, µk = min f.

We also have M0 = {xc} and µ0 = f(xc) if xc is a feasible solution of (MML1);

Theorem 4.1.
(i) It holds that µσ > µσ+1 > · · · > µτ and Mk ⊆ {x ∈ Zn | ∥x− xc∥1 = 2k} for k ∈ [σ, τ].
(ii) For every k ∈ [σ, τ − 1] and y ∈ Mk, there exist some i ∈ N \ supp−(y − xc) and j ∈
N \ supp+(y − xc) such that y + χi − χj ∈Mk+1.
(iii) For every k ∈ [σ, τ − 1] and y ∈ Mk+1, there exist some i ∈ supp+(y − xc) and j ∈
supp−(y − xc) such that y − χi + χj ∈Mk.

9

Proof is given in Section 4.3.
Theorem 4.1 (ii) implies that a variant of the steepest descent algorithm for unconstrained

M-convex function minimization finds an optimal solution of (MML1).

Algorithm SteepestDescentMML1
Step 0: Compute σ in (4.1) and x◦ ∈Mσ. Set xσ := x◦ and k := σ + 1.
Step 1: If k − 1 = γ, then output xk−1 and stop.
Step 2: Find ik, jk ∈ N that minimize f(xk−1 + χik − χjk).
Step 3: If f(xk−1 + χik − χjk) ≥ f(xk−1), then output xk−1 and stop.

Otherwise, set xk := xk−1 + χik − χjk , k := k + 1, and go to Step 1.

Theorem 4.2. The algorithm SteepestDescentMML1 outputs an optimal solution of (MML1)
in at most γ − σ + 1 iterations. Moreover, the vector xk generated in each iteration of the algo-
rithm satisfies xk ∈Mk.

Proof. Suppose that the algorithm terminates when k = k′. We first prove by induction that
k ≤ τ and xk ∈Mk hold for k = σ, σ+1, . . . , k′−1. Assume that k−1 ≤ τ and xk−1 ∈Mk−1 hold
for some k with σ ≤ k− 1 ≤ k′ − 2. Since the algorithm does not stop in Step 3 of the previous
iteration, we have f(xk) < f(xk−1), which implies that xk−1 is not a minimizer of f , i.e., k ≤ τ
holds. Since f(xk) < f(xk−1), we have ik ∈ N \ supp−(xk−1 − xc), jk ∈ N \ supp+(xk−1 − xc),
and ∥xk − xc∥1 = k. Hence, it follows from Theorem 4.1 (ii) that xk ∈Mk.

We then prove that the output of the algorithm is an optimal solution of (MML1). We
have either k′ − 1 = γ or f(xk′−1 + χik′ − χjk′) ≥ f(xk′−1) (or both). If k′ − 1 = γ, then
the output is the vector xγ and therefore an optimal solution of (MML1) since xγ ∈ Mγ . If
f(xk′−1 + χik′ − χjk′) ≥ f(xk′−1), then xk′−1 is a minimizer of f by Theorem 2.5, which is an
optimal solution of (MML1).

The running time of the algorithm SteepestDescentMML1, except for Step 0, is O(n2(γ−
σ)), provided that the evaluation of function value of f can be done in constant time. Computa-
tion of σ and x◦ in Step 0 can be done by finding a minimizer x◦ of a function f(x)+Υ∥x−xc∥1
with a sufficiently large real number Υ with Υ > max{f(x) | x ∈ dom f} and then setting
σ = ∥x◦ − xc∥1. Since the sum of an M-convex function and a separable-convex function is
M-convex [11, Theorem 6.13], function f(x) + Υ∥x − xc∥1 is also M-convex, and therefore its
minimization can be done by any algorithm for unconstrained M-convex function minimization,
even if the value Υ is not given specifically.

Theorem 4.1 (iii) suggests another variant of steepest descent algorithm that starts from a
nearest minimizer x• of f and greedily approaches xc. This algorithm is faster than Steepest-
DescentMML1 if τ − γ is smaller than γ − σ.

Algorithm ReverseSteepestDescentMML1
Step 0: Compute the value τ in (4.1) and a minimizer x• of f with ∥x• − xc∥1 = 2τ .

Set xτ := x•, and k := τ − 1.
Step 1: If k + 1 ≤ γ, then output xk+1 and stop.
Step 2: Find ik ∈ supp+(xk+1 − xc) and jk ∈ supp−(xk+1 − xc) that minimize

f(xk+1 − χik + χjk).
Step 3: Set xk := xk+1 − χik + χjk , k := k − 1, and go to Step 1.

Theorem 4.3. The algorithm ReverseSteepestDescentMML1 outputs an optimal solution
of (MML1) in at most max{τ − γ, 0}+ 1 iterations. Moreover, the vector xk generated in each
iteration of the algorithm satisfies xk ∈Mk.

10

Proof. If τ ≤ γ, then the minimizer x• of f found in Step 0 is a feasible solution of the problem
(MML1). Otherwise (i.e., τ > γ), then we can show that xk ∈Mk holds for k = τ, τ − 1, . . . , γ,
in a similar way as in the proof of Theorem 4.2. Hence, the output of the algorithm is an optimal
solution of (MML1).

A minimizer x• of f with ∥x• − xc∥1 = 2τ is a minimizer of a function f(x) + ε∥x − xc∥1
with a sufficiently small positive ε. Since f(x) + ε∥x − xc∥1 is M-convex in x, a minimizer
of f(x) + ε∥x − xc∥1 can be obtained by any algorithm for unconstrained M-convex function
minimization.

Remark 4.4. The sequence of optimal values µk for (MML1(k)) is a convex sequence, i.e., for
every integer k ∈ [σ + 1, τ − 1], it holds that µk−1 + µk+1 ≥ 2µk. This fact can be shown as
follows.

For k ∈ [σ + 1, τ − 1], let xk−1 ∈Mk−1 and xk+1 ∈Mk+1 be vectors such that

xk+1 = xk−1 − χi − χi′ + χj + χj′

for some i, i′, j, j′ ∈ N with {i, i′}∩{j, j′} = ∅, i, i′ ∈ supp−(xk+1−xc), and j, j′ ∈ supp+(xk+1−
xc); the existence of such xk−1 and xk+1 follows from the claim (ii) (or (iii)) of Theorem 4.1.
By (M-EXC) applied to xk−1 and xk+1, we have f(xk−1) + f(xk+1) ≥ f(y) + f(z) with (y, z) =
(xk−1 −χi +χj , xk−1 −χi′ +χj′) or (y, z) = (xk−1 −χi +χj′ , xk−1 −χi′ +χj). In either case we
have ∥y − xc∥1 = ∥z − xc∥1 = 2k, and therefore it follows that

µk−1 + µk+1 = f(xk−1) + f(xk+1) ≥ f(y) + f(z) ≥ 2µk.

4.2 Implication to Unconstrained M-convex Function Minimization

Theorem 4.2 has an important implication to the algorithm SteepestDescent for uncon-
strained M-convex function minimization.

It is easy to see that the behavior of the algorithm SteepestDescent coincides with that
of the algorithm SteepestDescentMML1 with xc given by the initial vector x0 of Steepest-
Descent. Hence, following properties of the algorithm SteepestDescent can be obtained as
an immediate corollary of Theorem 4.2 for SteepestDescentMML1. In particular, the exact
bound on the number of iterations required by the algorithm SteepestDescent is obtained.

Corollary 4.5. The algorithm SteepestDescent outputs a minimizer of an M-convex func-
tion f : Zn → R ∪ {+∞}, and the number of updates of the vector x is exactly equal to

(1/2)min{∥x∗ − x0∥1 | x∗ ∈ argmin f}. (4.2)

Moreover, the vector xk generated in the k-th iteration of the algorithm satisfies

xk ∈ argmin{f(x) | ∥x− x0∥1 ≤ 2k}.

If we update exactly two components of a vector xk in each iteration, as in the algorithm
SteepestDescent, then the number of iterations is at least the bound in (4.2). Hence, Corol-
lary 4.5 shows that SteepestDescent achieves the best-possible bound in this sense, and
the trajectory of the solutions generated by the algorithm is a geodesic to the nearest optimal
solution from the initial solution.

11

Remark 4.6. In Corollary 4.5 we obtained the exact bound (4.2) on the number of iterations
required by the algorithm SteepestDescent. While the bound (4.2) is obtained for some
special case of M-convex functions and for some variants of the algorithm, it is not proven so
far for the “naive” steepest descent algorithm (i.e., SteepestDescent).

The bound (4.2) is obtained by [12] for the special case where an M-convex function has a
unique minimizer. Based on this fact, the bound (4.2) for general M-convex functions is obtained
in [12], by using a variant of SteepestDescent with certain tie-breaking rules in the choice of
ik and jk in Step 1.

The bound (4.2) can be also obtained in [16] by using another variant of SteepestDescent,
where a region containing an optimal solution is explicitly maintained by lower and upper
bound vectors. Corollary 4.5 shows that no modification of the algorithm SteepestDescent
is necessary to obtain the same exact bound.

4.3 Proof of Theorem 4.1

We give a proof of Theorem 4.1. For this, we show some technical lemmas.

Lemma 4.7. Let y, ỹ ∈ Zn be distinct vectors satisfying y(N) = ỹ(N). If ∥y−xc∥1 ≤ ∥ỹ−xc∥1,
then we have ỹ(i) > xc(i) for some i ∈ supp+(ỹ− y) or ỹ(j) < xc(j) for some j ∈ supp−(ỹ− y)
(or both).

