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Abstract

This paper introduces a bottleneck game with finite sets of commuters
and departing time slots as an extension of congestion games by Milchtaich
(1996). After characterizing Nash equilibrium of the game, we provide suf-
ficient conditions for which the equivalence between Nash and strong equi-
libria holds. Somewhat surprisingly, unlike in congestion games, a Nash
equilibrium in pure strategies may often fail to exist, even when players
are homogeneous. In contrast, when there is a continuum of atomless
players, the existence of a Nash equilibrium and the equivalence between
the set of Nash and strong equilibria hold as in congestion games (Konishi,
Le Breton, and Weber, 1997a).

1 Introduction

A bottleneck model is used in analyzing traffic congestion during rush hours,
where commuters depart from their origins (e.g. their houses) to their destina-
tions (e.g. their workplaces). The simplest model was independently analyzed
by Vickrey (1969) and Hendrickson and Kocur (1981), where a continuum of
commuters depart from a single origin to a single destination connected by a
single road with continuous time horizon. Along the road, there is a bottleneck
in which a queue forms if the number of commuters exceeds the capacity of the
road at a given time, where the capacity is defined as the maximum number of
commuters that can pass through it in each slot. In these papers, commuters
decide on the departure time based on the trade-offs between congestion and
their optimal arrival time. Players are assumed to have the same preferred
time of arrival and a specific form of the trip cost function. Subsequent papers,
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such as Smith (1983), Daganzo (1985) and Arnott et al. (1990), introduce some
heterogeneity of commuters.

In this paper, we define a bottleneck game with a finite set of departure
time slots. Each commuter has preferences on two arguments: her departure
time and the length of the queue in which she has to wait to pass through the
bottleneck. Our game is an anonymous game with congestion generated by a
queue structure without imposing a specific form of trip costs function. In this
sense, our model can be regarded as an abstract generalization of bottleneck
models in the aforementioned papers. Moreover, this abstract setup allows us
to interpret our model in a different context other than traffic congestion. For
example, consider a location choice problem along a river, in which residents
pollute the river while the river has an ability to abate pollution up to some
level (capacity) at each location of the river. We can allow residents’ arbitrary
preferences over locations (such as scenic and/or convenient locations) on the
river, resulting in emergence of congested locations causing pollutions for down-
stream locations.

Mathematically, our model is also an extension of the congestion game by
Milchtaich (1996), which has following three properties:1 Anonymity (A), Con-
gestion (C) and Independence of Irrelevant Choices (IIC). First, A requires that
the payoff of each player depends on the number of players who choose each
action and not on the players’ names. Second, C states that the payoff of each
player increases if another player who had chosen the same strategy chooses a
different strategy. Finally, IIC states that the payoff of a player is not affected
even if another player that chooses a different strategy from hers switches to
another strategy that is also a different strategy from hers. In this game, Milch-
taich (1996) shows that a congestion game always has a Nash equilibrium in pure
strategies. Konishi et al. (1997a) shows that in the same model, any strictly
improving coalitional deviation from a Nash equilibrium results in another Nash
equilibrium, thus implying a congestion game also admits a strong equilibrium
that is immune to any strictly improving coalitional deviation. They also show
that if there is a continuum of atomless players, then the sets of Nash and strong
equilibria coincide with each other.

Our bottleneck game does not satisfy IIC, whereas the other two conditions
hold (though C applies in a strict sense only after a queue forms by exceeding the
capacity). Specifically, IIC would be violated in the case where a player who had
departed later then switched to an earlier departure time and thereby possibly
creating a longer queue for some of those players which she leaps over. With this

1The name ”congestion game” is sometimes attributed to a class of games introduced by
Rosenthal (1973), who considers a situation in which players choose a combination of primary
factors out of a certain number of alternatives. Each player’s payoff is determined by the sum
of the costs of each primary factor she chooses, while the cost of each primary factor depends
on the number of players who choose it, and not on the players’ names. Rosenthal (1973)
proved that there always exists at least one pure-strategy Nash equilibrium by constructing a
potential function, which is later formalized by Monderer and Shapley (1996). However, these
congestion games do not require payoffs being negatively affected by the population while
requiring that payoff functions have the same form among the players who take same factors.
We refer Milchtaich’s game by ”congestion games.”
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difference, we first show that the equivalence between Nash and strong equilibria
under some conditions (Propositions 2, 3, and 4), show that a Nash equilibrium
may not exist even when players are Homogeneous (H) and other stringent
conditions such as Single-Peakedness (SP) and Order-Preservation (OP) on the
payoff function are satisfied (Examples 4 and 5). With an even more stringent
condition, we show the existence of Nash equilibrium (Proposition 5). These
results are in stark contrast with the ones in Milchtaich’s congestion games:
Nash equilibrium always exists, and it is hard to ensure the equivalence between
Nash and strong equilibrium due to coordination failures unless players are
homogeneous. In contrast, when players are atomless, we can establish both
the existence of Nash equilibrium and equivalence between Nash and strong
equilibria exactly in the same way as in congestion games (Proposition 6).

The rest of the paper is organized as follows. In Section 2, we define our
bottleneck game with a finite number of players. In Section 3, we provide three
sufficient conditions under which Nash and strong equilibria are equivalent to
each other. In Section 4, we show that our bottleneck game may not have a
Nash equilibrium in pure strategies even when players are homogeneous. We
also provide a positive result for the existence although the conditions are very
stringent. Section 5 introduces a bottleneck game with atomless players, and we
show that the existence of Nash and the equivalence between Nash and strong
equilibria all hold in this idealized environment. Section 6 concludes.

