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Discretization of Self-Exciting Peaks Over Threshold Models∗

Daisuke Kurisu†

Abstract

In this paper, a framework on a discrete observation of (marked) point processes

under the high-frequency observation is developed. Based on this framework, we

first clarify the relation between random coefficient integer-valued autoregressive

process with infinite order (RCINAR(∞)) and i.i.d.-marked self-exciting process,

known as marked Hawkes process. For this purpose, we show that the point pro-

cess constructed of the sum of a RCINAR(∞) converge weakly to a marked Hawkes

process. This limit theorem establishes that RCINAR(∞) processes can be seen

as a discretely observed marked Hawkes processes when the observation frequency

increases and thus build a bridge between discrete-time series analysis and the anal-

ysis of continuous-time stochastic process and give a new perspective in the point

process approach in extreme value theory. Second, we give a necessary and suf-

ficient condition of the stationarity of RCINAR(∞) process and give its random

coefficient autoregressive (RCAR) representation. Finally, as an application of our

results, we establish a rigorous theoretical justification of self-exciting peaks over

threshold (SEPOT) model, which is a well-known as a (marked) Hawkes process

model for the empirical analysis of extremal events in financial econometrics and of

which, however, the theoretical validity has rarely discussed. Simulation results of

the asymptotic properties of RCINAR(∞) shows some interesting implications for

statistical applications.
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Peaks over threshold models, Extreme value theory, Marked Hawkes process, High-
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1 Introduction

Peaks over threshold (POT) method have been used in a large number of scientific

fields in the last decades, and the methodology is related to the theory of extreme

∗This version: May 8, 2018.
†Department of Industrial Engineering and Economics, Tokyo Institute of Technology, 2-12-1

Ookayama, Meguro-ku, Tokyo 152-8552, Japan. E-mail: kurisu.d.aa@m.titech.ac.jp

1



value analysis and (marked) point process. In the literature of extreme value theory,

generalized Pareto distributions (GPD) have been investigated since the early works of

Pickands (1975) and Balkema and de Haan (1974). According to their results, GPD

is a natural distributional model of the data that exceeds a particular designed high

level. Resnick (1987) introduces point process approach for extreme value analysis and

developed the modeling of threshold exceedance based on the point process theory. The

classical POT models assume that those extremal events occur according to a time

homogeneous Poisson process. but this assumption of time homogeneity is not satisfied

in some applications.

Chavez-Demoulin, Davison and McNeil (2005) generalizes this idea to the case that

the rate of exceedance follows a (marked) self-exciting point process (Hawkes process),

called self-exciting peaks over threshold (SEPOT) model. We refer to Chavez-Demoulin

and McGill (2012), Grothe, Korniichuk and Manner (2014) and Chavez-Demoulin, Em-

brechts and Sardy (2014) for recent contributions on this topic. Hawkes process is a

class of point process developed in Hawkes (1971) and have been investigated in a wide

range of fields such as seismology, neural science, and finance. The notable characteris-

tic of Hawkes process is the construction of intensity process which depends on the past

of process itself. Liniger (2009) gives a rigorous construction of Hawkes process, and

mathematical properties are discussed in the paper. Point process models which include

SEPOT models are applied to a data that assumed to be a realization of a (marked)

point process in most cases of data analysis in financial econometrics. Recent contribu-

tion include Bacry, Dayri and Muzy (2012), Bacry and Muzy (2014) and Bacry, Jaisson

and Muzy (2016). We refer to Bauwens and Hautsch (2009) and Bacry Mastromatteo

and Muzy (2015) for the survey and detailed discussion on the point process modeling

of high-frequency data.

However, such an assumption may not be realistic if we regard the observed data are

discrete observations of a (marked) point process in the case when the observation fre-

quency increases. In the literature of high-frequency data analysis, it is usually assumed

that the observed data is a discrete observation of some underlying continuous-time

stochastic process: An underlying stochastic process X = (Xt)t∈R, which is a semi-

martingale, is sampled at discrete times k∆, k ∈ Z and we are available the values

{Xk∆, k ∈ Z}. The increments {∆kX = Xk∆ − X(k−1)∆ : k ∈ Z} are the discretized

process of an underlying stochastic process, and point process modeling is performed

to these increments in the most of empirical analysis of financial time series. In the

case of high-frequency observation, that is, the mesh ∆ goes to 0, it may be reasonable

to consider the values {Xk∆, k ∈ Z} as the discretely observed point process since a

marked point process is a class of semimartingale (see Aı̈t-Sahalia and Jacod (2014) for

the theoretical framework of high-frequency data analysis).

To fill this discrepancy between theory and empirical applications, we develop a new
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framework on the discrete observation of (marked) point processes and investigate the

discretization of SEPOT models. We then establish a theoretical justification of SEPOT

methods which are often used in empirical analyses. The key idea of our paper is the

discretization of (marked) Hawkes process under the high-frequency observation. Kirch-

ner (2016a) studies the discrete-time approximation of Hawkes process and provides a

limit theorem that integer-valued auto-regressive process with infinite order (INAR(∞))

approximately can be seen as increments of Hawkes intensity processes. This contributes

to link ideas which have been discussed in the two different contexts, the classical sta-

tistical time series analysis and the probabilistic analysis of continuous-time stochastic

processes. Our results are generalization of the results in Kirchner (2016a) to marked

Hawkes process, and give a new perspective in the point process approach in extreme

value theory.

INAR(p) process is first defined McKenzie (1985) in the context of classical discrete

time series analysis for the models of count data. The theoretical development is made

in Al-Osh and Alzaid (1987) and Du and Li (1991). Zheng, Basawa and Datta (2007)

introduces a random coefficient INAR(1) (RCINAR(1)) process as a generalization of

INAR(1), and the process is extended in Zhang, Wang and Zhu (2011a) and Zhang,

Wang and Zhu (2011b). Boshnakov (2011) investigates the stationarity of RCINAR(p).

We refer to McKenzie (2003) and McCabe, Martin and Harris (2011) for a general review

of integer-valued time series models and their applications. In the present paper, we give

some properties of RCINAR(∞) and RCINAR(p), and give a limit theorem on the weak

convergence of RCINAR(∞) to the corresponding marked Hawkes process.

We also check finite sample properties of our results by numerical experiments. In our

simulation, we consider two cases: self-exciting and self-damping. The latter case means

the situation that the occurrence of an event decreases the probability of occurrence

of the event in the future, and such a situation can seen in the field of seismology

and economics. Simulation results show that the approximation of RCINAR(∞) by

RCINAR(p) is sensitive to the choice of both p and ∆.

The construction of this paper is as follows: In Section 2 we introduce a general

framework on a discrete observation of (marked) point process. In Section 3, we explain

a basic result on marked point process which related to extreme value theory, and give

some examples of SEPOT models. In Section 4, we give some properties of RCINAR(∞)

and show that RCINAR(∞) can be seen as a local approximation of a marked Hawkes

intensity processes. We confirm finite sample properties of our results through simu-

lations in Section 5. Some directions of extension and application of our results are

discussed in Section 6. We conclude this paper in Section 7. Proofs are gathered in

Appendix A.
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2 Discrete Observation of Point Process

In this section we introduce a new framework on a discrete observation of point

process models. Most of papers on empirical analysis of financial time series in which

(marked) point process models are used assume the observed data as a realization of a

latent (marked) point process. However, such an assumption on the data may not be

realistic if we stand in a position that the observations are discrete samples of an un-

derlying point process. For example, in financial econometrics, increasing interests have

been paid on high-frequency data analysis of asset prices which is observed typically in

every one seconds. In high-frequency financial data analysis, it is usually assumed that

the observed data are discrete observations of a semimartingale, or a continuous time

stochastic process for the mathematical treatment of observations. Therefore, there is

a void in high-frequency data analysis between mathematical assumptions based on a

semimartingale theory and empirical applications based on point process models. For

this reason, we attempt to develop a mathematical framework that links these two differ-

ent points of view in this paper. First we introduce a general framework on the discrete

observation of point processes, then we focus on the discrete observation of marked self-

exciting process, known as marked Hawkes process. Let N be a one dimensional point

process and its latent (generally unobserved) event times in the observation interval

[0, T ], 0 ≤ t1 < t2 < · · · < tNT
≤ T . If the observation distance is ∆, we define the

number of jumps in each observation intervals

Jk = #{i : ti ∈ ((k − 1)∆, k∆]}.