Proof. We prove the statement by contradiction. Assume, to the contrary, that ỹ(i) ≤ xc(i) for
all i ∈ supp+(ỹ − y) and ỹ(j) ≥ xc(j) for all j ∈ supp−(ỹ − y). Then, it holds that

∥ỹ − xc∥1 − ∥y − xc∥1
=

∑
i∈supp+(ỹ−y)

(|ỹ(i)− xc(i)| − |y(i)− xc(i)|) +
∑

j∈supp−(ỹ−y)

(|ỹ(j)− xc(j)| − |y(j)− xc(j)|)

=
∑

i∈supp+(ỹ−y)

((xc(i)− ỹ(i))− (xc(i)− y(i))) +
∑

j∈supp−(ỹ−y)

((ỹ(j)− xc(j))− (y(j)− xc(j)))

=
∑

i∈supp+(ỹ−y)

(−ỹ(i) + y(i)) +
∑

j∈supp−(ỹ−y)

(ỹ(j)− y(j)) < 0,

a contradiction to the inequality ∥y − xc∥1 ≤ ∥ỹ − xc∥1.

Lemma 4.8. Let x, y, z ∈ Zn, i ∈ supp+(x− y), and j ∈ supp−(x− y). Then, we have

∥x− z∥1 + ∥y − z∥1 ≥ ∥(x− χi + χj)− z∥1 + ∥(y + χi − χj)− z∥1.

Proof. For a univariate convex function φ : R → R and integers η, ζ with η < ζ, it holds that

φ(η) + φ(ζ) ≥ φ(η + 1) + φ(ζ − 1).

We have ∥x− z∥1 =
∑n

i=1 |x(i)− z(i)| and each term |x(i)− z(i)| is a univariate convex function
in x(i). Hence, the claim follows.

We say that a sequence y0, y1, . . . , yh ∈ dom f of vectors is monotone if ∥yk − y0∥1 = 2k
holds for k = 0, 1, . . . , h; this condition can be rewritten as follows: for k = 0, 1, . . . , h− 1, there
exist i ∈ supp+(yk − yh) and j ∈ supp−(yk − yh) such that yk+1 = yk − χi + χj . Recall that by
the definition of τ , every optimal solution of the problem (MML1(τ)) is a minimizer of f .

12

Lemma 4.9. Let y ∈ dom f be a vector with ∥y − xc∥1 < 2τ , and x• ∈ Mτ be a vector
minimizing the value ∥x• − y∥1. Then, there exists a monotone sequence y0, y1, . . . , yh ∈ dom f
with h = (1/2)∥y − x•∥1 such that y0 = y, yh = x•, and f(y0) > f(y1) > · · · > f(yh).

Proof. We prove the claim by induction on h. It suffices to show that there exist some i ∈
supp+(y − x•) and j ∈ supp−(y − x•) such that f(y − χi + χj) < f(y) since (1/2)∥(y − χi +
χj)− x•∥1 = h− 1.

Since ∥x• − xc∥1 = 2τ > ∥y − xc∥1, it follows from Lemma 4.7 that x•(i) > xc(i) for some
i ∈ supp+(x• − y) or x•(j) < xc(j) for some j ∈ supp−(x• − y) (or both); we assume, without
loss of generality, that the former holds. Then, the exchange property (M-EXC) of M-convex
function f applied to x•, y, and i implies that there exists some j ∈ supp−(x• − y) such that

f(x•) + f(y) ≥ f(x• − χi + χj) + f(y + χi − χj). (4.3)

Hence, if we have f(x•) < f(x•−χi+χj), then (4.3) implies the desired inequality f(y−χi+χj) <
f(y). In the following, we prove f(x•) < f(x• − χi + χj).

By the choice of i, we have ∥(x• − χi + χj) − xc∥1 − ∥x• − xc∥1 ∈ {0,−2}. If ∥(x• − χi +
χj) − xc∥1 − ∥x• − xc∥1 = 0 then we have f(x•) < f(x• − χi + χj) by the choice of x• since
∥(x• − χi + χj) − y∥1 < ∥x• − y∥1. If ∥(x• − χi + χj) − xc∥1 − ∥x• − xc∥1 = −2 then we have
∥(x• − χi + χj)− xc∥1 < 2τ and therefore f(x•) < f(x• − χi + χj) holds by the definition of τ .
Hence, we have f(x•) < f(x• − χi + χj) in either case.

We now prove the claims (i), (ii), and (iii) of Theorem 4.1 in turn.

Proof of Theorem 4.1 (i). We haveMσ ⊆ {x ∈ Zn | ∥x−xc∥1 = 2σ} by the definition of σ. In the
following, we prove by induction on k that µk > µk+1 andMk+1 ⊆ {x ∈ Zn | ∥x−xc∥1 = 2(k+1)}
for each integer k ∈ [σ, τ − 1].

Let y ∈ Mk, and x• ∈ Mτ be a vector that minimizes the value ∥x• − y∥1. By the in-
duction hypothesis we have ∥y − xc∥1 = 2k. By Lemma 4.9, there exists a monotone se-
quence y0, y1, . . . , yh ∈ dom f with h = ∥x• − y∥1 such that y0 = y, yh = x•, and µk =
f(y0) > f(y1) > · · · > f(yh). Since ∥yt+1 − xc∥1 − ∥yt − xc∥1 ∈ {−2, 0,+2} for every integer
t ∈ [0, h − 1] and ∥yh − xc∥1 = 2τ > 2k ≥ ∥y0 − xc∥1, there exists some integer s ∈ [1, h] such
that ∥ys − xc∥1 = 2(k + 1); such s satisfies µk+1 ≤ f(ys) < f(y0) = µk.

The inclusion Mk+1 ⊆ {x ∈ Zn | ∥x−xc∥1 = 2(k+1)} follows from the inequality µk+1 < µk
since f(x) ≥ µk > µk+1 holds for every x ∈ dom f with ∥x− xc∥1 < 2(k + 1).

Proof of Theorem 4.1 (ii). We fix y ∈Mk, and let ỹ be a vector inMk+1 that minimizes ∥ỹ−y∥1.
By Lemma 4.7, it suffices to consider the following two cases:

Case 1: supp+(ỹ − y) ∩ supp+(ỹ − xc) ̸= ∅,
Case 2: supp−(ỹ − y) ∩ supp−(ỹ − xc) ̸= ∅.

In the following we give a proof for Case 1 only since Case 2 can be proven in a similar way.
Suppose that there exists some i ∈ supp+(ỹ − y) ∩ supp+(ỹ − xc). By (M-EXC) applied to

ỹ and y, there exists some j ∈ supp−(ỹ − y) such that

f(ỹ) + f(y) ≥ f(ỹ − χi + χj) + f(y + χi − χj). (4.4)

Put z̃ = ỹ − χi + χj , z = y + χi − χj , and

α = ∥z̃ − xc∥1 − ∥ỹ − xc∥1, β = ∥z − xc∥1 − ∥y − xc∥1.

13

Then, we have β ∈ {−2, 0,+2} and α ∈ {−2, 0} since ỹ(i) > xc(i).
Assume first that α = 0 holds. By Lemma 4.8, we have

α+ β = ∥z̃ − xc∥1 + ∥z − xc∥1 − ∥ỹ − xc∥1 − ∥y − xc∥1 ≤ 0,

which, together with α = 0, implies β ≤ 0. Hence, it holds that ∥z − xc∥1 ≤ ∥y − xc∥1 = 2k,
implying f(z) ≥ µk. Since ∥z̃ − xc∥1 = ∥ỹ − xc∥1 = 2(k + 1), we have f(z̃) ≥ µk+1. Combining
these inequalities with (4.4), we have

µk+1 + µk = f(ỹ) + f(y) ≥ f(z̃) + f(z) ≥ µk+1 + µk,

from which follows that f(z̃) = µk+1, a contradiction to the choice of ỹ since ∥z̃ − y∥1 =
∥ỹ − y∥1 − 2. This shows that α = 0 cannot occur. Hence, we have α = −2.

Since α = −2, we have ∥z̃ − xc∥1 = ∥ỹ − xc∥1 − 2 = 2k, from which follows that f(z̃) ≥ µk.
We also have ∥z−xc∥1 ≤ ∥y−xc∥1+2 = 2(k+1), and therefore f(z) ≥ µk+1. Combining these
inequalities with (4.4), we have

µk+1 + µk = f(ỹ) + f(y) ≥ f(z̃) + f(z) ≥ µk + µk+1,

from which follows that f(z) = µk+1. This implies ∥z − xc∥1 = 2(k + 1) by Theorem 4.1 (i).
Hence, we have z = y+χi−χj ∈Mk+1 with i ∈ N \supp−(y−xc) and j ∈ N \supp+(y−xc).

Proof of Theorem 4.1 (iii). The proof below is quite similar to that for Theorem 4.1 (ii) and
omitted.

5 Polynomial-Time Algorithms for (MML1)

In this section we show that the problem (MML1) can be solved in polynomial time by presenting
two algorithms. The first one is based on the reduction to the minimization of the sum of two
M-convex functions and its running time is dependent on the function value of the objective
function f , while the second one is based on the reduction to the minimization of a single
M-convex function and its running time is independent of the function value of f .

We may assume, without loss of generality, that the value τ in (4.1) satisfies τ > γ since
otherwise an optimal solution of (MML1) can be obtained easily by solving unconstrained M-
convex function minimization problem. Let x• ∈ dom f be a minimizer of f with ∥x•−xc∥1 = 2τ ,
which is fixed throughout this section.

5.1 Reduction to Problem with Linear Constraints

We first show that the L1-distance constraint ∥x− xc∥1 ≤ 2γ in (MML1) can be replaced with
a system of linear constraints. Let us consider the following problem:

(MM-L) Minimize f(x)
subject to x(N) = θ,

x(P) = xc(P) + γ,

ℓ̂ ≤ x ≤ û,
x ∈ dom f,

where P = supp+(x• − xc), and ℓ̂, û ∈ Zn are vectors given by

ℓ̂(i) =

{
xc(i) (i ∈ P),

max{x•(i), xc(i)− γ} (i ∈ N \ P),
û(i) =

{
min{x•(i), xc(i) + γ} (i ∈ P),

xc(i) (i ∈ N \ P).

14

Lemma 5.1. Every optimal solution of (MM-L) is also optimal for (MML1).