2 The Model with a Finite Number of Players

We consider a commuting road with a finite number of departing time slots. Let
t = 1, ..., T be available departing time slots (t = 1 is the earliest). Each discrete
time unit can represent every minute or every five minutes, for example. Let
the set of departing time slots be T = {1, ..., T}. Let qt−1 be the length of the
resulting queue at departing time slot t−1. Then, the length of the queue at time
slot t can be calculated as qt = max {0, qt−1 +mt − c}, where mt is the number
of players who depart at time slot t, and c ∈ Z+ is the capacity of the bottleneck.
We also introduce notation q̃t = qt−1+mt−c to describe possible slacks: q̃t < 0
means that the road capacity is not binding at time slot t, and the queue at
time slot t does not develop even if an additional car joins. Let i = 1, ..., n
be players who can be heterogeneous in their preferences. The set of players
is denoted by N = {1, ..., n}. Player i’s choice (strategy) of departing time is
denoted τi ∈ T . A strategy profile is τ = (τ1, ..., τn) ∈ T N , and resulting queue
lengths at all time slots are described by a vector q̃(τ) = (q̃1(τ), ..., q̃T (τ)) and
q(τ) = (q1(τ), ..., qT (τ)), respectively. Denote player i’s payoff from choosing
time slot t with queue length qt is denoted by ui(t, qt). Note that by this
specification, we are assuming Anonymity (A) implicitly – it does not matter
who is in the queue.

Congestion (C) For all i ∈ N , ui(t, k) > ui(t, k + 1) holds for all t ∈ T and
all k ∈ Z+.
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Note that although qt = 0 holds irrespective of q̃t = 0 or q̃t < 0, these two
cases make some difference when an additional car arrives at time slot t. In the
former case, a queue develops with an additional car while in the latter case it
does not develop. A strategy profile τ is a Nash equilibrium if and only if for
all i ∈ N and all t ∈ T , ui(τi, qτi(τ)) ≥ ui(t, qt(t, τ−i)) holds. Before we present
a characterization of Nash equilibrium, we introduce some new terms.

Definition 1.

1. A single slot t is said to be a basin at τ ∈ T N if q̃t(τ) < 0 and q̃t−1(τ) ≤ 0.

2. A single slot t is a single terrace at τ ∈ T N if q̃t(τ) = 0 and q̃t−1(τ) ≤ 0.

3. A consecutive slots I = [t1, t2] with 1 ≤ t1 < t2 ≤ T is said to be a
connected terrace at τ ∈ T N if q̃t(τ) > 0 for all t ∈ [t1, t2), q̃t1−1(τ) ≤ 0,
and q̃t2(τ) ≤ 0.

The following is a characterization of Nash equilibria in this game (straight-
forward).

Proposition 1. A strategy profile τ is a Nash equilibrium if and only if for all
i ∈ N ,

1. for all t′ < τi, u
i(τi, qτi(τ)) ≥ ui(t′,max{q̃t′(τ) + 1, 0})

2. for all t′ > τi,

(a) ui(τi, qτi(τ)) ≥ ui(t′,max{q̃t′(τ), 0}) if t′ ∈ [t1, t2], where [t1, t2] is a
connected terrace at τ such that τ i ∈ [t1, t2],

(b) ui(τi, qτi(τ)) ≥ ui(t′,max{q̃t′(τ) + 1, 0}), otherwise.

With IIC, Konishi et al. (1997a) shows that with strict preferences, every
Nash equilibrium has the same structure (the same distribution of strategies—
the game satisfies anonymity) in their domain. However, in our domain, there
may be Nash equilibria with multiple distinct queue structures even under strict
preferences.

Example 1. Let N = {1, 2, 3, 4} and T = {1, 2, 3, 4} with capacity c = 1. Play-
ers 1 and 2 are attached to time slots 1 and 2, respectively (that is, preferences
are such that they will not choose to move to any other time slot under any
circumstance). Players 3 and 4 have the following preferences, respectively:

u3(2, 0) > u3(1, 0) > u3(2, 1) > u3(3, 0) > u3(4, 0) > u3(1, 1) > others

u4(4, 0) > u4(1, 1) > u4(3, 0) > u4(2, 1) > u4(3, 1) > others

There are two Nash equilibria: τ = (τ1, τ2, τ3, τ4) = (1, 2, 4, 1) and τ ′ = (1, 2, 2, 4).
These two Nash equilibria have two distinct queue structures, and the latter is
a strong equilibrium (see the next section).□
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3 Equivalence between Nash and Strong Equi-
libria

A coalitional deviation from τ is a pair of (C, τ̂C) such that (i) C ̸= ∅, and
(ii) for all i ∈ C, ui(τ̂) > ui(τ), where τ̂ = (τ̂C , τ−C). A strong equilibrium
is a strategy profile such that there is no coalitional deviation from τ . In a
special case, we can show that Nash equilibrium is unique and is equivalent to
strong equilibrium. This is a unique result in our domain, since in the domain of
Konishi et al. (1997a), it is virtually impossible to exclude coordination failure:
that is, it is not easy to show the equivalence between Nash and strong equilibria.

Proposition 2. Suppose that there is a Nash equilibrium τ with a unique
connected terrace [t1, t2], and q̃t(τ) < 0 for all t /∈ [t1, t2]. Then, τ is a strong
equilibrium.

We will prove this result with the following two claims.

Claim 1. Suppose that τ is a Nash equilibrium, and that (C, τ̂C) is a coalitional
deviation from τ . Then, qt(τ̂) ≤ qt(τ) for all t ∈ T , where τ̂ = (τ̂C , τ−C).