We consider a situation that an underlying point process is sampled at high-frequency,

that is, ∆ → 0. In this case, for sufficiently small ∆, we have Jk ∈ {0, 1}, k =

1, . . . , [T/∆]. We also consider auxiliary stochastic processes

N∆
t = N(k−1)∆, (k − 1)∆ ≤ t < k∆.

We have the following relation for each observation interval:

sup
(k−1)∆≤t<k∆

|N∆
t −Nt| ≤ Jk.

If we take the upper bound of the observation distance ∆0 sufficiently small, we have

sup
0<∆<∆0

sup
0≤t<T

|N∆
t −Nt| ≤ 1

in general. For the fitting of point process models to observed data at times 0 ≤ ∆ <

2∆ < . . ., we set a threshold value u0 and the occurrence of an event is recognized if the

observed value at time k∆ exceeds the threshold u0. Such events are assumed to be a
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realization of an under lying point process in empirical financial time series analysis. To

explain this assumption mathematically, we introduce the following stochastic process:

Ñ∆
t =

∑
1≤l≤k−1

N(((l − 1)∆, l∆])

Jl
, (k − 1)∆ ≤ t ≤ k∆.

The stochastic process Ñ∆ varies at most 1 at each observation time k∆. In most of

empirical studies, Ñ∆ is regarded as a realization of point process N , and if we can

only available the values at k∆, it is considered that no events occurred in the interval

((k−1)∆, k∆] in the case when the value at time k∆ does not exceeds the predetermined

threshold u0. In this case, the events occurred in ((k− 1)∆, k∆) is ignored. However, if

we can also available the maximum or minimum values in ((k−1)∆, k∆], such ignorances

do not happen, that is, we can set

Jk > 0⇔ N have at most one event in ((k − 1)∆, k∆]

⇔ Ñ∆
k∆ − Ñ∆

(k−1)∆ = N∆
k∆ −N∆

(k−1)∆ = 1.

Intuitively, we can approximate N by Ñ∆ when ∆ → 0. We establish the theoretical

validity of this approximation in Section 4.

3 Preliminaries

In this section, we see the relation between point process and extreme value theory

for the purpose of the discretization of SEPOT models discussed in Section 4. In Section

3 and Section 4, we consider the weak convergence of point processes. Hence we first

explain the concept.

Let E be a complete separable metric space, Mp(E) be the space of all point measures

defined on E, and C+
K(E) be the family of all non-negative continuous functions defined

on E with compact support. We can construct a topology on Mp(E) based on the

concept of vague convergence: For µn, µ ∈ Mp(E), we say µn converge vaguely to µ

if µn(f) =
∫
E fdµn → µ(f) =

∫
E fdµ for any f ∈ C+

K(E). It is known that this

topology on Mp(E) is metrizable as a complete separable metric space (Proposition 3.17

in Resnick (1987)). Let Mp(E) be the Borel σ-field on Mp(E). A Point process is

defined as a random variable from some stochastic space (Ω,A, P ) to the measurable

space (Mp(E),Mp(E)). Therefore, we can use the argument of weak convergence of

random variables on a metric space developed in Billingsley (1968). It is also known

that for (marked) point processes, the weak convergence of a point process is equivalent

to the weak convergence of finite dimensional distributions are equivalent (Theorem

11.1.IV in Daley and Vere-Jones (2003)). In the following sections, we use the notation
w→ as weak convergence.
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3.1 Peaks Over Threshold Method

Let (Xi) be an i.i.d. sequence of random variables with distribution function F and

D(Gξ) be the domain of attraction of a generalized extreme value distribution with

parameter ξ. Then F ∈ D(Gξ) means that there exist a centering sequence {an},
an ∈ R and a scaling sequence {bn}, bn > 0 of an extreme value distribution Gξ such

that mP (b−1
m (X1 − am) ≥ u) = m(1− F (bmu+ am))→ (1 + ξu)−1/ξ as m→∞ for any

u > 0. The random variable Z with distribution function

F (x) = 1−
(

1 + ξ
x+

σ

)−1/ξ

, σ > 0, ξ ∈ R, a+ = max(a, 0),

is called a generalized Pareto distributed random variable and we write this as Z ∼
GPD(ξ, σ) (see de Haan and Ferreira (2006) for details of extreme value distributions).

GPD is known as a natural distributional model for the data that exceeds a particularly

designed high level (McNeil, Frey and Embrechts (2005)). Proposition 1 is the well

known result on the peaks over threshold method.

Proposition 1 (Theorem 6.3 in Resnick (2007)). Let (Xk)1≤k≤[∆−1
n ] be an i.i.d. sequence

with distribution F ∈ D(Gξ). Consider the following marked point process

N∆n
E ((a, b]) = #

{
k :

(
k∆n,

Xk − a[∆−1
n ]

b[∆−1
n ]

)
∈ (a, b]× E,

}
, a < b,E = [u,∞), u ≥ 0,

where {an} and {bn} are centering and scaling sequences of an extreme value distribution

Gξ. Then N∆n
E

w→ N in Mp([0,∞) × E) as ∆n → 0, where N is a time homogeneous

Poisson process with intensity

λ = (1 + ξu)−1/ξ.

Remark 1. Considering the Poisson law of small numbers, the point process N∆n
E in

Proposition 1 can be rewritten in the following form:

N∆n
E ((a, b]) =

∑
k:k∆n∈(a,b]

ε̃n(k) ≈
∑

k:k∆n∈(a,b]

εn(k), E = [u,∞), u ≥ 0,

ε̃n(k)
i.i.d.∼ Bin

(
1, P

(
Xk − a[∆−1

n ]

b[∆−1
n ]

≥ u

))
,

εn(k)
i.i.d.∼ Poi

(
P

(
Xk − a[∆−1

n ]

b[∆−1
n ]

≥ u

))
,

where Bin(1, α) and Poi(λ) denote Bernoulli and Poisson random variables with parame-

ters α and λ respectively. Therefore, we can see the data {k∆n, (Xk−a[∆−1
n ])/b[∆−1

n ]}1≤k≤[∆−1
n ]

as a discrete observation of the Poisson process with intensity λ = 1, and the prob-

ability that regularized random variables {(Xk − a[∆−1
n ])/b[∆−1

n ]}1≤k≤[∆−1
n ] exceed the
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threshold u can be approximated by (1 + ξu)−1/ξ, which equals to the probability

P (Z ≥ u), Z ∼ GPD(ξ, 1). Therefore, it is possible to reinterpret the basic result

in extreme value theory from the standpoint of high-frequency observation.

Proposition 1 assumes that the occurrence of events are regularly spaced, that is, the

times of exceedance of a threshold are equidistant. However, this assumption is often

violated by financial time series for instance. Self-exciting POT models overcome this

problem, and allows the irregular event times and then enables us to model the clustering

of events.

3.2 Self-Exciting Peaks Over Threshold Model

The SEPOT model is proposed in Chavez-Demoulin, Davison and McNeil (2005) and

since then it has been used for the modeling of extremal events in financial econometrics.

This model is defined by a (marked) Hawkes process which is known as self-exciting

process, is proposed in Hawkes (1971) and studied in many scientific fields such as

biology, neural science, seismology and financial econometrics. It is known that the law

of a point process N definded on some filtered probability space (Ω,H, (Ht)t∈R, P ) is

uniquely determined by its intensity process defined by

λ(t|Ht) = lim
∆→0

E

[
N(t+ ∆)−N(t)

∆
|Ht
]

= lim
∆→0

P (N(t+ ∆)−N(t) > 0|Ht)
∆

.

More precisely, a intensity λ(t|Ht) is determined by a point process with the following

properties:

P (N(t+ ∆)−N(t) = 1|Ht) = λ(t|Ht)∆ + oP (∆),

P (N(t+ ∆)−N(t) = 0|Ht) = 1− λ(t|Ht)∆ + oP (∆),

P (N(t+ ∆)−N(t) > 1|Ht) = oP (∆).