Proof. We first show that every feasible solution of (MM-L) is a feasible solution of (MML1).
For this, it suffices to prove that every feasible solution x of (MM-L) satisfies the L1-distance
constraint ∥x− xc∥1 ≤ 2γ. Under the condition ℓ̂ ≤ x ≤ û we have

∥x− xc∥1 = (x(P)− xc(P)) + (xc(N \ P)− x(N \ P)),

and the equation x(N) = θ = xc(N) implies that x(P)− xc(P) = xc(N \ P)− x(N \ P). Since
x(P) = xc(P) + γ, the L1-distance ∥x− xc∥1 is bounded by 2γ.

To conclude the proof, we show that there exists an optimal solution x∗ of (MML1) that is
a feasible solution of (MM-L), i.e., x∗ satisfies x∗(P) = xc(P) + γ and ℓ̂ ≤ x∗ ≤ û. Repeated
application of Theorem 4.1 (iii) implies that there exists an optimal solution x∗ ∈ dom f of
(MML1) such that ∥x∗ − xc∥1 = 2γ, x∗(P) = xc(P) + γ, x∗(N \ P) = xc(N \ P)− γ, and

xc(i) ≤ x∗(i) ≤ x•(i) (i ∈ P), x•(i) ≤ x∗(i) ≤ xc(i) (i ∈ N \ P). (5.1)

By the equation x∗(P) = xc(P) + γ and the former inequality in (5.1), we have

x∗(i) = xc(P) + γ − x∗(P \ {i}) ≤ xc(i) + γ (∀i ∈ P).

Similarly, for i ∈ N \ P we have x∗(i) ≥ xc(i)− γ. Hence, ℓ̂ ≤ x∗ ≤ û holds.

While the problem (MM-L) does not fit into the framework of M-convex function minimiza-
tion problem, due to the constraint x(P) = xc(P)+ γ, it can be seen as the minimization of the
sum of two M-convex functions. Indeed, (MM-L) is equivalent to the minimization of the sum
of functions f1, f2 : Zn → R ∪ {+∞} given by

f1(x) =

{
f(x) (if x(N) = θ, ℓ̂ ≤ x ≤ û),

+∞ (otherwise),

f2(x) =

{
0 (if x(N) = θ, x(P) = xc(P) + γ, ℓ̂ ≤ x ≤ û),

+∞ (otherwise).

It is not difficult to show that f1 and f2 satisfy (M-EXC), i.e., the two functions f1 and f2 are
M-convex.

It is known that minimization of the sum of two M♮-convex functions f1, f2 : Zn → R ∪
{+∞} can be solved in polynomial time (see, e.g., [11]), and the fastest algorithm runs in
O(n6(logL)2 log(nK)) time [5], where L is the maximum of the L∞-diameter of dom f1 and
dom f2 (see (2.4) for the definition of L∞-diameter) and

K = max
h=1,2

max{|fh(x)− fh(y)| | x, y ∈ dom fh}.

For the functions f1 and f2 defined above, the L∞-diameter of dom f1 and dom f2 is bounded
by maxi∈N{û(i)− ℓ̂(i)} ≤ γ. Hence, we obtain the following result.

Theorem 5.2. The problem (MML1) can be solved in O(n6(log γ)2 log(nKf)) time with Kf =
max{|f(x)− f(y)| | x, y ∈ dom f}.

Note that this time bound contains the parameter Kf and is dependent on the function value
of f .

15

5.2 Reduction to M-convex Function Minimization

We now explain an alternative approach to solve the problem (MM-L) by the reduction to the
minimization of an M-convex function.

For a vector y ∈ ZN\P , define a set T (y) ⊆ Zn by

T (y) = {x ∈ dom f | x(N) = θ, x(i) = y(i) (i ∈ N \ P), ℓ̂(i) ≤ x(i) ≤ û(i) (i ∈ P)}.

Then, define a function g : ZN\P → R ∪ {+∞} as follows:

g(y) =

min{f(x) | x ∈ T (y)} (if y(N \ P) = θ − (xc(P) + γ)

and ℓ̂(i) ≤ y(i) ≤ û(i) (∀i ∈ N \ P)),
+∞ (otherwise).

(5.2)

By definition, x ∈ Zn is a feasible solution of (MM-L) if and only if the vector y ∈ ZN\P given
by y(i) = x(i) (i ∈ N \ P) satisfies y ∈ dom g and x ∈ T (y). Therefore, the problem (MM-L)
can be reduced to the minimization of function g; for a minimizer y∗ ∈ ZN\P of g, the vector
x∗ ∈ T (y∗) with g(y∗) = f(x∗) is an optimal solution of (MM-L).

We show that function g is an M-convex function, which implies that existing algorithms
can be applied to the minimization of g.

Proposition 5.3. Function g is M-convex.

Proof. Define a function f ′ : Zn → R ∪ {+∞} by

f ′(x) =

{
f(x) (if x(N) = θ and ℓ̂(i) ≤ x(i) ≤ û(i) (∀i ∈ P)),

+∞ (otherwise).
(5.3)

Since f is M-convex, the function f ′ is also an M-convex function [11, Theorem 6.13 (5)]. The
function g′ : ZN\P → R ∪ {+∞} given by

g′(y) = min{f ′(x) | x(i) = y(i) (i ∈ N \ P)} (y ∈ ZN\P)

is an M♮-convex function since g′ is a projection of f ′ [11, Theorem 6.15 (2)]. Finally, function
g in (5.2) is given as

g(y) =

{
g′(y) (if y(N \ P) = θ − (xc(P) + γ), ℓ̂(i) ≤ x(i) ≤ û(i) (i ∈ N \ P)),
+∞ (otherwise),

and therefore g is M-convex (cf. [11, Theorem 6.13]).

We analyze the running time of the algorithm. By Theorem 2.7, the minimization of g can
be done in O(n3 log(γ/n)Fg) time, where Fg denotes the time to evaluate the function value of
g. The evaluation of the function value g(y) can be seen as the minimization of the function
f ′ in (5.3) under the constraint x(i) = y(i) (i ∈ N \ P). Since the L∞-diameter of dom f ′ is
bounded by γ, the evaluation of g can be done in O(n3 log(γ/n)) time by Theorem 2.7, provided
that the function evaluation of f can be done in constant time. Hence, we obtain the following
time bound:

Theorem 5.4. The problem (MML1) can be solved in O(n6(log(γ/n))2) time.

16

6 Application to Dock Re-allocation Problem

As observed in Section 3, the dock re-allocation problem (DR) can be seen as a special case
of the problem (MML1). In this section, we apply the results obtained in Sections 4 and 5 for
(MML1) to obtain algorithms for (DR). In particular, we show that the problem (DR) can be
solved in polynomial time.

6.1 Steepest Descent Algorithm

We first propose a steepest descent algorithm for (DR) by applying the algorithm in Section 4
to (DR). We also show that a fast implementation of the steepest descent algorithm coincides
with the greedy algorithm by Freund et al. [1].

Recall that (DR) can be reformulated in the form of (MML1) as

Minimize f(x)
subject to x(N) = D +B,

∥x− (d̄+ b̄)∥1 ≤ 2γ,
x ∈ dom f,

where the M-convex function f : Zn → R ∪ {+∞} is given by

dom f = {x ∈ Zn | x(N) = D +B, ℓ ≤ x ≤ u},
f(x) = min{c(d, b) | d, b ∈ Zn

+, d+ b = x, b(N) ≤ B} (x ∈ dom f). (6.1)

By definition, the function value f(x) for a given x ∈ dom f can be computed by solving the
following problem:

(SRA(x)) Minimize c(x− b, b) ≡
∑n

i=1 ci(x(i)− b(i), b(i))
subject to b(N) ≤ B,

0 ≤ b ≤ x,
b ∈ Zn

+.

For each i ∈ N , ci(x(i) − b(i), b(i)) is a convex function in variable b(i) since ci is a multimod-
ular (or M♮-convex) function. Hence, the problem (SRA(x)) can be seen as a simple resource
allocation problem and therefore the evaluation of the function value of f can be done efficiently.

Proposition 6.1 ([3, 4]). The problem (SRA(x)) can be solved in O(n log(B/n)) time and in
O(n+ B log n) time. Moreover, if a feasible solution b ∈ Zn

+ of (SRA(x)) is available, then the
problem can be solved in O(n+B′ log n) time with

B′ = min{∥b′ − b∥1 | b′ is an optimal solution of (SRA(x))}.

We say that a feasible solution (d, b) of the problem (DR) is bike-optimal if the vector b is an
optimal solution of the problem (SRA(d + b)). Throughout Section 6, we assume that (d̄, b̄) is
a bike-optimal solution. If (d̄, b̄) is not bike-optimal, then we compute an optimal solution b∗ of
the problem (SRA(d̄+ b̄)) and replace (d̄, b̄) with (d̄+ b̄− b∗, b∗); note that with this replacement
the sum d̄+ b̄ remains the same. This assumption requires an extra time for solving (SRA(d̄+ b̄)),
which does not affect the total running time of the algorithms proposed in this section.

The algorithm SteepestDescentMML1 is rewritten in terms of the problem (DR) as
follows. Since (d̄, b̄) is a feasible solution of the problem (DR), the vector x̄ = d̄+ b̄ can be used
as the initial solution of the steepest descent algorithm.

17

Algorithm SteepestDescentDR
Step 0: Set x0 := d̄+ b̄ and k := 1.
Step 1: If k − 1 = γ, then output the solution (xk−1 − bk−1, bk−1) and stop.
Step 2: For every distinct i, j ∈ N , compute the value f(xk−1 + χi − χj) by solving

(SRA(xk−1 + χi − χj)), and find ik, jk ∈ N minimizing f(xk−1 + χik − χjk).
Step 3: If f(xk−1 + χik − χjk) ≥ f(xk−1), output the solution (xk−1 − bk−1, bk−1) and stop.

Otherwise, compute an optimal solution bk of (SRA(xk−1 + χik − χjk)),
set xk := xk−1 + χik − χjk , k := k + 1, and go to Step 1.