Proof. Suppose not. Then, there exists at least one slot t such that

qt(τ̂) > qt(τ). (1)

If multiple slots are found, take the earliest such slot. Since the queue-length
at slot t strictly increases, there must be at least one player who deviates to slot
t at τ̂ , i.e., mt(τ̂) > mt(τ). Then, we can find at least one member i of C who
deviates to τ̂i = t from τi ̸= t since only the members of C can change their
strategies. Since the deviation is strictly improving, it must hold that

ui(t, qt(τ̂)) > ui(τi, qτi(τ)). (2)

Note that (1) can be rewritten as

qt(τ̂) ≥ qt(τ) + 1 > qt(τ),

and by C we have

ui(t, qt(τ̂)) ≤ ui(t, qt(τ) + 1) < ui(t, qt(τ)).

Together with (2), we have

ui(τi, qτi(τ)) < ui(t, qt(τ) + 1).

This shows that under τ , player i could have switched to slot t and obtained a
higher payoff. This contradicts that τ is a Nash equilibrium. □
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Claim 2. Suppose that τ is a Nash equilibrium, and that (C, τ̂C) is a coalitional
deviation from τ . Then, no member of C deviates to slots t such that q̃t(τ) < 0.

Proof. Suppose not. Then, there exists at least one member i ∈ S such that
q̃t(τ) < 0 with t = τ̂i. Letting τ̂ = (τ̂C , τ−C), we consider two cases:

(i) q̃t(τ) < q̃t(τ) + 1 = q̃t(t, τ−i) ≤ q̃t(τ̂) ≤ 0,

(ii) q̃t(τ) < q̃t(τ) + 1 = q̃t(t, τ−i) ≤ 0 < q̃t(τ̂).

Since the deviation is strictly improving, it must follow that

ui(t, qt(τ̂)) > ui(τi, qτi(τ)).

In case (i), noting qt(τ) = qt(t, τ−i) = qt(τ̂) = 0, we obtain

ui(t, qt(t, τ−i)) = ui(t, qt(τ̂)) > ui(τi, qτi(τ)).

This shows that under τ , player i could have switched to slot t and obtained
higher payoff. This contradicts that τ is a Nash equilibrium.

In case (ii), we immediately obtain

0 = qt(τ) < qt(τ̂),

contradicting Claim 1. □

Now, we are ready to prove Proposition 2.

Proof of Proposition 2. Suppose that there is a coalitional deviation (C, τ̂C).
By Claim 2, all members of C choose time slots in [t1, t2] under τ , and no
member of C will not go out of [t1, t2] under τ̂ = (τ̂C , τ−C).

Denote by t̄, t̂ the last slots which coalition members choose at τ, τ̂ , respec-
tively, i.e., t̄ = max{τi : i ∈ C} and t̂ = max{τ̂j : j ∈ C}. We consider two
cases: (i) t̂ < t̄ and (ii) t̂ ≥ t̄.

In case (i), noting that
∣∣{i ∈ C : τi ∈ [t1, t̂]

}∣∣ ≤ |C|−1 and
∣∣{i ∈ C : τ̂i ∈ [t1, t̂]

}∣∣ =
|C|, we have ∆qt̂ := qt̂(τ̂)−qt̂(τ) ≥ 1, since all slots in [t1, t̄] belong to connected
terrace [t1, t2]. However, this contradicts Claim 1.

Then, we consider case (ii). First we have ∆qt̂ = 0, i.e., q̃t̂(τ) = q̃t̂(τ̂),
since

∣∣{i ∈ C : τi ∈ [t1, t̂]
}∣∣ = ∣∣{i ∈ C : τ̂i ∈ [t1, t̂]

}∣∣ = |C| by the definitions of

t̄ and t̂, and all slots in [t1, t̂] belong to connected terrace [t1, t2]. Moreover,
the deviation is strictly improving, and there must be member j of C such that
τ̂j = t̂ and τj ̸= t̂, which implies τj < τ̂j = t̂. That is, player j delayed her
departure time. These suggest that she could have done that under τ as well.
This is a contradiction with τ ’s being a Nash equilibrium. □
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The above result relies both on the uniqueness of connected terrace and the
absence of single terraces in equilibrium. The next example shows that the
equivalence result may not hold if the conditions are not satisfied.

Example 2. Let N = {1, 2, 3, 4, 5, 6} and T = {1, 2, 3, 4, 5} with capacity c = 1.
Players 1, 2, 3 and 4 are attached to time slots 1, 2, 4, and 5, respectively.
Players 5 and 6 have the following preferences, respectively:

u5(1, 0) > u5(2, 0) > u5(4, 0) > u5(5, 0) > u5(1, 1) > u5(2, 1) > u5(4, 1) > u5(5, 1) > others

u6(4, 0) > u6(5, 0) > u6(1, 0) > u6(2, 0) > u6(4, 1) > u6(5, 1) > u6(1, 1) > u6(2, 1) > others

There are two Nash equilibria: τ = (1, 2, 4, 5, 1, 4) and τ ′ = (1, 2, 4, 5, 4, 1). In
these cases q̃3 = 0. Only τ is a strong equilibrium. □

An additional natural condition allows Proposition 2 to extend to the case
with multiple connected terraces. We say that the time slot t∗i ∈ T is an
optimal slot for player i ∈ N if ui(t∗i , 0) > ui(t, 0) for all t ∈ T , t ̸= t∗i .

Single-Peakedness (SP). Let player i’s optimal slot be t∗i ∈ T . Then, for all
i ∈ N , and all t′ < t < t∗i or t∗i < t < t′, ui(t, 0) > ui(t′, 0) holds.