This properties implies that the point process N is simple, which means that almost all

sample path of N have no co-jumps (i.e. N({x}) = {0, 1} a.s. ∀x ∈ E). The intensity

based definition of Hawkes process is given as follows:

Definition 1 (Hawkes intensity process with no marks). Hawkes process N is a point

process with the following intensity:

λ(t|HNt ) = η +

∫ t

−∞
h(t− s)N(ds)

where η > 0, h : R → R+ = [0,∞) is a piecewise continuous function called decay

function and HNt is a filtration which contains the canonical filtration GNt = σ(Ns, : s <

t).
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Remark 2. Note that time homogeneous Poisson processes can be seen as a special

version of Hawkes processes with no self-excitation, that is, the case when h ≡ 0 in

Definition 1.

If we have additional information on a point process, the size of exceedance of a

threshold for example, we can incorporate it as marks in its intensity process. The

intensity process of marked Hawkes process is defined as follows:

Definition 2 (Marked Hawkes intensity process). Let E be a complete separable metric

space. A marked Hawkes process N with E-valued mark is a marked point process with

the following intensity:

λE(t|HNt ) =

(
η +

∫ t

−∞

∫
E
g(t− s, z)N(ds× dz)

)
P (Z̃t ∈ E|HNt ),

=

(
η +

∫ t

−∞
g(t− s, Z̃s)Ng(ds)

)
P (Z̃t ∈ E|HNt ),

where Ng(ds) = N(ds × E), HNt is a filtration which contains the canonical filtration

GNt = σ(Ns : s < t), η > 0, g : R2 → R+ is a piecewise continuous function, (Z̃s)s∈R
is an HNt adapted E-valued stochastic process associated to an event at time s called

the mark of this point process, and P (Z̃t ∈ ·|HNt ) is a HNt - measurable conditional

distribution of Z̃t.

In the point process theory, the point process Ng is called ground process (Daley

and Vere-Jones (2003)). If the function g : R2 → R+ can be written in a product form

g(t, z) = h(t)c(z), then h is also called decay function and c : R → R+ = [0,∞) is

called impact function (see Daley and Vere-Jones (2003) for the detailed definition of

general marked point process and Liniger (2009) for general mathematical construction

of Hawkes processes including marked Hawkes process).

For the application of SEPOT model, we set a threshold value u0 and counts events

that exceed the threshold, for example, the event that an asset price fall below some

level of negative return. The rate of exceedance also assumed to be driven by Hawkes

intensity process with i.i.d. mark defined as follows:

λE(t|HNt ) =

(
η +

∫ t

−∞

∫
E
g(t− s, z)N(ds× dz)

)
P (Z1 ∈ E),

=

(
η +

∫ t

−∞
g(t− s, Z̃s)Ng(ds)

)
(1− F (u)), (1)

where E = [u,∞), u ≥ 0, Z̃s = (Zs−u)+ = max(Zs−u, 0) and (Zs) is an i.i.d. sequence

of real valued random variables with distribution function F associated to event times

of N . We give some examples of SEPOT models driven by marked Hawkes process.
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Example 1 (Models with exponential decay and generalized linear impact function).

λE(t|HNt ) =

(
η0 + η1

∫ t

−∞
e−γ(t−s)(Z̃s)

δNg(ds)

)
(1 + ξu)−1/ξ,

where a ∧ b = min(a, b), Z̃s = (Zs − u)+, Zs
i.i.d.∼ GPD(ξ, 1), η0, η1, γ > 0 and 0 ≤ δ ≤ 1

are constants. This model includes linear impact function (δ = 1) as a special case.

GPD(ξ, σ) is a generalized Pareto distribution. It is also possible to consider polynomial

decay function h(t) = (γ + t)−(p+1)1{t≥0}, γ, p > 0.

Example 2 (Models with exponential decay and nonlinear impact function).

λE(t|HNt ) =

(
η0 + η1

∫ t

−∞
e−γ(t−s)(1 +G←(F (Z̃s)))Ng(ds)

)
(1 + ξu)−1/ξ,

where Z̃s = (Zs − u)+, Zs
i.i.d.∼ GPD(ξ, 1), η0, η1and γ are positive constants, F is a cu-

mulative distribution function of GPD(u, ξ, 1), and G←(·) is the inverse of a distribution

function G of some continuous positive random variable with finite mean δ. This type

of model is a special case of that considered in Grothe, Korniichuk and Manner (2014).

They apply their model for the prediction of probabilities of future jumps of asset prices.

4 Main Results

To our knowledge, in contrast to the applicability of the SEPOT model, the theo-

retical justification of the model have not been established. In this section, we establish

the validity of SEPOT models in the aspect of discrete observation of point process. For

the description our results, we first introduce random coefficient integer-valued autore-

gressive process with infinite order (RCINAR(∞)).

4.1 RCINAR(∞) Process

RCINAR(1) process is introduced in Zheng, Basawa and Datta (2007) and gener-

alized to RCINAR(p) process in Zhang, Wang and Zhu (2011a,b). In this section we

introduce the random coefficient integer-valued auto regressive process with infinite or-

der (RCINAR(∞)) and describe some basic properties of this model. The definition of

RCINAR(∞) is defined as follows:

Definition 3 (RCINAR(∞)). Let (εn) and (Zn) be an i.i.d. sequence of random vari-

ables with Poisson distribution Poi(α0), α0 > 0 and distribution F , and αk : R → R,

k = 1, 2, . . . be continuous functions. A random coefficient integer-valued autoregressive
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process with infinite order (RCINAR(∞)) is a stochastic process given by

εn = Xn −
∞∑
k=1

αk(Zn−k) ◦Xn−k

= Xn −
∞∑
k=1

Xn−k∑
l=1

ξ̃n,kl , n ∈ Z. (2)

where ξ̃n,kl ∼ Poi(αk(Zn−k)) and independent in l, n and k. For α < 0, we interpret

α ◦X = −(−α) ◦X.

The next proposition gives a necessary and sufficient condition for the stationarity

of RCINAR(∞) process.

Proposition 2. Let (Xn)n∈N be an RCINAR(∞) with

0 ≤
∞∑
k=1

E[αk(Zk)],
∞∑
k=1

|E[αk(Zk)]| < 1,

Then (2) has an almost surely unique first-order stationary solution (Xn) where Xn ∈ N0,

n ∈ Z, and E[Xn] = α0/(1−K), where K =
∑∞

k=1E[αk(Zk)].

We can also give an AR(∞) representation of RCINAR(∞) process.

Proposition 3 (AR(∞) representation of RCINAR(∞)). Let (Zk)k∈N is an i.i.d. se-

quence of random variables, α0 > 0, and αk : R → R, k = 1, 2, . . . be functions which

satisfy the condition in Proposition 2, and let (Xn) be the corresponding RCINAR(∞).

Then

un = Xn −
∞∑
k=1

αk(Zn−k)Xn−k − α0, n ∈ Z, (3)

defines a stationary sequence (un) with E[un] = 0 and

E[unum] =

{
0 n 6= m,
α0

1−K n = m,

where K =
∑∞

k=1E[αk(Zk)].

Remark 3. Since it is difficult to simulate exact RCINAR(∞) process, we need to

approximate the process by RCINAR(p) with large p. Therefore, it is important to

investigate the condition of first and second stationarity of RCINAR(p). If αk ≡ 0 for
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k > p, then the random coefficient autoregressive process with infinite order (RCAR(∞))

(3) induced to RCAR(p) process. In this case, let

Yn = (Xn, Xn−1, . . . , Xn−p+1)>, ξn = (un, 0, . . . , 0)>,

c0 = (a0, 0, . . . , 0)>, An =



a1(Zn−1) a2(Zn−2) · · · ap(Zn−p)

1 0 · · · 0

0 1 · · ·
...

...

0 · · · 1 0


.