Since the evaluation of the function value f(x) requires O(n log(B/n)) time, each iteration
requires O(n3 log(B/n)) time, and the total running time of the algorithm is O(γn3 log(B/n)).

The next lemma shows that the evaluation of the value f(x) can be done faster by maintaining
an optimal solution of the problem (SRA(xk)) for each k. This lemma is essentially equivalent
to Lemma 6 in Freund et al. [1], while the statement of the lemma is described in our notation.
For completeness, the proof of the lemma is given in Appendix.

Lemma 6.2 ([1, Lemma 6]). Let x ∈ dom f , and b ∈ Zn be an optimal solution of the problem
(SRA(x)). Also, let i, j ∈ N be distinct elements such that x + χi − χj ∈ dom f . Then, there

exists an optimal solution b̂ ∈ Zn of the problem (SRA(x+ χi − χj)) such that

b̂ ∈ {b, b+ χi, b− χj , b+ χi − χj}
∪ {b+ χi − χt | t ∈ N \ {i, j}} ∪ {b+ χs − χj | s ∈ N \ {i, j}}. (6.2)

It follows from Lemma 6.2 that for each i, j ∈ N , an optimal solution of the problem
(SRA(x+χi−χj)) can be found in O(n) time, provided that an optimal solution of the problem
(SRA(x)) is available. Therefore, the function value f(x) can be evaluated in O(n) time, and
the running time of the algorithm SteepestDescentDR is reduced to O(γ n3).

Moreover, Lemma 6.2 implies that the running time O(n3) in each iteration can be further
reduced to O(log n) by computing elements ik, jk ∈ N minimizing the value f(xk−1 +χik −χjk)
and an optimal solution of the problem (SRA(x+ χik − χjk)) simultaneously. We denote

R = {(d, b) ∈ Zn × Zn | d(N) + b(N) = D +B, b(N) ≤ B, ℓ ≤ d+ b ≤ u, d ≥ 0, b ≥ 0},

i.e., R is the set of vectors (d, b) ∈ Zn × Zn satisfying the constraints of the problem (DR),
except for the L1-distance constraint ∥(d̄+ b̄)− (d+ b)∥1 ≤ 2γ. We also define

N(d, b) = N1(d, b) ∪N2(d, b) ∪ · · · ∪N6(d, b), (6.3)

N1(d, b) = {(d+ χi − χj , b) ∈ Zn × Zn | i, j ∈ N, i ̸= j},
N2(d, b) = {(d− χj , b+ χi) ∈ Zn × Zn | i, j ∈ N, i ̸= j},
N3(d, b) = {(d+ χi, b− χj) ∈ Zn × Zn | i, j ∈ N, i ̸= j},
N4(d, b) = {(d, b+ χi − χj) ∈ Zn × Zn | i, j ∈ N, i ̸= j},
N5(d, b) = {(d− χj + χt, b+ χi − χt) ∈ Zn × Zn | i, j ∈ N, i ̸= j, t ∈ N \ {i, j}},
N6(d, b) = {(d− χs + χi, b+ χs − χj) ∈ Zn × Zn | i, j ∈ N, i ̸= j, s ∈ N \ {i, j}}.

The following property follows immediately from Lemma 6.2.

Lemma 6.3. Let x ∈ dom f , and b ∈ Zn be an optimal solution of (SRA(x)). Then, we have

min{f(x+ χi − χj) | i, j ∈ N, ℓ ≤ x+ χi − χj ≤ u} = min{c(d′, b′) | (d′, b′) ∈ N(d, b) ∩R}.

18

By Lemma 6.3, the algorithm SteepestDescentDR can be rewritten in terms of original
variables (d, b) as follows, which is nothing but the greedy algorithm by Freund et al. [1].

Algorithm SteepestDescentDR′

Step 0: Set d0 := d̄, b0 := b̄, and k := 1.
Step 1: If k − 1 = γ, then output the solution (dk−1, bk−1) and stop.
Step 2: Find (d′, b′) ∈ N(dk−1, bk−1) ∩R that minimizes c(d′, b′).
Step 3: If c(d′, b′) ≥ c(dk−1, bk−1), then output the solution (dk−1, bk−1) and stop.

Otherwise, set (dk, bk) := (d′, b′), k := k + 1, and go to Step 1.

For h = 1, 2, . . . , 6, the value min{c(d′, b′) | (d′, b′) ∈ Nh(dk−1, bk−1) ∩ R} can be computed
in O(log n) time by using six binary heaps that maintain the following six sets of numbers, as
in [1, Section 3.1]:

{ci(dk−1(i) + 1, b(i))− ci(dk−1(i), b(i)) | i ∈ N},
{ci(dk−1(i)− 1, b(i))− ci(dk−1(i), b(i)) | i ∈ N},
{ci(d(i), b(i) + 1)− ci(d(i), b(i)) | i ∈ N},
{ci(d(i), b(i)− 1)− ci(d(i), b(i)) | i ∈ N},
{ci(d(i) + 1, b(i)− 1)− ci(d(i), b(i)) | i ∈ N},
{ci(d(i)− 1, b(i) + 1)− ci(d(i), b(i)) | i ∈ N}.

Hence, each iteration of the algorithm can be done in O(log n) time. Since the initialization of
the heaps requires O(n) time, we obtain the following result:

Theorem 6.4 ([1]). Suppose that (d̄, b̄) is a bike-optimal solution of the problem (DR). Then,
the algorithm SteepestDescentDR′ finds an optimal solution of (DR) in O(n+γ log n) time.

6.2 Polynomial-Time Solvability of (DR)

The running time of the algorithm SteepestDescentDR is proportional to the problem pa-
rameter γ and therefore is not polynomial. We show that the problem (DR) can be solved in
polynomial time.

Since the problem (DR) can be reformulated as (MML1) with the M-convex objective func-
tion f : Zn → R∪{+∞} given by (6.1), we obtain the following result from Theorem 5.4. Recall
that the evaluation of function value of f can be done in O(n log(B/n)) time by Proposition 6.1.

Proposition 6.5. The problem (DR) can be solved in O(n7(log(γ/n))2 log(B/n)) time.

To obtain a better time bound for (DR), we consider a different approach. In this approach,
we consider the following problem, denoted as (DA), obtained from (DR) by relaxing the L1-
distance constraint ∥(d+ b)− (d̄+ b̄)∥1 ≤ 2γ.

(DA) Minimize c(d, b)
subject to d(N) + b(N) = D +B,

b(N) ≤ B,
ℓ ≤ d+ b ≤ u,
d, b ∈ Zn

+.

We will show in Section 6.3 that (DA) can be solved in O(n log n log((D+B)/n)) time by using
scaling approach, which is of interest in its own right.

19

Theorem 6.6. A proximity-scaling algorithm finds an optimal solution of the problem (DA) in
O(n log n log((D +B)/n)) time.

The discussion in Section 5 shows that using an optimal solution (d•, b•) of (DA), the problem
(DR) can be reformulated as the following problem without L1-distance constraint:

(DR-L) Minimize c(d, b)
subject to d(N) + b(N) = D +B,

b(N) ≤ B,
d(P) + b(P) = d̄(P) + b̄(P) + γ,
d(N \ P) + b(N \ P) = d̄(N \ P) + b̄(N \ P)− γ,
ℓ ≤ d+ b ≤ u,
d, b ∈ Zn

+.

where the set P ⊆ N is given as

P = supp+((d• + b•)− (d̄+ b̄)).

Note that the first equality constraint d(N)+b(N) = D+B is redundant and follows from other
equality constraints.

To solve the problem (DR-L) efficiently, we consider the two subproblems (DR-L-A(α)) and
(DR-L-B(α)) with parameter α ∈ [0, B]:

(DR-L-A(α)) Minimize
∑

i∈P ci(d(i), b(i))
subject to b(P) ≤ α,

d(P) + b(P) = d̄(P) + b̄(P) + γ,
ℓ(i) ≤ d(i) + b(i) ≤ u(i),
d(i), b(i) ∈ Z+ (i ∈ P);

(DR-L-B(α)) is defined similarly to (DR-L-A(α)), where P is replaced with N \ P and the first
constraint b(P) ≤ α is replaced with b(N \P) ≤ B−α. The two subproblems have (almost) the
same structure as the problem (DA), and therefore can be solved in O(n log n log((D + B)/n))
time by Theorem 6.6.

We denote by ψA(α) (resp., ψB(α)) the optimal value of the problem (DR-L-A(α)) (resp.,
(DR-L-B(α))). Then, the optimal value of the problem (DR-L) is equal to

min{ψA(α) + ψB(α) | α ∈ [0, B] ∩ Z}.

The next property shows that the minimum value of ψA(α)+ψB(α) can be computed by binary
search with respect to α.

Proposition 6.7. The values ψA(α) and ψB(α) are convex functions in α ∈ [0, B] ∩ Z.
Proof is given at the end of this section. Since the binary search terminates in O(logB) iterations
and each iteration requires O(n log n log((D + B)/n)) time by Theorem 6.6, we obtain the
following time bound.

Theorem 6.8. The problem (DR) can be solved in O(n log n log((D +B)/n) logB) time.

We now give a proof of Proposition 6.7. Consider a variant of the problem (DA), where the
constant B is replaced with a parameter α:

(DA[α]) Minimize c(d, b)
subject to d(N) + b(N) = D +B,

b(N) ≤ α,
ℓ ≤ d+ b ≤ u,
d, b ∈ Zn

+.

20

We denote by ψ(α) the optimal value of (DA[α]). To prove Proposition 6.7, it suffices to show
the following property of ψ(α).

Lemma 6.9. The value ψ(α) is a convex function in α ∈ [0, B] ∩ Z.