Proposition 3. Suppose that there is a Nash equilibrium τ in which (i) there
is no single terrace, and (ii) any pair of connected terraces is separated by a
basin. Then, τ is a strong equilibrium if we assume SP in addition to C and A.

Proof. First note that Claims 1 and 2 apply to this case. Under the assump-
tion, there are K connected terraces [t1, t2], ..., [t2k−1, t2k], ..., [t2K−1, t2K ] such
that q̃t < 0 for all t ∈ (t2k, t2k+1) for each k = 1, ...,K. Focus on the kth
connected terrace [t2k−1, t2k]. Since τ is a Nash equilibrium, any player i with
τi ∈ [t2k−1, t2k] satisfies u

i(τi, qτi(τ)) ≥ ui(t2k−1−1, 0) and ui(τi, t2k +1, 0). By
SP, we have ui(τi, qτi(τ)) ≥ ui(t, 0) for all t ≤ t2k−1 − 1 and t ≥ t2k + 1. Thus,
for any coalitional deviation from τ , (C, τ̂C), if i ∈ C with τi ∈ [t2k−1, t2k] then
τ̂i ∈ [t2k−1, t2k] must hold. As a result, Proposition 2 extends to this domain.
□

If connected terraces are not separated by q̃t < 0, the equivalence between
Nash and strong equilibria need not hold.

Example 3. Let N = {1, 2, 3, 4, 5, 6, 7} and T = {1, 2, 3, 4, 5} with capacity
c = 2. Players 1, 2, and 3 are attached to time slot 1, and players 4 and 5 are
attached to time slot 3. Players 6 and 7 have the following preferences:

u6(3, 0) > u6(3, 1) > u6(2, 0) > u6(1, 0) > u6(4, 0) > u6(3, 2) > others

u7(2, 0) > u7(3, 0) > u7(3, 1) > u7(4, 0) > u7(2, 1) > u7(1, 0) > others
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There is a Nash equilibrium τ = (1, 1, 1, 3, 3, 2, 3), but (C, τ̂C) = ({6, 7}, (3, 2))
is a coalitional deviation from τ . The destination profile τ̂ = (1, 1, 1, 3, 3, 3, 2)
is a strong equilibrium. In this example, SP is satisfied, but q̃2(τ) = q̃2(τ̂) = 0,
and the two connected terraces [1, 2] and [3, 4] are not separated by q̃2 < 0. □

The following variation of Example 3 also violates SP, but it shows that we
cannot ensure the existence of strong equilibrium even if there exists a Nash
equilibrium.

Example 3’. Let N = {1, 2, 3, 4, 5} and T = {1, 2, 3, 4, 5} with capacity c = 1.
Players 4 and 5 are attached to time slots 1 and 4, respectively. Players 1,2,
and 3 have the following preferences, respectively:

u1(1, 1) > u1(4, 1) > u1(1, 2),

u2(2, 0) > u2(1, 1) > u2(1, 2) > u2(2, 1),

u3(3, 0) > u3(1, 2) > u3(4, 1) > u3(3, 1),

There is only one Nash equilibrium τ = (1, 1, 4, 1, 4). However, (C, τ̂C) =
({1, 2, 3}, (4, 2, 3)) is a coalitional deviation. Hence, τ is not a strong equi-
librium. □

We can prove the equivalence between Nash and strong equilibria without
imposing any condition on a resulting equilibrium queue structure when players
have the same payoff functions, although the proof is surprisingly involved.2

Homogeneity (H). For all players i, j ∈ N , ui = uj .

Proposition 4. Under H, the set of Nash equilibrium coincides with the set of
strong equilibrium.

We start by proving the following claim.

Claim 3. Suppose that τ is a Nash equilibrium, and that (C, τ̂C) is a coali-
tional deviation from τ . Then, for any connected terrace [t1, t2] at τ , we have
|{i ∈ C : τi ∈ [t1, t2], τ̂i /∈ [t1, t2]}| ≥ |{i ∈ C : τi /∈ [t1, t2], τ̂i ∈ [t1, t2]}|.

Proof. Suppose not then there exists a connected terrace at τ , [t1, t2] such
that |{i ∈ C : τi ∈ [t1, t2], τ̂i /∈ [t1, t2]}| < |{i ∈ C : τi /∈ [t1, t2], τ̂i ∈ [t1, t2]}|. We
consider two cases: (i) q̃t2(τ) = 0, and (ii) q̃t2(τ) < 0.

In case (i), we have

q̃t2(τ̂) ≥
t2∑

t=t1

mt(τ̂)− c (t2 − t1 + 1) >

t2∑
t=t1

mt(τ)− c (t2 − t1 + 1) = q̃t2(τ) = 0,

2In congestion games, it is trivial to show the equivalence between Nash and strong equi-
libria if players are homogeneous. It is because swapping strategies would not improve all
coalition members.
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contradicting Claim 1. In case (ii), by Claim 2, |{i ∈ C : τ̂i = t2}| = 0 holds.
Thus, we have |{i ∈ C : τi ∈ [t1, t2), τ̂i /∈ [t1, t2)}| < |{i ∈ C : τi /∈ [t1, t2), τ̂i ∈ [t1, t2)}|,
implying

q̃t2−1(τ̂) ≥
t2−1∑
t=t1

mt(τ̂)− c (t2 − t1 + 1) >

t2−1∑
t=t1

mt(τ)− c (t2 − t1 + 1) = q̃t2−1(τ).