Then we can rewrite (3) in the form of RCAR(1) process

Yn = c0 +AnYn−1 + ξn. (4)

Boshnakov (2011) investigates the necessary and sufficient condition for the existence of

first- and second-order stationary (covariance stationary) solution of (4). In our case for

the first-order stationarity, we require the condition

spr(E[An]) < 1.

where spr(M) is the spectral radius, that is, the maximum modulus of eigenvalues of M

(see Kesten (1974) and Goldie and Maller (2000) for other related topics on stationarity

of RCAR process). The assumptions in Proposition 2 implies that spr(E[An]) < 1.

For the second order stationarity, we require spr(E[An ⊗ An]) < 1 where ⊗ is the

Hadamard product. This condition is also satisfied under assumptions in Proposition 2

and max1≤k≤pE[αk(Zk)
2] < 1:

Proposition 4. An RCINAR(p) process (Xn) is covariance stationary if

0 ≤
p∑

k=1

E[αk(Zk)],

p∑
k=1

|E[αk(Zk)]| < 1, max
1≤k≤p

E[αk(Zk)
2] < 1.

Therefore, the statement in Proposition 2 is consistent with the theoretical result on

the stationarity of RCAR.

If the functions αk, k = 0, 1, 2, . . . are bounded and satisfy the conditions |αk(x)| ≤ Lk
for some Lk > 0 and KL =

∑∞
k=1 Lk < 1, then we have some properties of autocovariance

functions of RCINAR(∞). Proposition 5 plays an important role in the proof of Theorem

1.

Proposition 5. Let (Xn) be a RCINAR(∞) defined by (2) Suppose the conditions

|αk(x)| ≤ Lk for some Lk > 0, k = 0, 1, 2, . . ., and KL =
∑∞

k=1 Lk < 1 holds. Then, for
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the autocovariance functions R(j) = Cov(Xn, Xn+j), j ∈ Z, we have∣∣∣∣∣∣
∞∑
j=0

R(j)

∣∣∣∣∣∣ ≤ α0

(1−KL)3
<∞.

In particular, we have R(0) = Var(Xn) ≤ α0/(1−KL)3, n ∈ Z.

This result implies that marked Hawkes process which corresponds to RCINAR(∞)

with some conditions in Proposition 5 exhibits short memory.

4.2 Discrete Approximation of SEPOT models

Next we give a limit theorem on the weak convergence of a marked point process

constructed of the sum of a RCINAR(∞) to a marked Haweks process. This limit

theorem justify the approximation of a discretely sampled point process discussed in

Section 2. As an extension of Proposition 1, we consider the following RCINAR(∞)

process:

X∆n
E (k) = εn(k) +

∞∑
l=1

[
h (l∆n) c

(
Z̃k−l

)
P

(
X(k−l) − a[∆−1

n ]

b[∆−1
n ]

≥ u

)]
◦X∆n

E (k − l), (5)

where E = [u,∞), Z̃k = (Zk − u)1{Zk≥u}, Zk
i.i.d.∼ GPD(ξ, 1), c : R+ → R+ is a

piecewise continuous function with c(0) = 0, h : R→ R+ is also a piecewise continuous

function with h(t) = 0, t ≤ 0, 0 ≤ E[c(Z1)]
∫
R h(t)dt < 1, Xk

i.i.d.∼ F ∈ D(Gξ) and

εn(k)
i.i.d.∼ Poi(ηP (b[∆−1

n ](X1 − a[∆−1
n ]) ≥ u)) with η > 0. We assume E[c(Z1)2] < ∞

for technical reason and this assumption is satisfied if 0 < ξ < 1/2 in Example 1 and

satisfied in Example 2 if distribution G have second moment.

We have the following relation between X̃∆n
E (k) and λ(k∆n|HNk∆n

) by the definition

of X∆n
E :

E

[
X∆n
E (k)

∆n
|F∆n

(k−1)

]
=

(
η +

∞∑
m=1

h(k∆n −m)c(Z̃k−m)X∆n
E (k −m)

)
∆−1
n P

(
X1 − a[∆−1

n ]

b[∆−1
n ]

≥ u

)

=

(
η +

∫ (k−1)∆n

−∞
h(k∆n − s)c(Z̃s)N∆n

E (ds)

)
∆−1
n P

(
X1 − a[∆−1

n ]

b[∆−1
n ]

≥ u

)
,

≈

(
η +

∫ (k−1)∆n

−∞
h((k − 1)∆n − s)c(Z̃s)Ng(ds)

)
(1 + ξu)−1/ξ

= E

[
N({(k − 1)∆n} × E)

dt
|HN(k−1)∆

]
= λE((k − 1)∆n|HN(k−1)∆n

),

12



where F̃∆n
k = σ((X̃∆n

k−m, Z̃k−m : m ≥ 0). Therefore, X∆n
E and its conditional mean given

F∆n
k−1 can be interpret as an approximation of the increment N({k∆n} ×E)−N({(k −

1)∆n} × E) = N(((k − 1)∆n, k∆n]× E) and the intensity function of Ng respectively.

Next theorem gives a theoretical justification of this argument.

Theorem 1. (X∆n
E (k)) be the RCINAR(∞) process defined by (5). Suppose following

conditions are satisfied:

c(x) ≤ L, L

∫
R
h(t)dt < 1, for some L > 0,

Consider the following marked point process

Ñ∆n((a, b]× E) = Ñ∆n
E ((a, b]) =

∑
k:k∆n∈(a,b]

X̃∆n
E (k), a < b,E = [u,∞),

where

X̃∆n
E (k) =

{
1 if X∆n

E (k) > 0,

0 if X∆n
E (k) = 0.

Then we have Ñ∆n
E

w→ N in Mp(R × E) as ∆n → 0. Here, N is the marked Hawkes

process with intensity

λE(t|HNt ) =

(
η +

∫ t

−∞
h(t− s)c(Z̃s)N(ds)

)
(1 + ξu)−1/ξ, (6)

where Z̃s = (Zs − u)+, Zs
i.i.d.∼ GPD(ξ, 1).

This result implies that RCINAR(∞) process (5) is the discrete time version of

SEPOT models in Example 1 and 2 when the observation is high-frequenc if we replace

impact functions in those models as truncated version c̃(z) = c(z) ∧ L for some L > 1.

The condition c(x) ≤ L for some L > 0 means that the contribution of mark to intensity

function is bounded, and the condition 0 ≤ L
∫
h(t)dt < 1 enables us to investigate the

relation between RCINAR(∞) and marked Hawkes process. This type of assumption is

used in the literature of the stability of nonlinear Hawkes processes (see Brémaud and

Massoulié (1996)). Marked point processes Ñ∆n
E and N∆n

E defined by N∆n((a, b]×E) =

N∆n
E ((a, b]) =

∑
k:k∆n∈(a,b]X

∆n
E (k) corresponds to Ñ∆n and N∆n , which are defined in

Section 2, respectively.

Remark 4. Theorem 1 is an extension of the results on the relation between INAR(∞)

and Hawkes process in Kirchner (2016a) to the results on the relation between RCINAR(∞)

and marked Hawkes process, and this theorem can also be interpreted as a generalization

of Proposition 1 in the present paper. In fact, if we set h(t) ≡ 0 , c(x) ≡ 1 and η = 1 in

the definition of X∆n
E (k), then X∆n

E (k) ∼ Poi(∆n) and this corresponds to Proposition

1.
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Remark 5. In Theorem 1, a decay function h is assumed to be non-negative. If decay

function takes negative values, the limiting marked Hawkes process allows self-damping.

In the literature of financial econometrics for example, we sometimes come across such

a situation. This point is considered and discussed in Section 5 and Section 6.

5 Simulation

In this section, we see the finite sample behavior of the weak convergence stated

in Theorem 1. As an approximation of RCINAR(∞), we simulated RCINAR(p) with

large p. We set p = 30, Z̃k
i.i.d.∼ GPD(0.2, 0.01), and for the kernel function g in (1), we

considered two functions

Case I : g1(t, z) = c(x)h1(t) = [(1 + x) ∧ 1.5]e−1.7t,

Case II: g2(t, z) = c(x)h2(t) = [(1 + x) ∧ 1.5]e−1.7t × cos((1.5πt) ∧ 2π).