Proof. We show that ψ(α) + ψ(α+ 2) ≥ 2ψ(α+ 1) holds for α ∈ [0, B − 2] ∩ Z.
Let (d, b) ∈ Zn × Zn be an optimal solution of (DA[α]). Also, let (d̂, b̂) ∈ Zn × Zn be an

optimal solution of (DA[α+ 2]) that has the minimum value of ∥d̂− d∥1 + ∥b̂− b∥1. Note that
c(d, b) = ψ(α) and c(d̂, b̂) = ψ(α+ 2) hold. Since (d, b) is a feasible solution of (DA[α+ 1]), we
have ψ(α) ≥ ψ(α+ 1). Hence, if (d̂, b̂) is a feasible solution of (DA[α+ 1]) (i.e., b̂(N) ≤ α+ 1),
then we have ψ(α + 1) ≤ ψ(α + 2) and therefore the inequality ψ(α) + ψ(α + 2) ≥ 2ψ(α + 1)
follows. Therefore, we may assume b̂(N) = α+ 2 in the following.

Since b̂(N) = α+2 > α = b(N) and d̂(N)+b̂(N) = d(N)+b(N), it holds that supp+(b̂−b) ̸= ∅
and supp−(d̂ − d) ̸= ∅. We first consider the case where there exists some i ∈ supp+(b̂ − b) ∩
supp−(d̂− d). Then, Proposition 2.4 (i) implies that

ci(d̂(i), b̂(i)) + ci(d(i), b(i)) ≥ ci(d̂(i) + 1, b̂(i)− 1) + ci(d(i)− 1, b(i) + 1),

from which follows that the vectors d̂′ = d̂+ χi, b̂
′ = b̂− χi, d

′ = d− χi, and b
′ = b+ χi satisfy

the inequality

ψ(α+ 2) + ψ(α) = c(d̂, b̂) + d(d, b) ≥ c(d̂′, b̂′) + c(d′, b′) ≥ 2ψ(α+ 1),

where the last inequality is by the fact that (d̂′, b̂′) and (d′, b′) are feasible solutions of (DA[α+1]).
We next consider the case with supp+(b̂− b) ∩ supp−(d̂− d) = ∅. We have

d̂(i) ≥ d(i) (∀i ∈ supp+(b̂− b)),

b̂(j) ≤ b(j) (∀j ∈ supp−(d̂− d)),

from which follows that

d̂(i) + b̂(i) > d(i) + b(i) (∀i ∈ supp+(b̂− b)),

d̂(j) + b̂(j) < d(j) + b(j) (∀j ∈ supp−(d̂− d)).

Proposition 2.4 (ii) implies that for arbitrarily chosen i ∈ supp+(b̂− b) and j ∈ supp−(d̂− d), it
holds that

ci(d̂(i), b̂(i)) + ci(d(i), b(i)) ≥ ci(d̂(i), b̂(i)− 1) + ci(d(i), b(i) + 1),

cj(d̂(j), b̂(j)) + cj(d(j), b(j)) ≥ cj(d̂(j) + 1, b̂(j)) + cj(d(j)− 1, b(j)),

from which follows that the vectors d̂′′ = d̂+χj , b̂
′′ = b̂−χi, d

′′ = d−χj , and b
′′ = b+χi satisfy

the inequality

ψ(α+ 2) + ψ(α) = c(d̂, b̂) + d(d, b) ≥ c(d̂′′, b̂′′) + c(d′′, b′′) ≥ 2ψ(α+ 1),

where the last inequality is by the fact that (d̂′′, b̂′′) and (d′′, b′′) are feasible solutions of (DA[α+
1]).

21

6.3 Algorithms for (DA)

In this section, we give a proof of Theorem 6.6, stating that the problem (DA) can be solved in
O(n log n log((D+B)/n)) time. For this, we first present a steepest descent algorithm for (DA)
and analyze its running time in Section 6.3.1. We then propose a polynomial-time algorithm
that is based on scaling technique in Section 6.3.2. To apply scaling technique to some discrete
optimization problem, we need a property called “proximity theorem,” which states that in
an appropriately chosen neighborhood of an “approximate” solution, there exists an optimal
solution. We give a proof of the proximity theorem for the problem (DA) in Section 6.3.3.

6.3.1 Pseudo-Polynomial-Time Algorithm

We show that the problem (DA) can be solved by a steepest descent algorithm for (DA). The
problem (DA) can be seen as a special case of (DR), where (d̄, b̄) = (d0, b0) is an arbitrarily
chosen bike-optimal solution of (DA) and γ = τ with τ given by

τ = min{∥(d+ b)− (d0 + b0)∥1 | (d, b) is an optimal solution of (DA)}. (6.4)

This implies that the algorithm SteepestDescentDR′ can be specialized to (DA) as follows.

Algorithm SteepestDescentDA
Step 0: Let (d0, b0) be an initial solution. Set k := 1.
Step 1: Find (d′, b′) ∈ N(dk−1, bk−1) ∩R that minimizes c(d′, b′).
Step 2: If c(d′, b′) ≥ c(dk−1, bk−1), then output the solution (dk−1, bk−1) and stop.

Otherwise, set (dk, bk) := (d′, b′), k := k + 1, and go to Step 1.

The following time complexity result for SteepestDescentDA follows immediately from
Theorem 6.4.

Proposition 6.10. Suppose that the initial solution (d0, b0) is a bike-optimal solution of the
problem (DA). Then, the algorithm SteepestDescentDA finds an optimal solution of (DA)
in O(n+ τ log n) time with τ given by (6.4).

6.3.2 Polynomial-Time Algorithm

We then propose a polynomial-time proximity-scaling algorithm for (DA). In the following, we
fix an arbitrarily chosen feasible solution (d̃, b̃) of (DA).

Let ν be a positive integer. We consider the following problem, a scaled variant of the
problem (DA):

(DA(ν)) Minimize c(d, b)
subject to d(N) + b(N) = D +B,

b(N) ≤ B,
ℓ ≤ d+ b ≤ u,
d, b ∈ Zn

+,

d(i) ≡ d̃(i) mod ν, b(i) ≡ b̃(i) mod ν (i ∈ N).

A feasible solution (resp., optimal solution) of (DA(ν)) is called a ν-feasible solution (resp.,
ν-optimal solution) of (DA). We also consider a scaled variant of the problem (SRA(x)) with

22

x ∈ Zn
+:

(SRA(x, ν)) Minimize c(x− b, b) ≡
∑n

i=1 ci(x(i)− b(i), b(i))
subject to b(N) ≤ B,

0 ≤ b ≤ x,
b ∈ Zn

+,

b(i) ≡ b̃(i) mod ν (i ∈ N).

A feasible solution (d, b) of the problem (DA(ν)) is called ν-bike optimal if b is an optimal
solution of the problem (SRA(d+ b, ν)).

Our proximity-scaling algorithm is based on the following proximity theorem for (DA). This
implies, in particular, that a ν-optimal solution of (DA) is close to a 2ν-optimal solution.

Theorem 6.11. Let ν be a positive integer with ν ≥ 2, and (d, b) ∈ Zn × Zn be a 2ν-optimal
solution of (DA). Then, there exists some ν-optimal solution (d∗, b∗) ∈ Zn × Zn of (DA) such
that

∥(d∗ + b∗)− (d+ b)∥1 < 16νn.

Proof will be given in Section 6.3.3.
We observe that the problem (DA(ν)) has the same combinatorial structure as (DA). Indeed,

for i ∈ N the function
cνi (η, ζ) = ci(νη + d̃(i), νζ + b̃(i))

is also a multimodular (or M♮-convex) function in (η, ζ). Therefore, any algorithm for (DA) can
be applied to (DA(ν)). In particular, a variant of the algorithm SteepestDescentDA, where
step length is set to ν instead of unit step length, is applicable to find its optimal solution of
(DA(ν)). We denote this variant of the algorithm by SteepestDescentDA(ν). The following
property is an immediate consequence of Proposition 6.10 for the algorithm SteepestDes-
centDA.

Proposition 6.12. Suppose that the initial solution (d0, b0) is a ν-bike-optimal solution of the
problem (DA(ν)). Then, the algorithm SteepestDescentDA(ν) finds an optimal solution of
(DA(ν)) in O(n+ τν log n) time with τν given by

τν = min{∥(d+ b)− (d0 + b0)∥1/ν | (d, b) is an optimal solution of (DA(ν))}.

Our proximity-scaling algorithm consists of several scaling phases. Each scaling phase is
associated with a scaling parameter ν that is a power of 2. In each scaling phase, a ν-optimal
solution is found by the algorithm SteepestDescentDA(ν). To reduce the number of itera-
tions in SteepestDescentDA(ν), we use a 2ν-optimal solution (d, b) computed in the previous
scaling phase as an initial solution. The solution (d, b), however, is not a ν-bike-optimal solu-
tion in general, and cannot be used as an initial solution of SteepestDescentDA(ν) as it is.
Therefore, we need to modify the solution (d, b) to a new solution (d′, b′) with d′+b′ = d+b that
is ν-bike optimal, and use the new solution as an initial solution of SteepestDescentDA(ν).
In other words, we need to compute an optimal solution of the problem (SRA(d + b, ν)). The
next property shows that this computation can be done efficiently by using the solution (d, b);
note that (d, b) is a 2ν-optimal solution of (DA) and therefore 2ν-bike optimal.

Proposition 6.13. Let x ∈ Zn
+, ν be a positive integer with ν ≥ 2, and b ∈ Zn

+ be an optimal
solution of (SRA(x, 2ν)). Then, there exists some optimal solution b∗ ∈ Zn

+ of (SRA(x, ν)) such
that

∥b∗ − b∥1 < 2νn.

23

Proof. It suffices to consider the case with ν = 1. Let b∗ ∈ Zn
+ be an optimal solution of

(SRA(x, 1)) with the minimum value of ∥b∗ − b∥1.
We first show that

{i ∈ N | b∗(i)− b(i) ≥ 2} = ∅ or {j ∈ N | b∗(j)− b(j) ≤ −2} = ∅ (or both). (6.5)

Assume, to the contrary, that there exist i, j ∈ N with b∗(i) − b(i) ≥ 2 and b∗(j) − b(j) ≤ −2.
Since c(x− b′, b′) is separable-convex in b′, we have

c(x−b, b)+c(x−b∗, b∗) ≥ c(x−(b+2χi−2χj), b+2χi−2χj)+c(x−(b∗−2χi+2χj), b
∗−2χi+2χj).