This is a contradiction with Claim 1. The proof is complete. □

Claim 4. Suppose that τ is a Nash equilibrium, and that (C, τ̂C) is a coalitional
deviation from τ . Then, there does not exist i ∈ C such that q̃τi(τ) < 0 and
τ̂j ∈ [t1, t2], where [t1, t2] is a connected terrace at τ . That is, for all i ∈ C,
both τi and τ̂i must belong to either a single terrace or a connected terrace.

Proof. Suppose not. Then, there exists at least one j ∈ C such that q̃τj (τ) < 0
and τ̂j ∈ [t1, t2].

Note that no player i ∈ C can deviate at τ̂ to the slots which is a basin at τ .
Due to the addition of this player j to τ̂j ∈ [t1, t2] and the finiteness of the

number of connected terraces at any profile, we can find some connected terrace
at τ , [t′1, t

′
2] with t1 ≤ t2 such that∣∣ {i ∈ C : τi ∈ [t′1, t

′
2], τ̂i ̸∈ [t′1, t

′
2]}

∣∣ < ∣∣ {i ∈ C : τ̂i ∈ [t′1, t
′
2], τi ̸∈ [t′1, t

′
2]}

∣∣.
However, this contradicts to Claim 3. □

From the previous claim, the next claim follows.

Claim 5. Suppose that τ is a Nash equilibrium, and that (C, τ̂C) is a coalitional
deviation from τ . Then, for any connected terrace at τ , [t1, t2] with t1 ≤ t2, we
have

∣∣ {i ∈ C : τi ∈ [t1, t2], τ̂i ̸∈ [t1, t2]}
∣∣ = ∣∣ {i ∈ C : τ̂i ∈ [t1, t2], τi ̸∈ [t1, t2]}

∣∣.
Proof. Suppose not. That is, suppose that for some connected terrace at τ ,
[t1, t2] with t1 ≤ t2,∣∣ {i ∈ C : τi ∈ [t1, t2], τ̂i ̸∈ [t1, t2]}

∣∣ > ∣∣ {i ∈ C : τ̂i ∈ [t1, t2], τi ̸∈ [t1, t2]}
∣∣.

Note that from Claim 2 no player involving an improving coalitional deviation
takes the slots that is a basin at τ or at τ ′.

Due to the finiteness of the number of players in C, |C|, we can find another
connected terrace at τ , [t′1, t

′
2] with t′1 ≤ t′2 such that∣∣ {i ∈ C : τi ∈ [t′1, t

′
2], τ̂i ̸∈ [t′1, t

′
2]}

∣∣ < ∣∣ {i ∈ C : τ̂i ∈ [t′1, t
′
2], τi ̸∈ [t′1, t

′
2]}

∣∣.
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Again, this contradicts Claim 3. □

Proof of Proposition 4. Suppose that τ is a Nash equilibrium, and that
(C, τ̂C) is a coalitional deviation from τ . We will derive a contradiction.

Step 1. Find t ∈ T such that qt(τ̂) < qt(τ). If there exist multiple such slots,
take the earliest one. Denote by [t, t] the connected terrace where t belongs.
Note that some player i ∈ C switches to τ̂i ̸∈ [t, t] at τ̂ .

Step 2. Find a player who deviates to slots in [t, t] at τ̂ .
By Claim 5, there must be at least one such player. Among these players, let
the player who chooses the latest slot at τ̂ be player j ∈ C. Note that player
j chooses τj at τ which does not belong to [t, t], say [t′, t

′
]. That is, player j

chooses τj ∈ [t′, t
′
] at τ and τ̂j ∈ [t, t] at τ̂ .

Step 3. Find a player who deviates to slots in [t′, t
′
] at τ̂ , and name player k

the one among such players who chooses the latest slot at τ̂ .
Likewise in Step 2, such player must be found due to player j’s deviation from
[t′, t

′
]. Let player k choose τk ∈ [t′′, t

′′
] ̸= [t′, t

′
]. That is, player k chooses

τk ∈ [t′′, t
′′
] at τ and τ̂k ∈ [t′, t′] at τ̂ .

Step 4. In this sequence of terraces, by finiteness in the number of connected
terraces at τ , there must be a cycle; that is, there exists a player who deviated
from a connected terrace we have identified earlier.

Let [t(1), t
(1)

], [t(2), t
(2)

], . . . , [t(k), t
(k)

] be a cycle of connected terraces, where

[t(k+1), t
(k+1)

] ≡ [t(1), t
(1)

]. Moreover, denote, by i(1), i(2), . . . , i(k) ∈ C with

k ∈ N and i(k + 1) ≡ i(1), the player who takes τi(l) ∈ [t(l), t
(l)
] at τ and

τ̂i(l) ∈ [t(l+1), t
(l+1)

] at τ̂ for l = 1, . . . , k.

Since the payoffs of players i(1), i(2), . . . , i(k) must improve under the devi-
ation,

ui(l)(τ̂i(l), qτ̂i(l)(τ̂)) > ui(l)(τi(l), qτi(l)(τ)) (3)

for all l = 1, . . . , k.
From Propositon 1, for all l = 1, . . . , k,

ui(l)(τi(l), qτi(l)(τ)) > ui(l)(t, qt(t, τ−i(l)))

for all t ∈ [t(l), t
(l)
] \ {τi(l)}. Specifically, for i(l + 1)-th player and τ̂i(l) ∈

[t(l+1), t
(l+1)

],

ui(l+1)(τi(l+1), qτi(l+1)
(τ)) > ui(l+1)(τ̂i(l), qτ̂i(l)(τ̂i(l), τ−i(l+1))). (4)