Remark 6. The bounded assumption in Cases I and II is not a restrictive condition in

this case since P (Z̃1 > 0.5) ≈ 6.21× 10−6.

Remark 7. Case II corresponds to the case when a Hawkes process has self-damping

property. This setting would be suggestive to see the asymptotic behavior of N∆n
E when a

decay function h could take negative values. Self-damping is one of the recent important

problem in financial econometrics. The problem is discussed in Section 6.

We also considered three cases for the mesh ∆n = 1/4, 1/16, 1/32 (we call these cases

as A, B and C). In Figure 1, decay functions h1 and h2 are plotted. The function h1 is

always non-negative with exponential decay. On the other hand, the function h2 takes

negative values, and intuitively, this represents the situation that once the clustering of

events observed, the following events less likely to occur for a while. Simulated values

of {N∆n
E ((0, k∆n]) : k∆n ∈ (0, 10]}, RCINAR(p) {X∆n

E (k) : k∆n ∈ (0, 10]}, and scaled

conditional mean (conditional intensity) of X∆n
E (E = [u,∞), u = 0), that is,

P−1
n E

[
X∆n
E (k)

∆n
|F∆n

(k−1)

]
= η +

∞∑
m=1

h(k∆n −m)c(Z̃k−m)X∆n
E (k −m), k∆n ∈ (0, 10],

where Pn = ∆−1
n P

(
X1−a[∆−1

n ]

b
[∆−1

n ]

≥ u
)

are shown in Figures 2, 3 and 4. We first find that

as the mesh ∆n get small, X∆n
E tends to take 0 or 1. This is quite natural because X∆n

E

is an approximation of the increment of the limiting simple point process in Theorem

1. We can see this in the center two figures in Figure 2, 3 and 4. Second, in Case II-A,

B and C (these case are shown in the bottom right in Figures 2, 3 and 4), the scaled

conditional mean of X∆n
E take negative value and values which are close to zero. This

is because of the form of the decay function h2: In Case II,
∫
h+

2 (t)dt and
∫
h−2 (t)dt
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are close although
∫
h+

2 (t)dt >
∫
h−2 (t)dt. Third, in Case I-C and II-C (the bottom two

figures in Figure 4), the scales conditional mean of X∆n
E is less smooth compared with

Case I-B and II-B (the bottom two figures in Figure 3) in the interval that no events

occur. This difference comes from the approximation of RCINAR(∞) by RCINAR(p).

This implies that we have to set more large p as ∆n goes to 0.

6 Discussion

In this section we first discuss about an extension of our results and then about an

application of Theorem 1 to a statistical modeling of financial time series.

For the extension of self-exciting POT model to the multivariate case, we have to

consider multivariate Hawkes process, which is called mutually exciting process, and a

multivariate mark distribution (a joint jump size distribution). In the univariate SEPOT

model, past events are usually considered to amplify the chance of occurrence of the same

type of events in some cases (the decay function h is always nonnegative). However, in

multivariate point process model, the event occurrence of a component could tend to re-

duce the event occurring probability of other components and in this case, decay function

can be negative. This case is called mutually-damping and self-damping in the univariate

case. Mutually-damping could happen in a high-frequency financial trading for exam-

ple. Some trading activity reduces the possibility of future trading activity and has an

adverse impact on its intensity. Boswijk, Laeven and Yang (2014) discuss the detection

of self-excitation of events based on a general semimartingale theory. Eichler, Dahlhaus

and Dueck (2016) and Kirchner (2016b) investigate nonparametric estimation of decay

function of ordinary Hawkes process (Hawkes process with no marks), and in their real

data analysis, some estimated decay functions take negative values. Therefore, self-(or

mutually-)damping is a both theoretically and practically important problem. Moreover,

the modeling of multivariate SEPOT model is related to the modeling of multivariate

generalized Pareto distribution. These topics in the field of extreme value theory are

presently under discussion. Falk and Guillou (2008) and Grothe, Korniichuk and Man-

ner (2014) are recent important contributions in theoretical and empirical standpoint of

this topic respectively.

For the statistical application of Theorem 1, Bayesian modeling of discrete-time

SEPOT model may be possible. As noted in Kirchner (2016a) we can replace Poisson

thinning operator in Definition 3 with Binomial thinning operator:

α ◦X =
X∑
i=1

ξi, ξi
i.i.d.∼ Bin(1, α).

The binomial RCINAR would be convenient for developing Markov chain Monte Carlo

method and may enable us to use non-i.i.d. jump size distribution. We refer to Neal
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and Rao (2007) for Bayesian estimation procedures of INAR(p).

7 Conclusion

In this paper we introduced the general framework on the discrete observation of

point process under the high-frequency observation. Grounded on this framework, we

investigated the relation between RCINAR(∞) process and marked Hawkes process. We

also gave a necessary and sufficient condition of the stationarity of RCINAR(∞) and

its RCAR(∞) representation to build a bridge between the discrete-time series analysis

and the analysis of continuous-time stochastic process. As applications of our results,

we established the theoretical justification of self-exciting peaks over threshold models,

which have been used in empirical financial time series analysis.

A Proofs

We collect the proofs for Section 4. We use ., & to denote inequlities up to a

multiplicative constant.

Proof of Proposition 2. We prove Proposition 2 in two steps.

Step1:(Existence of the stationary solution of (2)) First we construct a solution of

(2). Let εi
i.i.d.∼ Poi(α0) and Zi

i.i.d.∼ F . We define processes (G
(g,i,j)
n ), g ∈ N0 recursively

in the following procedure:

G(0,i,j)
n ≡ 1{n=0}, n, i ∈ Z, j ∈ N,

G(g,i,j)
n ≡

n∑
k=0

αk(Zn−k) ◦G
(g,i,j)
n−k .

For n < 0, we set G
(g,i,j)
n = 0. Second, we define processes (F i,jn ) as

F (i,j)
n =

∞∑
g=0

Gg,i,jn , n, i ∈ Z, j ∈ N.

Finally, we consider the process

X̃n ≡
n∑

i=−∞

εn∑
j=1

F
(i,j)
n−i , n ∈ Z.

It is possible to show that (X̃n) solve (2) if we mimic the proof of Theorem 1 in Kirchner

(2016a). One can also show that E[X̃n] = α0/(1−K). In fact, since E[
∑∞

n=0G
(0,i,j)
n ] = 1
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and for g > 0,

E

[ ∞∑
n=0

G(g,i,j)
n

]
=
∞∑
n=0

E

[
n∑
k=1

αk(Zn−k) ◦G
(g,i,j)
n−k

]
=
∞∑
n=0

E

[
n∑
k=1

αk(Zn−k)G
(g,i,j)
n−k

]

=
∞∑
n=0

n∑
k=1

α̃kE[G
(g,i,j)
n−k ] =

∞∑
k=0

α̃k

∞∑
n=k

E[G
(g,i,j)
n−k ] = KE

[ ∞∑
n=0

G(g,i,j)
n

]
= · · ·

= Kg.

Then we have

E[X̃n] = α0

n∑
i−∞

E[F i,jn−i] = α0

∞∑
g=0

E

[
n∑

i=−∞
G

(g,i,j)
n−i

]
= α0

∞∑
g=0

Kg =
α0

1−K
.

Step2:(Uniqueness of the solution of (2))

Let (Xn) and (Yn) of (2) be two stationary solutions which are defined on the same

probability space and with respect to the same immigration sequence (εn) and the same

offspring sequences with i.i.d.mark (ξn,kl , Zn−k), n ∈ Z, k ∈ N. It follows from (2) that

E[|Xn|] = E[|Yn|] = α0/(1−K) <∞. Then

E[|Xn − Yn|] = E

∣∣∣∣∣
∞∑
k=1

(αk(Zn−k) ◦Xn−k − αk(Zn−k) ◦ Yn−k)

∣∣∣∣∣
≤
∞∑
k=1

E |αk(Zn−k) ◦Xn−k − αk(Zn−k) ◦ Yn−k| .