(6.6)
Since b is an optimal solution of (SRA(x, 2)), we have

c(x− b, b) ≤ c(x− (b+ 2χi − 2χj), b+ 2χi − 2χj). (6.7)

Since ∥b− (b∗ − 2χi + 2χj)∥1 < ∥b− b∗∥1, it follows from the choice of b∗ that

c(x− b∗, b∗) < c(x− (b∗ − 2χi + 2χj), b
∗ − 2χi + 2χj),

which, together with (6.7), implies

c(x−b, b)+c(x−b∗, b∗) < c(x−(b+2χi−2χj), b+2χi−2χj)+c(x−(b∗−2χi+2χj), b
∗−2χi+2χj),

a contradiction to (6.6).
In a similar way, we can show the following:

if b∗(N)− b(N) ≥ 2, then, {i ∈ N | b∗(i)− b(i) ≥ 2} = ∅, (6.8)

if b∗(N)− b(N) ≤ −2, then, {j ∈ N | b∗(j)− b(j) ≤ −2} = ∅. (6.9)

We now prove the inequality ∥b∗ − b∥1 < 2n. We first consider the case where {i ∈ N |
b∗(i)− b(i) ≥ 2} = ∅ and {j ∈ N | b∗(j)− b(j) ≤ −2} = ∅ hold. Then, we have |b∗(i)− b(i)| ≤ 1
for every i ∈ N , implying that

∥b∗ − b∥1 =
∑
i∈N

|b∗(i)− b(i)| ≤ n.

We then consider the case where {i ∈ N | b∗(i) − b(i) ≥ 2} ̸= ∅ or {j ∈ N | b∗(j) − b(j) ≤
−2} ̸= ∅ holds; we assume the latter holds without loss of generality.

Since {j ∈ N | b∗(j) − b(j) ≤ −2} ̸= ∅, it follows from (6.5) and (6.9) that {i ∈ N |
b∗(i)− b(i) ≥ 2} = ∅ and

b∗(N)− b(N) ≥ −1; (6.10)

the former condition implies that b∗(i) − b(i) ≤ 1 for every i ∈ N , from which follows that the
set N+ = supp+(b∗ − b) satisfies

b∗(N+)− b(N+) ≤ |N+|. (6.11)

Hence, if N+ = N then we have

∥b∗ − b∥1 =
∑
i∈N+

(b∗(i)− b(i)) = b∗(N+)− b(N+) ≤ |N+| ≤ n.

24

If N+ ̸= N then we have

∥b∗ − b∥1 =
∑
i∈N+

(b∗(i)− b(i)) +
∑

j∈N\N+

(b(j)− b∗(j))

=
(
b∗(N+)− b(N+)

)
+

(
b(N \N+)− b∗(N \N+)

)
≤ 2

(
b∗(N+)− b(N+)

)
+ 1

≤ 2|N+|+ 1 ≤ 2(n− 1) + 1 < 2n,

where the first inequality is by (6.10) and the second by (6.11).

Our proximity-scaling algorithm is described as follows.

Algorithm ProximityScalingDA
Step 0: Let (d0, b0) be an arbitrarily chosen feasible solution of (DA).

Set x0 := d0 + b0, ν := 2⌈log2((D+B)/n)⌉, and p := 1.
Step 1: Compute an optimal solution b′p−1 ∈ Zn of the problem (SRA(xp−1, ν)) by using

the vector bp−1. Set d
′
p−1 := xp−1 − b′p−1.

Step 2: Apply the algorithm SteepestDescentDA(ν) to (DA(ν)) with the initial solution
(d′p−1, b

′
p−1) to find a ν-optimal solution (dp, bp).

Step 3: If ν = 1, then output (dp, bp) and stop.
Otherwise, set xp := dp + bp, ν := ν/2, p := p+ 1, and go to Step 1.

Theorem 6.14. The algorithm ProximityScalingDA finds an optimal solution of the problem
(DA) in O(n log n log((D +B)/n)) time.

Proof. In the last iteration of the algorithm, the algorithm SteepestDescentDA(1) is used
to obtain an output of the algorithm ProximityScalingDA. Hence, the output of Proximi-
tyScalingDA is an optimal solution of (DA) by Proposition 6.10.

We analyze the time complexity of the algorithm ProximityScalingDA. The number of
iterations is O(log((D+B)/n)). We will show that each iteration of the algorithm can be done
in O(n log n) time.

The definition of the initial ν in Step 0 implies that there exists a ν-optimal solution (d, b)
with

∥(d+ b)− x0∥1 ≤ ∥d+ b∥1 + ∥x0∥1 ≤ 2(D +B) ≤ 2νn.

Also, in the p-th iterations with p ≥ 2, Theorem 6.11 implies that there exists a ν-optimal
solution (d, b) with ∥(d+ b)− xp−1∥1 < 16νn. Hence, it follows from Proposition 6.12 that each
iteration, except for Step 1, can be done in O(n log n) time.

We then show that Step 1 can be done in O(n log n) time. We observe that the problem
(SRA(x, ν)) has the same combinatorial structure as (SRA(x)), and therefore any algorithm for
the latter can be applied to the former. Hence, Proposition 6.1 can be used to derive the time
bound for Step 1. In the first iteration, we have B ≤ D + B ≤ νn, implying that (SRA(x0, ν))
can be solved in O(n log n) time by Proposition 6.1. In the p-th iteration with p ≥ 2, we have

min{∥b′ − bp−1∥1 | b′ is an optimal solution of (SRA(xp−1, ν))} < 2νn

by Proposition 6.13 since bp−1 is an optimal solution of (SRA(xp−1, 2ν)). Hence, the latter
statement in Proposition 6.1 implies that (SRA(xp−1, ν)) can be solved in O(n log n) time.

25

6.3.3 Proof of Theorem 6.11

Instead of proving Theorem 6.11, we prove the following stronger statement; Theorem 6.11
corresponds to the case with λ = 2.

Theorem 6.15. Let λ and ν be positive integers with λ ≥ 2, and (d, b) ∈ Zn × Zn be a λν-
optimal solution of (DA). Then, there exists some ν-optimal solution (d∗, b∗) ∈ Zn×Zn of (DA)
such that

∥(d∗ + b∗)− (d+ b)∥1 < 8λνn.

Since the structure of the problem (DA(ν)) is essentially the same as (DA), it suffices to
consider the case with ν = 1, i.e., it suffices to prove the following statement:

Let λ be a positive integer with λ ≥ 2, and (d, b) ∈ Zn × Zn be a λ-optimal solution
of (DA). Then, there exists some optimal solution (d∗, b∗) ∈ Zn × Zn of (DA) such
that

∥(d∗ + b∗)− (d+ b)∥1 < 8λn. (6.12)

Let (d∗, b∗) be an optimal solution of (DA) that minimizes the value ∥d∗−d∥1+∥b∗−b∥1. Also,
let x = d+ b and x∗ = d∗ + b∗. We prove that (d∗, b∗) satisfies the inequality ∥x∗ − x∥1 < 8λn.

In the proof we consider the following six sets.

I1 = {i ∈ N | d(i)− d∗(i) ≥ λ, b(i)− b∗(i) ≤ −λ}, (6.13)

I2 = {j ∈ N | d(j)− d∗(j) ≤ −λ, b(j)− b∗(j) ≥ λ}, (6.14)

I3 = {i ∈ N | x(i)− x∗(i) ≥ λ, d(i)− d∗(i) ≥ λ}, (6.15)

I4 = {j ∈ N | x(j)− x∗(j) ≤ −λ, d(j)− d∗(j) ≤ −λ}, (6.16)

I5 = {i ∈ N | x(i)− x∗(i) ≥ λ, b(i)− b∗(i) ≥ λ}, (6.17)

I6 = {j ∈ N | x(j)− x∗(j) ≤ −λ, b(j)− b∗(j) ≤ −λ}. (6.18)

We first show that at least one of the following four cases occurs.

(Case 1) I4 = I6 = ∅,
(Case 2) I3 = I5 = ∅,
(Case 3) I2 = I4 = I5 = ∅ and b(N)− b∗(N) > −λ,
(Case 4) I1 = I3 = I6 = ∅ and b(N)− b∗(N) < λ.

Lemma 6.16.
(i) At least one of I3 = ∅ and I4 = ∅ holds. (ii) At least one of I5 = ∅ and I6 = ∅ holds.

Proof. We prove (i) only since (ii) can be proven similarly.
Assume, to the contrary, that both of I3 ̸= ∅ and I4 ̸= ∅ hold. Then, there exist distinct

i, j ∈ N such that

x(i)− x∗(i) ≥ λ, d(i)− d∗(i) ≥ λ,

x(j)− x∗(j) ≤ −λ, d(j)− d∗(j) ≤ −λ.

We consider the pair of vectors (d − λχi + λχj , b), which is a feasible solution of (DA(λ)). As
shown below, we have

c(d, b) > c(d− χi + χj , b) > c(d− 2χi + 2χj , b) > · · · > c(d− λχi + λχj , b).

26

This, however, is a contradiction to the λ-optimality of (d, b).
For an integer λ′ with 0 ≤ λ′ < λ, put

d′ = d− λ′χi + λ′χj , x′ = d′ + b.

Then, (d′, b) is also a feasible solution of (DA). We will show that c(d′, b) > c(d′ − χi + χj , b)
holds.

Since i ∈ supp+(d′−d∗)∩supp+(x′−x∗) and j ∈ supp−(d′−d∗)∩supp−(x′−x∗), Proposition
2.4 (ii) implies that

ci(d
′(i), b′(i)) + ci(d

∗(i), b∗(i)) ≥ ci(d
′(i)− 1, b′(i)) + ci(d

∗(i) + 1, b∗(i)),

cj(d
′(j), b′(j)) + cj(d

∗(j), b∗(j)) ≥ cj(d
′(j) + 1, b′(j)) + cj(d

∗(j)− 1, b∗(j)).