We would see that qτ̂i(l)(τ) = qτ̂i(l)(τ̂i(l), τ−i(l+1)) ≤ qτ̂i(l)(τ̂).
Thus,

ui(l+1)(τ̂i(l), qτ̂i(l)(τ̂i(l), τ−i(l+1))) ≥ ui(l+1)(τ̂i(l), qτ̂i(l)(τ̂)). (5)
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Note that by H,

ui(l+1)(τ̂i(l), qτ̂i(l)(τ̂)) = ui(l)(τ̂i(l), qτ̂i(l)(τ̂)). (6)

Hence, from (3), (4), (5) and (6), we obtain

ui(l+1)(τi(l+1), qτi(l+1)
(τ)) > ui(l+1)(τ̂i(l), qτ̂i(l)(τ̂i(l), τ−i(l+1)))

≥ ui(l+1)(τ̂i(l), qτ̂i(l)(τ̂))

= ui(l)(τ̂i(l), qτ̂i(l)(τ̂))

> ui(l)(τi(l), qτi(l)(τ)).

However, this yields a cycle on the preference:

ui(1)(τi(1), qτi(1)(τ)) < ui(1)(τ̂i(1), qτ̂i(1)(τ̂))

< ui(2)(τi(2), qτi(2)(τ))

< ui(2)(τ̂i(2), qτ̂i(2)(τ̂))

...

< ui(k)(τi(k), qτi(k)
(τ))

< ui(k)(τ̂i(k), qτ̂i(k)
(τ̂))

< ui(k+1)(τi(k+1), qτi(k+1)
(τ))

= ui(1)(τi(1), qτi(1)(τ)),

which is a contradiction. □

4 (Non)existence of Nash Equilibrium

Unfortunately, even under homogeneity, the existence of Nash equilibrium is
not guaranteed. In fact, the following simple example shows that there may not
be a Nash equilibrium even under H together with SP and another stringent
condition, Order Preservation (OP) introduced by Konishi et al. (1997b) that
investigates positive externality games (see below).

Order Preservation (OP). For all i ∈ N , all t, t′ ∈ T and all k, k′ ∈ Z+,

ui(t, k) ≥ ui(t′, k′) ⇐⇒ ui(t, k + 1) ≥ ui(t′, k′ + 1).

The following Boundedness (B) condition together with OP enables us a
tractable representation of payoff functions.

Boundedness (B). Suppose that C holds. For all t, t′ ∈ T with ui(t, 0) <
ui(t′, 0) there exists ktt′ ∈ Z+ such that ui(t, 0) > ui(t′, ktt′).
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The following result is a variation of the result in Konishi and Fishburn
(1996).3

Fact. Under A, B, C, and OP, utility function ui has a quasi-linear represen-
tation. There is a vector vi = (vi(1), ..., vi(T )) ∈ RT such that for all t, t′ ∈ T ,
and all k, k′ ∈ Z+,

ui(t, k) ≥ ui(t′, k′) ⇐⇒ vi(t)− k ≥ vi(t′)− k′.

Example 4. Consider the following three-player, three-time-slot game with
A, B, C, H, OP, and SP (capacity c = 1): v(1) > v(2) > v(1) − 1 > v(3) >
v(2) − 1 > v(1) − 2 > ... Then, there is no pure strategy equilibrium. To see
this, first note at least one player chooses 1 in a Nash equilibrium. Let player 1
be such a player. Without loss of generality, player 2 weakly earlier departure
time than player 3. There are five cases: (i) (1, 1, 1) then a player moves to 3,
(ii) (1, 1, 2) then player 3 moves to 3, (iii) (1, 1, 3) then player 1 or 2 moves to 2,
(iv) (1, 2, 2) then player 2 or 3 moves to 3, and (v) (1, 2, 3) then player 3 moves
to 1. Thus, there is no Nash equilibrium in pure strategy. □

Therefore we seek a stronger concept, which we call symmetric single-peakedness
(SSP). Symmetric single-peakedness reflects a player who values the trade-off
between departing at her optimal slot and the queue-length at a one-to-one ra-
tio. That is, departing k slots later (earlier) than the optimal slot is equivalent
to facing an added queue-length of k at her optimal slot. Formally,

Symmetric single-peakedness (SSP). For all i ∈ N , let t∗i ∈ T be an
optimal slot. Player i’s payoff function satisfies

u(t∗i , k) = u(t∗i ± k, 0) for all k ∈ N.

Note that SSP implies B and SP. Finally, we show that SSP enables us to
establish the existence of Nash equilibria.

Proposition 5. Under A, B, C, H, SSP, and OP, there exists a Nash equilibrium
with pure strategies.

We show that the allocation generated by the following procedure is indeed
an equilibrium allocation. Let n′ denote the number of players yet to be allo-
cated.

Procedure.

3Note that this Boundedness condition differs from the one in Konishi and Fishburn (1996).
Their Boundedness goes: ”For all t, t′ ∈ T , there exists ktt′ ∈ Z+ such that ui(t, ktt′ ) >
ui(t′, 0),” and the resulting utility representation is vit+qt (conformity instead of congestion).
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Step 1 Set n′ = n.

Step 2 At slot t∗, put (c + 1) players whenever possible, and proceed to Step
3. If n′ < c+ 1, put all n′ players at slot t∗, and terminate.

Step 3 Update n′ with n′ − (c− 1), i.e., n′ → n′ − (c− 1).

Step 4 Set κ = 1.

Step 5 While t∗ − κ > 0 and n′ > 0:

Step 5-1 At slot (t∗ + κ), put (c − 1) players whenever possible, and
proceed to Step 5-2. Otherwise, put all n′ players at slot (t∗ + κ),
and terminate.