Then we also have

|αk(Zn−k) ◦Xn−k − αk(Zn−k) ◦ Yn−k| =

∣∣∣∣∣∣
Xn−k∑
j=1

ξn,kj −
Yn−k∑
j=1

ξn,kj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Xn−k∨Yn−k∑

j=Xn−k∧Yn−k+1

ξn,kj

∣∣∣∣∣∣
d
=

∣∣∣∣∣∣
|Xn−k−Yn−k|∑

j=1

ξn,kj

∣∣∣∣∣∣ = In.

For In we have

In = E[αk(Zn−k)]E|Xn−k − Yn−k| = α̃kE|Xn − Yn|.

We used the stationarity of (Xn) and (Yn) in the last inequality. Taking these together,

we obtain that

E|Xn − Yn| ≤ KE|Xn − Yn|.

Since K < 1 by assumption and E|Xn − Yn| < ∞, we obtain that E|Xn − Yn| = 0 and

therefore Xn = Yn, n ∈ Z a.s.
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Proof of Proposition 3. Let Fn = σ((Xn−k, Zn−k) : k ≤ 0). Then we have

E[un] = E[E[un|Fn−1]] = E

[
E[Xn|Fn−1]− α0 −

∞∑
k=1

αk(Zn−k)Xn−k

]
= 0.

If n > m, sence E[un|Fn−1] = 0, we have

E[unum] = E[umE[un|Fn−1]] = 0.

If n = m, we have

E[unun] = Var(un) = E[Var(un|Fn−1)] + Var(E[un|Fn−1])

= E

[
α0 +

∞∑
k=1

αk(Zn−k)Xn−k

]
= α0 +

α0K

1−K
=

α0

1−K
.

For the third equality, we used the facts E[un|Fn−1] = 0, Var(un|Fn−1) = Var(Xn|Fn−1)

and Xn|Fn−1 ∼ Poi(α0 +
∑∞

k=1 αk(Zn−k)Xn−k). This completes the proof.

Proof of Proposition 4. Let det(A) be the determinant of a matrix A and Ip be p×p
unit matrix. The characteristic polynomial of the matrix E[An] is given by

det (λIp − E[An]) = λp − α′1λp−1 − · · · − α′p−1λ− α′p,

where α′k = E[αk(Zk)], k = 1, . . . , p. Under assumptions of Proposition 4, one can see the

maximum modulus of roots of this polynomial is less than 1 this implies spr(E[An]) < 1.

Now we show spr(E[An ⊗An]) < 1. Since

det(E[An ⊗An]) = det(Ãn) (det(E[An]))p−1 ,

where Ãn = E[αp(Zn−p)An], it suffice to check spr(Ãn) < 1. We can check this in the

same way as the proof of spr(E[An]) < 1.

Proof of Proposition 5. Given the information of random coefficients FZ = σ(Zk :

k ∈ Z), X∆n
E behaves like AR(∞) under assumptions in Proposition 5. Let φ(z) =

1−
∑∞

k=1 αk(·)zk be a FZ-measurable function. Since |φ(z)| ≥ 1−
∑

k≥0 Lk > 0, we can

define a random function ψ(z) =
∑∞

k=1 βkz
k which satisfy the equation ψ(z)φ(z) = 1.

Comparing the coefficients of this equation, we have β0 = 1, βk =
∑k

i=1 αi(·)βk−i and∑∞
k=0 |βk| = 1/φ(1) < 1/(1 − KL) a.s. In this case, RCAR(∞) representation of Xn

given FZ is invertible (see Theorem 3.1.2 in Brockwell and Davis (1991)) and have

conditionally MA(∞) representation

Xn − µ̃ =
∞∑
k=0

βkũn−k, (7)
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where (ũk) is the stationary sequence which satisfy the condition in Proposition 5. Let

R̃(m) = Cov(Xn, Xn+m|FZ), then from (7), we have∣∣∣∣∣
∞∑
m=0

R̃(m)

∣∣∣∣∣ =
α0

1−
∑∞

k=1 αk(·)

∞∑
j=0

|βjβj+m| ≤
α0

1−KL

( ∞∑
k=0

|βk|

)2

≤ α0

(1−KL)3
.

Therefore, we have ∣∣∣∣∣
∞∑
m=0

R(j)

∣∣∣∣∣ ≤ E
[∣∣∣∣∣
∞∑
m=0

R̃(m)

∣∣∣∣∣
]
≤ α0

(1−KL)3
.

Before we prove Theorem 1, we prepare some lemmas. Let B(R) be the Borel σ-field

on R, and Bb(R)(⊂ B(R)) be a family of bounded Borel sets.

Lemma 1. For any ∆n ∈ (0, ∆̃), Let N∆n
E be a marked point process defined as follows:

N∆n((a, b]× E) = N∆n
E ((a, b]) =

∑
k:k∆n∈(a,b]

X∆n
E (k), a < b,E = [u,∞), u ≥ 0, (8)

where (X∆n
E (k))k∈Z is the RCINAR(∞) process defined by (5). Then, for A ∈ B(R), we

have that

A ∩ {k∆n : k ∈ Z} = ∅ ⇒ N∆n
E (A) = 0 a.s.

For the expectation, we find that

E[N∆n
E ({k∆n})] =

ηn
1−Kn

≤ ∆̃η(1 + ξu)−1/ξ

1− K̃
,

where

ηn = ηP

(
X1 − a[∆−1

n ]

b[∆−1
n ]

≥ u

)
, Kn = E[c(Z̃1)]P

(
X1 − a[∆−1

n ]

b[∆−1
n ]

≥ u

) ∞∑
k=1

h(k∆n),

and where E[c(Z̃1)]
∫ T

0 h(t)dt < K̃ < 1.

Proof. Lemma 1 follows from the definition of N∆n
E and the stationarity of X∆n

E .

Lemma 2. The family of the probability measures (Pn) on (Mp(R × E),Mp(R × E))

corresponding to the point process (N∆n
E )

∆n∈(0,∆̃)
is uniformly tight.

Proof. From Proposition 11.1.VI in Daley and Vere-Jones (2003), it is sufficient to show

that for any compact interval (a, b] ⊂ R and for any ε > 0, there exists M > 0 such that

sup
∆n∈(0,∆̃)

P
(
N∆n
E ((a, b]) > M

)
< ε.
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This results from Lemma 1 and Markov inequality:

P
(
N∆n
E ((a, b]) > M

)
≤
E[N∆n

E ((a, b])]

M
≤ (b− a+ 2∆̃)η(1 + ξu)−1/ξ

M(1− K̃)
,

where E[c(Z̃1)]
∫ T

0 h(t)dt < K̃ < 1. By taking M = (b−a+ 2∆̃)η/(1− K̃)ε, we have the

desired result.

Lemma 3. Let (N∆n
E )

∆n∈(0,∆̃)
, the family of point processes in Theorem 1 and A ∈

Bb(R). Then we have that the family of random variables (N∆n
E (A))

∆n∈(0,∆̃)
is uniformly

integrable.

Proof. From the definition of N∆n
E and Proposition 4, we have

Var(N∆n
E (A)) = Var

 ∑
k:k∆n∈A

X∆n
E (k)

 =
∑

l:l∆n∈A

∑
m:m∆n∈A

Cov(X∆n
E (l), X∆n

E (m))

≤
∑

l:l∆n∈A

∞∑
m=−∞

R(l −m) =
∑

k:k∆n∈A

∞∑
m=−∞

R(m)

.

(
supA− inf A

∆n

)
∆n <∞.

This shows that Var(N∆n
E (A)) is uniformly bounded in ∆n ∈ (0, ∆̃). Taking this and

Lemma 2 together, for any ε > 0, there exist M = Mε > 0 such that

E[N∆n
E (A)1{N∆n

E > M}] . sup
∆n∈(0,∆̃)

Var(N∆n
E (A))× sup

∆n∈(0,∆̃)

P
(
N∆n
E (A) > M

)
. ε.

This completes the proof.

Let E is a complet separable metric space (c.s.m.s.) and E be a Borel σ-field on E.