Hence, we have

c(d′, b′) + c(d∗, b∗) ≥ c(d′ − χi + χj , b
′) + c(d∗ + χi − χj , b

∗). (6.19)

Note that (d∗ + χi − χj , b
∗) is also a feasible solution of (DA). Since

∥(d∗ + χi − χj)− d∥1 + ∥b∗ − b∥1 < ∥d∗ − d∥1 + ∥b∗ − b∥1,

we have c(d∗, b∗) < c(d∗+χi−χj , b
∗), which, together with (6.19), implies c(d′, b′) > c(d′−χi+

χj , b
′).

Lemma 6.17.
(i) At least one of I1, I4, and I5 is an empty set.
(ii) If b(N)− b∗(N) ≥ λ, then at least one of I4 and I5 is an empty set.
(iii) At least one of I2, I3, and I6 is an empty set.
(iv) If b(N)− b∗(N) ≤ −λ, then at least one of I3 and I6 is an empty set.

Proof. We prove (i) and (ii) only since (iii) and (iv) can be proven similarly.
[Proof of (i)] Assume, to the contrary, that all of the sets I1, I4, and I5 are nonempty,

and let s ∈ I1, i ∈ I4, and j ∈ I5. Then, elements s, i, j are distinct since sets I1, I4, and I5 are
mutually disjoint. We consider the pair of vectors (d − λχs + λχi, b + λχs − λχj), which is a
feasible solution of (DA(λ)) since

(d− λχs + λχi)(N) + (b+ λχs − λχj)(N) = d(N) + b(N) = D +B,

(b+ λχi − λχj)(N) = b(N) ≤ B.

As shown below, we have

c(d, b) > c(d− χs + χi, b+ χs − χj) > c(d− 2χs + 2χi, b+ 2χs − 2χj)

> · · · > c(d− λχs + λχi, b+ λχs − λχj).

This, however, is a contradiction to the λ-optimality of (d, b).
For an integer λ′ with 0 ≤ λ′ < λ, put

d′ = d− λ′χs + λ′χi, b′ = b+ λ′χs − λ′χj .

Then, (d′, b′) is also a feasible solution of (DA). We will show that c(d′, b′) > c(d′ − χs + χi, b
′ +

χs − χj) holds.

27

Since i ∈ supp−(x′−x∗)∩supp−(d′−d∗) and j ∈ supp+(x′−x∗)∩supp+(b′−b∗), Proposition
2.4 (ii) implies that

ci(d
′(i), b′(i)) + ci(d

∗(i), b∗(i)) ≥ ci(d
′(i) + 1, b′(i)) + ci(d

∗(i)− 1, b∗(i)),

cj(d
′(j), b′(j)) + cj(d

∗(j), b∗(j)) ≥ cj(d
′(j), b′(j)− 1) + cj(d

∗(j), b∗(j) + 1).

Since s ∈ supp+(d′ − d∗) ∩ supp−(b′ − b∗), Proposition 2.4 (i) implies that

cs(d
′(s), b′(s)) + cs(d

∗(s), b∗(s)) ≥ cs(d
′(s)− 1, b′(s) + 1) + cs(d

∗(s) + 1, b∗(s)− 1).

Hence, we have

c(d′, b′) + c(d∗, b∗) ≥ c(d′ − χs + χi, b
′ + χs − χj) + c(d∗ + χs − χi, b

∗ − χs + χj). (6.20)

Note that (d∗∗, b∗∗) ≡ (d∗ + χs − χi, b
∗ − χs + χj) is also a feasible solution of (DA) since

d∗∗(N) = d∗(N) and b∗∗(N) = b∗(N). Since (d∗∗, b∗∗) satisfies

∥d∗∗ − d∥1 + ∥b∗∗ − b∥1 < ∥d∗ − d∥1 + ∥b∗ − b∥1,

we have c(d∗, b∗) < c(d∗∗, b∗∗), which, together with (6.20), implies c(d′, b′) > c(d′ −χs +χi, b
′ +

χs − χj).
[Proof of (ii)] Proof is similar to that for (i). Assume, to the contrary, that b(N)−b∗(N) ≥

λ, I4 ̸= ∅, and I5 ̸= ∅. Let i ∈ I4 and j ∈ I5. Then, elements i, j are distinct since sets I4 and
I5 are disjoint. We consider the pair of vectors (d+ λχi, b− λχj), which is a feasible solution of
(DA(λ)) since

(d+ λχi)(N) + (b− λχj)(N) = d(N) + b(N) = D +B,

(b− λχj)(N) = b(N)− λ ≤ B.

As shown below, we have

c(d, b) > c(d+ χi, b− χj) > c(d+ 2χi, b− 2χj) > · · · > c(d+ λχi, b− λχj).

This, however, is a contradiction to the λ-optimality of (d, b).
For an integer λ′ with 0 ≤ λ′ < λ, put

d′ = d+ λ′χi, b′ = b− λ′χj .

Then, (d′, b′) is also a feasible solution of (DA). We will show that c(d′, b′) > c(d′ + χi, b
′ − χj)

holds.
Since i ∈ supp−(x′−x∗)∩supp−(d′−d∗) and j ∈ supp+(x′−x∗)∩supp+(b′−b∗), Proposition

2.4 (ii) implies that

ci(d
′(i), b′(i)) + ci(d

∗(i), b∗(i)) ≥ ci(d
′(i) + 1, b′(i)) + ci(d

∗(i)− 1, b∗(i)),

cj(d
′(j), b′(j)) + cj(d

∗(j), b∗(j)) ≥ cj(d
′(j), b′(j)− 1) + cj(d

∗(j), b∗(j) + 1).

Hence, we have

c(d′, b′) + c(d∗, b∗) ≥ c(d′ + χi, b
′ − χj) + c(d∗ − χi, b

∗ + χj). (6.21)

Note that (d∗∗, b∗∗) ≡ (d∗−χi, b
∗+χj) is also a feasible solution of (DA) since d∗∗(N)+b∗∗(N) =

d∗(N) + b∗(N) and b∗∗(N) = b∗(N) + 1 ≤ b(N) ≤ B. Since (d∗∗, b∗∗) satisfies

∥d∗∗ − d∥1 + ∥b∗∗ − b∥1 < ∥d∗ − d∥1 + ∥b∗ − b∥1,

we have c(d∗, b∗) < c(d∗∗, b∗∗), which, together with (6.21), implies c(d′, b′) > c(d′ + χi, b
′ −

χj).

28

Lemma 6.18. At least one of Cases 1, 2, 3, and 4 occurs.

Proof. Suppose that neither of Cases 1 and 2 occurs. By Lemma 6.16, we have either

I4 = I5 = ∅, I3 ̸= ∅, I6 ̸= ∅, or I3 = I6 = ∅, I4 ̸= ∅, I5 ̸= ∅.

In the former case, we have I2 = ∅ by Lemma 6.16 (iii) and b(N)− b∗(N) > −λ by Lemma 6.16
(iv), i.e., Case 3 occurs. Similarly, the latter case implies Case 4.

We prove the inequality (6.12) in Cases 1 and 2.

Lemma 6.19. We have ∥x− x∗∥1 < 4λn if Case 1 or 2 occurs.

Proof. We consider Case 1 only; the proof for Case 2 is similar. Suppose that I4 = I6 = ∅ holds.
Then, we have x(i)−x∗(i) > −2λ for every i ∈ N ; indeed, if x(i)−x∗(i) ≤ −λ, then I4 = I6 = ∅
implies x(i)− x∗(i) > −2λ.

Let N− = supp−(x− x∗). Then, we have

x∗(N−)− x(N−) =
∑
j∈N−

(x∗(i)− x(i)) < 2λ|N−|,

which, together with x(N) = D +B = x∗(N), implies that

∥x− x∗∥1 =
∑

i∈N\N−

(x(i)− x∗(i)) +
∑
j∈N−

(x∗(i)− x(i))

=
(
x(N \N−)− x∗(N \N−)

)
+
(
x∗(N−)− x(N−)

)
= 2(x∗(N−)− x(N−)) < 4λ|N−| ≤ 4λn.

We then prove the inequality (6.12) in Cases 3 and 4.

Lemma 6.20. We have ∥x− x∗∥1 < 8λn if Case 3 or 4 occurs.

Proof. We consider Case 3 only since the proof in Case 4 is similar. Since

∥x− x∗∥1 ≤ ∥d− d∗∥1 + ∥b− b∗∥1,

it suffices to show that ∥d−d∗∥1 < 4λn and ∥b−b∗∥1 < 4λn hold. Below we prove ∥d−d∗∥1 < 4λn
only since the inequality ∥b− b∗∥1 < 4λn can be proven in a similar way.

Since I2 = I4 = ∅, it holds that

d(i)− d∗(i) > −2λ (i ∈ N). (6.22)

Indeed, for i ∈ N , if d(i)− d∗(i) > −λ, then we are done; if d(i)− d∗(i) ≤ −λ, then I2 = I4 = ∅
implies that

b(i)− b∗(i) < λ, x(i)− x∗(i) > −λ,

from which follows that

d(i)− d∗(i) = (x(i)− x∗(i))− (b(i)− b∗(i)) > −2λ.

Since b(N)− b∗(N) > −λ and x(N)− x∗(N) = 0, we also have

d(N)− d∗(N) < λ. (6.23)

29

To prove the inequality ∥d− d∗∥1 < 4λn, let N− = supp−(d− d∗). By (6.22), it holds that

d∗(N−)− d(N−) < 2λ|N−|. (6.24)

Hence, if N− = N then we have

∥d− d∗∥1 =
∑
j∈N

(d∗(j)− d(j)) = d∗(N−)− d(N−) < 2λ|N−| ≤ 2λn.