Step 5-2 Update n′ → n′ − (c− 1).

Step 5-3 At slot t∗ − κ, put (c+ 1) players whenever possible, and pro-
ceed to Step 5-4. Otherwise, put all n′ players at slot (t∗ − κ), and
terminate.

Step 5-4 Update n′ → n′ − (c+ 1) and κ → κ+ 1.

Step 6 While n′ > 0:

Step 6-1 At slot (t∗ + κ), put (c − 1) players whenever possible, and
proceed to Step 6-2. Otherwise, put all n′ players at slot (t∗ + κ),
and terminate.

Step 6-2 Update n′ → n′ − (c− 1).

Step 6-3 At slot 1, put one player whenever possible, and proceed to
Step 6-4. Otherwise, terminate.

Step 6-4 Update n′ → n′ − (c+ 1) and κ → κ+ 1.

When c = 1, steps 5-1, 5-2, 6-1 and 6-2 can be skipped since c − 1 = 0.
Also, note that if there are enough number of players (so that Step 5 in the
procedure is implemented), then the procedure allocates (c + 1) players to all
slots t ∈ [2, t∗], (c− 1) players to all slots t ∈ [t∗ + 1, t′] with some t′ > t∗, and
the remaining players to slot 1.

Proof. Let τ be a profile resulting from this procedure. If the total number of
players n ≤ c+1, then τi = t∗ is trivially a Nash equilibrium. Thus, we consider
the case in which n > c+ 2.

(A) Suppose t∗ ≥ 2. There exists one and only one connected terrace [t1, t2] at
τ . We consider further two cases: (i) t1 > 1 and (ii) t1 = 1.

(i) When t1 > 1, we will have

mt(τ) = c+ 1 t ∈ [t1, t
∗],

mt(τ) = c− 1 t ∈ [t∗ + 1, t2 − 1].
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At this profile the queue-length vector q(τ) becomes

q(τ) = (q1, ..., qt1−1, qt1 , qt1+1, ..., qt∗ , qt∗+1, ..., qt2−1=2t∗−t1 , qt2 , ...)

= (0, ..., 0, 1, 2, ..., t∗ − t1 + 1, t∗ − t1, ..., 1, 0, ...). (7)

SSP and OP imply

u(t1 − 1, 0) = u(t1, 1) = · · · = u(t∗, t∗ − t1 + 1)

= u(t∗ + 1, t∗ − t1) = · · · = u(t2 − 1, 1) = u(t2, 0).

First, note that player i with τi ∈ [t1, t2] cannot improve by departing later
in [t1, t2], since the queue-length at switched slot, τ ′i is the same as in (7), so
player i is indifferent between τi and τ ′i .

In addition, these players cannot improve by departing earlier in [t1, t2], since
the queue-length at switched slot, τ ′i , compared to (7), increases by one, so they
are worse off by switching to τ ′i .

Next we consider the case when they depart later or earlier out of the con-
nected terrace. At τ ′i , they face a queue of length zero or one if τ ′i = t1− 1 or of
length zero otherwise. If τ ′i = t1−1 and qt1−1(τ

′
i , τ−i) = 0, player i is indifferent

between τ ′i = t1 − 1 and τi. If τ ′i = t1 − 1 and qt1−1(τ
′
i , τ−i) = 1, τ ′i = t1 − 1

is worse than τi. If τ ′i ̸= t1 − 1, u(τ ′i , 0) < u(t1 − 1, 0) = u(t2, 0), they making
worse-off.

Player i in slot t1 − 1, if any, does not depart earlier than slot t1 − 1 or
later than slot t2 by the same logic in the above. Player i also does not switch
to τi ∈ [t1, t2], since the queue-length at switched slot, τ ′i , compared to (7),
increases by one, so they are worse.

Thus, since no player has an incentive to switch their slots in the case (A)-(i),
τ is a Nash equilibrium.

(ii) Case t1 = 1. We will have

m1(τ) ≥ c+ 1,

mt(τ) = c+ 1 t ∈ [2, t∗],

mt(τ) = c− 1 t ∈ [t∗ + 1, t2 − 1].

Depending on the value of n, there may be some player(s) at slot t2, say

mt2(τ) = k for some k ∈ [0, c− 1].

Let m1(τ) ≡ q∗1 . At this profile the queue-length vector q(τ) becomes

q(τ) = (q1, q2, ..., qt∗ , qt∗+1, ..., qt2−1, qt2 , ...)

= (q∗1 , q
∗
1 + 1, ..., q∗1 + (t∗ − 2 + 1), q∗1 + (t∗ − 2 + 1)− 1, ..., ..., 1, 0, ...).
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In this case, using a similar argument as in case (A)-(i), no player has an
incentive to switch their slots.

(B) Suppose t∗ = 1. This is a variant of the case (A)-(ii), and it is shown that
no player has an incentive to switch their slots. □

Any property imposed on Proposition 5 seems required for a Nash equilib-
rium to exist. Indeed, once OP is dropped, then the existence of Nash equilibria
may not be guaranteed any more as the following example shows.

Example 4. Let N = {1, 2, 3, 4} and T = {1, 2, 3, 4} with capacity c = 1.
Players have the following preferences.

u(2, 0) > u(1, 0) = u(2, 1) = u(3, 0) > u(1, 1) > u(3, 1) > u(2, 2) = u(4, 0) > others.