For any marked point process N defined on R × E, we consider the following semiring

BNa :

BNa = {{ω ∈ Ω : N((s1, t1]× C1)(ω) ∈ D1, . . . , N((sk, tk]× Ck)(ω) ∈ Dk} :

−∞ < si < ti ≤ a,Di ∈ N0, Ci ∈ E , k ∈ N} ,

and let HNa be the σ-field generated by BNa .

Proof of Theorem 1. We prove Theorem 1 in 3 steps.
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Step 1:(Approximation of Ñ∆n
E as N∆n

E ) First we show Ñ∆n
E ((a, b])−N∆n

E ((a, b])
P→ 0

for all a, b ∈ R with −∞ < a < b <∞. Consider the INAR(∞) processes:

X∆n

(1) = εn,(1)(k) +
∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) ,

where εn,(1)(k)
i.i.d.∼ Poi(∆nη), and define the following two auxiliary point processes:

N∆n

(1) ((a, b]) =
∑

k:k∆n∈(a,b]

X∆n

(1) (k), Ñ∆n

(1) ((a, b]) =
∑

k:k∆n∈(a,b]

X̃∆n

(1) (k), a < b,

where

X̃∆n

(1) (k) =

1 if X∆n

(1) (k) > 0

0 if X∆n

(1) (k) = 0.

From the definitions of N∆n
E , Ñ∆n

E , N∆n

(1) and Ñ∆n

(1) , we have

P
(∣∣∣N∆n

E ((a, b])− Ñ∆n
E ((a, b])

∣∣∣ > ε
)
≤ P

(∣∣∣N∆n

(1) ((a, b])− Ñ∆n

(1) ((a, b])
∣∣∣ > ε

)
≤ P

 ⋃
k:k∆n∈(a,b]

{X∆n

(1) (k) ≥ 2}


≤

∑
k:k∆n∈(a,b]

P
(
X∆n

(1) (k) ≥ 2
)
.

Moreover, let F∆n
k = σ(X∆n

(1) (l), l ≤ k). Then we have

P
(
X∆n

(1) (k) ≥ 2|F∆n
k−1

)
≤ P

(
εn,(1)(k) ≥ 2,

∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l) ≥ 0|F∆n
k−1

)

+ P

(
εn,(1)(k) ≥ 1,

∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l) ≥ 1|F∆n
k−1

)

+ P

(
εn,(1)(k) ≥ 0,

∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l) ≥ 2|F∆n
k−1

)
≤ P (εn,(1)(k) ≥ 2) + P (εn,(1)(k) ≥ 1)E[X∆n

(1) (k)]

+ P

( ∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l) ≥ 2|F∆n
k−1

)

. ∆2
n + P

( ∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l) ≥ 2|F∆n
k−1

)
,
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where we used P (εn,(1)(k) ≥ 2) . ∆2
n, P (εn,(1)(k) ≥ 1) . ∆n and E[X∆n

(1) (k)] . ∆n.

Since
∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l)|F∆n
k−1 ∼ Poi (λn,k) ,

where λn,k =
∑∞

l=1 (∆nh(l∆n)L)X∆n

(1) (k − l), we also have

P

( ∞∑
l=1

(∆nh(l∆n)L) ◦X∆n

(1) (k − l) ≥ 2|F∆n
k−1

)
. λ2

n,k,

and

E[λ2
n,k] = E

[ ∞∑
l=1

∆2
nh

2(l∆n)L2(X∆n

(1) (k − l))2

]

+ E

∑
l 6=m

∆2
nh(l∆n)h(m∆n)L2X∆n

(1) (k − l)X∆n

(1) (k −m)


=

∞∑
l=1

∆2
nh

2(l∆n)L2
[
Var(X∆n

(1) (k − l)) + (E[X∆n

(1) (k − l)])2
]

+
∑
l 6=m

∆2
nh(l∆n)h(m∆n)L2

[
Cov(X∆n

(1) (k − l), X∆n

(1) (k −m)) + E[X∆n

(1) (k − l)]E[X∆n

(1) (k −m)]
]

. ∆2
n

(
∆nL

∞∑
l=1

|h(l∆n)|

)
+ (sup |h|)∆n

(
∆nL

∞∑
l=1

|h(l∆n)|

)( ∞∑
m=0

Cov(X∆n

(1) (−l), X∆n

(1) (−m))

)
. ∆2

n.

Here, we used E[X∆n

(1) (k)] . ∆n, k ∈ Z, Var(X∆n

(1) (k)) . ∆n, k ∈ Z, and
∑∞

m=0 Cov(X∆n

(1) (0), X∆n

(1) (m)) .
∆n which are obtained from Proposition 5. Therefore, we have for sufficiently small ∆n,∑

k:k∆n∈(a,b]

P
(
N∆n

(1) (((k − 1)∆n, k∆n]) ≥ 2
)
. ∆n = o(1).

Hence P
(∣∣∣N∆n

E ((a, b])− Ñ∆n
E ((a, b])

∣∣∣ > ε
)
→ 0,∆n → 0,∀ε > 0. This establishes

Ñ∆n
E ((a, b])−N∆n

E ((a, b])
P→ 0. Then, it suffice to show N∆n

E ((a, b])
w→ N((a, b]× E).

Now we show N∆n
E

w→ N where N∆n
E is the point process defined by (8). The marked

Hawkes process N solve the equation

E[1A∗N
∗((a, b]× E)]

= E

[
1A∗

∫ b

a

(
η +

∫ t

−∞

∫
E
h(t− s)c(z)N∗(ds× dz)

)
dt

]
, a < b,A∗ ∈ HN∗a . (9)
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It is known that if E[c(Z1)]
∫∞

0 |h(t)|dt ≤ L
∫∞

0 |h(t)|dt < 1, there exist a unique sta-

tionary solution N of (9) (see Brémaud, Nappo and Torrisi (2002) for the sufficient

condition of stationarity and Kerstan (1964) for the existence and uniqueness of station-

ary solution, which is a marked Hawkes process defined by the intensity function (6)).

Let Pn = ∆−1
n P

(
X1−a[∆n]−1

b[∆n]−1
≥ u

)
. In the following proof, we omit the index E of N∆n

E

and X∆n
E for convenience. For N∆n , we have

E[1AnN
∆n((a, b]× E)]

= ∆n

∑
k:k∆n∈(a,b]

E

[
1AnPn

(
η +

∫ k∆n

−∞

∫
E
h(k∆n − s)c(z)N∆n(ds× dz)

)]
, An ∈ BN

∆n

a

Since random variables in the expectation can be written as Φ(N∆n) for some mea-

surable map Φ and it is possible to show P (N∗ ∈ DΦ) = 0 for the marked point process

N∗ which solve (9) and the set of discontinuous points of Φ, DΦ (see the proof of Theo-

rem 2 in Kirchner (2016a)). Therefore, from Lemma 2 and continuous mapping theorem,

we have 1AnN
∆n((a, b]× E)

w→ 1A∗N
∗((a, b]× E) and

lim
n→∞

E[1AnN
∆n((a, b]× E)] = E[1A∗N

∗((a, b]× E)].

Therefore, for the weak convergence of hole sequence (N∆n)
∆n∈(0,∆̃)

to N∗, it is sufficient

to show

lim
n→∞

∆n

∑
k:k∆n∈(a,b]

E

[
1An

(
η +

∫ k∆n

−∞

∫
E
h(k∆n − s)c(z)N∆n(ds× dz)

)]

=

∫ b

a
E

[
1A∗

(
η +

∫ t

−∞

∫
E
h(t− s)c(z)N∗(ds× dz)

)]
dt (10)

and this establishes our desired result since the law of point process is uniquely deter-

mined by its intensity process. We show (10) in several steps.

Step 2:(Uniform integrability of
(∫ t
−M

∫
K h(t− s)c(z)N∆n(ds× dz)

)
∆n∈(0,∆̃)

)

Let M > 0 with −M < a be a constant and K be a compact subset of E. If

Var
(∫ t
−M

∫
K h(t− s)c(z)N∆n(ds× dz)

)
is uniformly bounded in ∆n, we can show that(∫ t

−M
∫
K h(t− s)c(z)N∆n(ds× dz)

)
∆n∈(0,∆̃)

is uniformly tight. Then by continuous

mapping theorem, for −M < a, we have

1An

∫ t

−M

∫
K
h(t− s)c(z)N∆n(ds× dz) w→ 1A∗

∫ t

−M

∫
K
h(t− s)c(z)N∗(ds× dz).