If N− ̸= N then we have

∥d− d∗∥1 =
∑

i∈N\N−

(d(i)− d∗(i)) +
∑
j∈N−

(d∗(j)− d(j))

=
(
d(N \N−)− d∗(N \N−)

)
+
(
d∗(N−)− d(N−)

)
= (d(N)− d∗(N)) + 2(d∗(N−)− d(N−))

< λ+ 4λ|N−| ≤ λ+ 4λ(n− 1) ≤ 4λn,

where the first inequality is by (6.23) and (6.24).

References

[1] D. Freund, S.G. Henderson, and D.B. Shmoys. Minimizing multimodular functions and
allocating capacity in bike-sharing systems. In Proc. 19th IPCO, LNCS 10328, pages 186–
198. Springer, Berlin, 2017.

[2] D. Freund, S.G. Henderson, and D.B. Shmoys, Minimizing multimodular functions and
allocating capacity in bike-sharing systems. preprint, arXiv:1611.09304v3, October 2018.

[3] D. S. Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear
optimization problems. Math. Oper. Res., 19:390–409, 1994.

[4] T. Ibaraki and N. Katoh: Resource Allocation Problems: Algorithmic Approaches. MIT
Press, Cambridge, MA, 1988.

[5] S. Iwata, S. Moriguchi, and K. Murota. A capacity scaling algorithm for M-convex sub-
modular flow. Math. Program., 103:181-202, 2005.

[6] S. Iwata and M. Shigeno. Conjugate scaling algorithm for Fenchel-type duality in discrete
convex optimization. SIAM J. Optim., 13:204–211, 2003.

[7] S. Moriguchi and K. Murota. On fundamental operations for multimodular functions.
preprint, arXiv:1805.04245, 2018.

[8] S. Moriguchi, K. Murota, and A. Shioura. Scaling algorithms for M-convex function mini-
mization. IEICE Transactions on Fundamentals, E85-A: 922–929, 2002.

[9] K. Murota. Convexity and Steinitz’s exchange property. Adv. Math., 124:272–311, 1996.

[10] K. Murota. Discrete convex analysis. Math. Program., 83:313–371, 1998.

[11] K. Murota. Discrete Convex Analysis. SIAM, Philadelphia, 2003.

30

[12] K. Murota. On steepest descent algorithms for discrete convex functions. SIAM J. Optim.,
14:699–707, 2003.

[13] K. Murota. Note on multimodularity and L-convexity. Math. Oper. Res., 30:658-661, 2005.

[14] K. Murota and A. Shioura. M-convex function on generalized polymatroid. Math. Oper.
Res., 24:95–105, 1999.

[15] A. Shioura. Minimization of an M-convex function. Discrete Appl. Math., 84:215–220, 1998.

[16] A. Shioura. Fast scaling algorithms for M-convex function minimization with application
to the resource allocation problem. Discrete Appl. Math., 134:303–316, 2004.

[17] A. Shioura. M-convex function minimization under L1-distance constraint. preprint,
arXiv:1809.03126v3, September 2018.

[18] A. Tamura. Coordinatewise domain scaling algorithm for M-convex function minimization.
Math. Program., 102:339–354, 2005.

A Appendix

A.1 Proof of Lemma 6.2

We denote x̂ = x+χi−χj , and let b̂ ∈ Zn be an optimal solution of the problem (SRA(x̂)) that

minimizes the value ∥b̂− b∥1. We show that the vector b̂ satisfies the condition (6.2).

Claim 1: (i) Suppose that s ∈ N satisfies the following condition:

either s ∈ supp+(b̂− b) \ {i} or s = i and b̂(i)− b(i) ≥ 2. (A.1)

Then,

cs(x̂(s)− b̂(s), b̂(s)) + cs(x(s)− b(s), b(s))

≥ cs(x̂(s)− b̂(s) + 1, b̂(s)− 1) + cs(x(s)− b(s)− 1, b(s) + 1). (A.2)

(ii) Suppose that t ∈ N satisfies the following condition:

either t ∈ supp−(b̂− b) \ {j} or t = j and b̂(j)− b(j) ≤ −2. (A.3)

Then,

ct(x̂(t)− b̂(t), b̂(t)) + ct(x(t)− b(t), b(t))

≥ ct(x̂(t)− b̂(t)− 1, b̂(t) + 1) + ct(x(t)− b(t) + 1, b(t)− 1). (A.4)

[Proof of Claim] We prove (i) only since (ii) can be shown similarly. If s ∈ supp+(b̂− b) \ {i}
then we have b̂(s) > b(s) and x̂(s)− b̂(s) < x(s)− b(s). If s = i and b̂(i)− b(i) ≥ 2, then we have
b̂(s) > b(s) and x̂(i) − b̂(i) ≤ (x(i) + 1) − (b(i) + 2) < x(i) − b(i). In either case, (A.2) follows
from Proposition 2.4 (i). [End of Claim]

To prove the lemma, we consider the following two conditions:

(a) supp+(b̂− b) ⊆ {i} and b̂(i)− b(i) ≤ 1,

(b) supp−(b̂− b) ⊆ {j} and b̂(j)− b(j) ≥ −1.

31

Note that the condition (a) holds if and only if there exists no s ∈ N satisfying (A.1); similarly,
(b) holds if and only if there exists no t ∈ N satisfying (A.3).

Claim 2: At least one of the conditions (a) and (b) holds. Moreover, the condition (a) holds if
b(N) < B, and the condition (b) holds if b̂ < B.
[Proof of Claim] To prove the former statement, assume, to the contrary, that there exist some
s, t ∈ N satisfying the conditions (A.1) and (A.3). Then, it holds that

c(x̂− b̂, b̂) + c(x− b, b)

− c(x̂− (b̂− χs + χt), b̂− χs + χt)− c(x− (b+ χs − χt), b+ χs − χt)

=

[
cs(x̂(s)− b̂(s), b̂(s)) + cs(x(s)− b(s), b(s))

− cs(x̂(s)− b̂(s) + 1, b̂(s)− 1)− cs(x(s)− b(s)− 1, b(s) + 1)

]
+

[
ct(x̂(t)− b̂(t), b̂(t)) + ct(x(t)− b(t), b(t))

− ct(x̂(t)− b̂(t)− 1, b̂(t) + 1)− ct(x(t)− b(t) + 1, b(t)− 1)

]
≥ 0, (A.5)

where the inequality is by (A.2) and (A.4) in Claim 1. Note that b+χs−χt is a feasible solution
of (SRA(x)) since (b + χs − χt)(N) = b(N) ≤ B, b(s) < b̂(s) ≤ x(s), and b(t) > b̂(t) ≥ 0.
Therefore, we have

c(x− b, b) ≤ c(x− (b+ χs − χt), b+ χs − χt),

which, together with (A.5), implies

c(x̂− b̂, b̂) ≥ c(x̂− (b̂− χs + χt), b̂− χs + χt).

Since b̂ is an optimal solution of (SRA(x + χi − χj)) and b̂ − χs + χt is a feasible solution of

(SRA(x + χi − χj)), the vector b̂ − χs + χt is also an optimal solution of (SRA(x + χi − χj)),

a contradiction to the choice of b̂ since ∥(b̂− χs + χt)− b∥1 = ∥b̂− b∥1 − 2. This concludes the
proof of the former statement.

To prove the latter statement, we assume b(N) < B; proof for the case b̂(N) < B is similar
and omitted. Assume, to the contrary, that there exists some s ∈ N satisfying the condition
(A.1). Then, we have

c(x̂− b̂, b̂) + c(x− b, b)− c(x̂− (b̂− χs), b̂− χs)− c(x− (b+ χs), b+ χs)

= cs(x̂(s)− b̂(s), b̂(s)) + cs(x(s)− b(s), b(s))

− cs(x̂(s)− b̂(s) + 1, b̂(s)− 1)− cs(x(s)− b(s)− 1, b(s) + 1)

≥ 0, (A.6)

where the inequality is by (A.2) in Claim 1. The vector b+χs is a feasible solution of (SRA(x))
since b(N) < B and b(s) < b̂(s) ≤ x(s). Hence, we have

c(x− b, b) ≤ c(x− (b+ χs), b+ χs),

which, together with (A.6), implies

c(x̂− b̂, b̂) ≥ c(x̂− (b̂− χs), b̂− χs). (A.7)

32

Since b̂−χs is a feasible solution of (SRA(x+χi−χj)), optimality of b̂ and the inequality (A.7)

imply that b̂−χs is also an optimal solution of (SRA(x+χi−χj)), a contradiction to the choice

of b̂ since ∥(b̂− χs)− b∥1 = ∥b̂− b∥1 − 1. Hence, the condition (a) holds. [End of Claim]

We now prove the lemma. It is easy to see from Claim 2 that the following properties hold:

• if b(N) = b̂(N) < B, then b̂ ∈ {b, b+ χi − χj},
• if b(N) < b̂(N) ≤ B, then b̂ = b+ χi,
• if B ≥ b(N) > b̂(N), then b̂ = b− χj .

In either case, the condition (6.2) holds.
To conclude the proof of the lemma, consider the remaining case with b(N) = b̂(N) = B.

Then, at least one of (a) and (b) holds by Claim 2. Suppose that (a) holds. If supp+(b̂− b) = ∅,
then b̂ = b follows from b(N) = b̂(N). If supp+(b̂ − b) ̸= ∅, then we have supp+(b̂ − b) = {i}
and b̂(i) = b(i) + 1. Since b(N) = b̂(N), there exists a unique element t in supp−(b̂− b), which
satisfies t ̸= i and b̂(t) = b(t)− 1. Hence, we have b̂ = b or b̂ = b+ χi − χt for some t ∈ N \ {i}.
If the condition (b) holds, then we can show in a similar way that b̂ = b or b̂ = b+ χs − χj for
some s ∈ N \ {j}. Hence, the condition (6.2) holds.

33

	CoverWP2019-03
	shioura