Taking this with the uniform integrability of
(

1An

∫ t
−M

∫
K h(t− s)c(z)N∆n(ds× dz)

)
∆n∈(0,∆̃)

,

we obtain

lim
n→∞

E

[
1An

∫ t

−M

∫
K
h(t− s)c(z)N∆n(ds× dz)

]
= E

[
1A∗

∫ t

−M

∫
K
h(t− s)c(z)N∗(ds× dz)

]
.
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Now we show uniform boundedness of Var
(∫ t
−M

∫
K h(t− s)c(z)N∆n(ds× dz)

)
.

Var

(∫ t

−M

∫
K
h(t− s)c(z)N∆n(ds× dz)

)

≤
[M/∆n]+1∑

l=1

[M/∆n]+1∑
m=1

|h(l∆n)||h(m∆n)|Cov(c(Z̃l)X
∆n(l), c(Z̃m)X∆n(m))

≤
[M/∆n]+1∑

l=1

[M/∆n]+1∑
m=1

|h(l∆n)||h(m∆n)|
[
µ2
X∆n Cov(c(Z̃l), c(Z̃m)) + µ2

z Cov(X∆n(l), X∆n(m))
]

= (sup |h|)2µ2
X∆n

[M/∆n]+1∑
l=1

[M/∆n]+1∑
m=1

Cov(c(Z̃l), c(Z̃m))

+ (sup |h|)2µ2
z

[M/∆n]+1∑
l=1

[M/∆n]+1∑
m=1

Cov(X∆n(l), X∆n(m))

. µ2
X∆n∆2

n +
∞∑
m=0

R(m) . µ2
X∆n∆2

n + ∆n <∞.

where µz = E[c(Z̃1)], µX∆n = ∆nη/(1 −K) and R(m) = Cov(X∆n(0), X∆n(m)). For

the last inequality, we used Proposition 5. Then, we have

sup
∆n∈(0,∆̃)

Var

(∫ t

−M

∫
K
h(t− s)c(z)N∆n(ds× dz)

)
<∞

uniformly in ∆n ∈ (0, ∆̃). Therefore, random variables 1An

∫ t
−M

∫
K h(t−s)c(z)N∆n(ds×

dz), n ∈ N are uniformly integrable. Together with weak convergence, we established

that for M with −M < a,

lim
n→∞

E

[
1An

∫ t

−M

∫
K
h(t− s)c(z)N∆n(ds× dz)

]
= E

[
1A∗

∫ t

−M

∫
K
h(t− s)c(z)N∗(ds× dz)

]
.

Step3:(Evaluation of reminder terms) Let Pn = ∆−1
n P (b−1

n (X1 − an) ≥ u). We

decompose ∣∣∣∣∣∣
∑

k:k∆n∈(a,b]

Pn∆nE

[
1An

∫ k∆n

−∞

∫
E
h(k∆n − s)N∆n(ds× dz)

]

−(1 + ξu)−1/ξ

∫ b

a
E

[
1A∗

∫ t

−∞

∫
E
h(t− s)c(z)N∗(ds× dz)

]
dt

∣∣∣∣
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into the following five terms:

In =

∣∣∣∣∣∣
∑

k:k∆n∈(a,b]

Pn∆nE

[
1An

∫ k∆n

−M

∫
K
h(k∆n − s)c(z)N∆n(ds× dz)

]

−(1 + ξu)−1/ξ

∫ b

a
E

[
1A∗

∫ t

−M

∫
K
h(t− s)c(z)N∗(ds× dz)

]
dt

∣∣∣∣ ,
IIn =

∑
k:k∆n∈(a,b]

Pn∆nE

[
1An

∫ k∆n

−M

∫
Kc

h(k∆n − s)c(z)N∆n(ds× dz)
]
,

IIIn = (1 + ξu)−1/ξ

∫ b

a
E

[
1A∗

∫ t

−M

∫
Kc

h(t− s)c(z)N∗(ds× dz)
]
dt,

IVn =
∑

k:k∆n∈(a,b]

Pn∆nE

[
1An

∫ −M
−∞

∫
E
h(k∆n − s)c(z)N∆n(ds× dz)

]
,

Vn =

∫ b

a
E

[
1A∗

∫ −M
−∞

∫
E
h(t− s)c(z)N∗(ds× dz)

]
dt.

From a similar argument of the proof of Theorem 2 in Kirchner (2016a), it is possible

to show that for any ε > 0, there exist M = Mε such that

In <
ε

5
, |IVn| <

ε

5
, |Vn| <

ε

5
. (11)

For IIn, we have∣∣∣∣E [1An

∫ k∆n

−M

∫
Kc

h(k∆n − s)c(z)N∆n(ds× dz)
]∣∣∣∣ ≤ E [∫ b

−M

∫
Kc

|h(t− s)|c(z)N∆n(ds× dz)
]

≤ (sup |h|)E[c(Z̃1) : Kc]
∑

k:k∆n∈(−M,b]

E[X∆n
E (k)]

≤ (sup |h|)µ2
ZP (Z1 ∈ K̃c)

([M + b] + 1)η

1−K
,

where E[c(Z̃1) : Kc] means the expectation of c(Z̃1) over Kc. Since Z1 have tight law,

for any ε̃ > 0 and M > 0, we can take a compact set K̃ = K̃ε̃,M ⊂ [0,∞) such that

P (Z1 ∈ K̃c) <
ε̃(1− K̃)

5η(sup |h|)µ2
Z([M + b] + 1)

,

where E[c(Z1)]P (b−1
[∆n]−1(X1 − a[∆n]−1) ≥ u)

∑∞
k=1 |h(k∆n)| < K̃ < 1. Then we have∣∣∣∣E [1An

∫ k∆n

−M

∫
Kc

h(k∆n − s)c(z)N∆n(ds× dz)
]∣∣∣∣ < ε

5
. (12)
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For IIIn, since we have E[
∫
K c(z)N

∗(dt × dz)/dt] ≤ E[c(Z̃1):K]η

(1−K̃)
, for any compact set

K ∈ σ(Z)(σ-field associated to Z), we have∣∣∣∣E [1A∗ ∫ t

−M

∫
Kc

h(k∆n − s)c(z)N∗(ds× dz)
]∣∣∣∣ ≤ E [∫ t

−M

∫
Kc

|h(t− s)|c(z)N∗(ds× dz)
]

≤ E[c(Z̃1) : Kc]η
1− K̃

∫ b+M

0
|h(t)|dt

≤ E[c(Z̃1)2]P (Z1 ∈ K̃c)η
1− K̃

∫ ∞
0
|h(t)|dt

Therefore we established (10). From the same technique used in the evaluation of IIn,

we also have ∣∣∣∣E [1A∗ ∫ t

−M

∫
Kc

h(t− s)c(z)N∗(ds× dz)
]∣∣∣∣ < ε

5
. (13)

Taking (11), (12) and (13) together, we have

lim
n→∞

∆n

∑
k:k∆n∈(a,b]

E

[
1An

(
η +

∫ k∆n

−∞

∫
E
h(k∆n − s)c(z)N∆n(ds× dz)

)]

=

∫ b

a
E

[
1A∗

(
η +

∫ t

−∞

∫
E
h(t− s)c(z)N∗(ds× dz)

)]
dt.

Then we established the desired result.

B Figures and tables

Figure 1: Left: h1, right: h2
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Figure 2: Left: Case I-A, right: Case II-A. Top: N∆n
E , center: RCINAR(p), bottom:

conditional mean of X∆n
E .

Figure 3: Left: Case I-B, right: Case II-B. Top: N∆n
E , center: RCINAR(p), bottom:

conditional mean of X∆n
E .

27



Figure 4: Left: Case I-C, right: Case II-C. Top: N∆n
E , center: RCINAR(p), bottom:

conditional mean of X∆n
E .
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