In this example, H and SSP with optimal time slot t∗ = 2 are satisfied, while OP
is not, since u(2, 0) > u(1, 0) but u(2, 1) = u(1, 0) > u(1, 1). Then, this example
does not admit any pure strategy Nash equilibrium. To see, first consider four
cases: (i) (1, 2, 2, 3) then player 4 moves to 1. (ii) (1, 2, 2, 1) then player 3 moves
to 3. (iii) (1, 2, 3, 1) then player 4 moves to 2. (iv) (1, 2, 3, 2) then player 3 moves
to 1. Since the queue-structure when (i) and (iv) are the same and H holds, the
cycle is started by player 3, and never stops. Moreover, even when stating from
an arbitrary profile, the deviation process is finally absorbed to this cycle. □

5 Bottleneck Games with Atomless Players

When there are a finite number of players, the existence of Nash equilibrium
and in the equivalence between Nash and strong equilibria held under special
circumstances. The primary reason for the number of negative results may
be the asymmetry of the effect of a player deviating to an earlier slot versus
deviating to a later slot within a connected terrace (Proposition 1). This is
coming from the fact that players are atoms in that deviating players taken into
account the change in the queue distribution caused by their deviations. In this
section we will consider an idealized game in which players are atomless as in
Vickrey (1969).

The set of players is the interval I = [0, 1] endowed with Lebesgue measure
λ. There is a finite set of alternatives T = {1, ..., T}. A strategy profile is a
measurable function τ : I → T . Each player i ∈ I has a payoff function ui(τ),
but without confusion, we write it ui(τi, τ) to clarify which strategy player i is
choosing.

We assume anonymity in the sense of Schmeidler (1973). For each strategy
profile τ , let µ(τ) be a T -dimensional vector µ(τ) = (µ1(τ), µ2(τ), ..., µT (τ)),
where µt(τ) = λ({i ∈ I : τ(i) = t}) for each t ∈ T . We say that a game
satisfies anonymity (A) if the following condition is satisfied: for all i ∈ I, all
t ∈ T , and τ, τ ′, ui(t, τ) = ui(τ ′) whenever µ(τ) = µ(τ ′). A strategy profile
τ is a Nash equilibrium if ui(τ i, τ) ≥ ui(t, τ) for almost all i ∈ I and all
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t ∈ T . Note that we can define q̃(τ) and q(τ) exactly in the same way as before:
q̃t(τ) = qt−1(τ)+µt(τ)−c, and qt(τ) = max {q̃t(τ), 0}. By A, the payoff function
ui(t, τ) can also be written as ui(t, τ) = vi(t, qt(τ)).

Under the atomless player assumption, we will assume Schmeidler’s technical
assumption.

Regularity (R) (Schmeidler, 1973). (i) For all i ∈ I, and all t ∈ T , ui(t, τ) is
continuous. Thus, all utility functions are uniformly bounded and there exists
a positive constant K such that

∣∣ui(t, τ)
∣∣ < K for all i ∈ I, t ∈ T , and τ . (ii)

For all τ and all t, t′ ∈ T , the set
{
i ∈ I : ui(t, τ) > ui(t′, τ)

}
is measurable.

Proposition (Schmeidler, 1973). Under A and R, there exists a Nash equilib-
rium in pure strategies.

A strategy profile is a strong equilibrium if there is no measurable subset
C ⊂ I with λ(C) > 0 and a strategy profile τ̂ of players in C such that ui(τ̂i, τ̂) >
ui(τi, τ) almost everywhere on C, where τ̂ = ((τ̂i)i∈C , (τi)i/∈C). We will impose
the following congestion condition.

Congestion (C) vi(t, qt) is strictly decreasing in qt for all t ∈ T and all qt ∈ R+.

The main result of this section is:

Proposition 6. Consider an atomless game. Under A, C, and R, the sets of
Nash and strong equilibria coincide with each other.

Proof. Suppose that τ is a Nash equilibrium while it is not a strong equilibrium.
Then, there exist a coalition C with λ(C) > 0 and a strategy profile τ̂ for C
such that ui(τ̂i, τ̂) > ui(τi, τ), where τ̂ = ((τ̂i)i∈C , (τi)i/∈C). Note that τ̂i /∈
{t′ ∈ T : qt′(τ) ≤ 0} holds for all i ∈ C. It is because player i would have moved
under strategy profile τ , contradicting τ ’s being a Nash equilibrium, otherwise.
Thus, {t′ ∈ T : qt′(τ) > 0} ⊇ {t′ ∈ T : qt′(τ̂) > 0}.

Assume now that there is a time slot t ∈ {t′ ∈ T : qt′(τ̂) > 0} with qt(τ̂) >
qt(τ). Take the earliest time slot of this kind t. Then, C∩{i′ ∈ N : τ̂i′ = t} ̸= ∅.
Let i be such a player. Since τ is a Nash equilibrium, vi(τi, qτi(τ)) ≥ vi(t, qt(τ̂))
must hold. This is a contradiction with C’s being profitable deviation. Thus, for
all t ∈ {t′ ∈ T : qt′(τ̂) > 0}, qt(τ̂) ≤ qt(τ) holds. Since {t′ ∈ T : q̃t′(τ) > 0} ⊇
{t′ ∈ T : q̃t′(τ̂) > 0}, qt(τ̂) = qt(τ) holds for all t ∈ {t′ ∈ T : qt′(τ) > 0} =
{t′ ∈ T : qt′(τ̂) > 0}. Hence, a deviation C with τ̂ cannot improve on Nash
equilibrium τ . This implies that a Nash equilibrium τ is a strong equilibrium.□

6 Concluding Remarks

We have investigated the bottleneck games with finite players and atomless play-
ers. Although the bottleneck game is a natural extension of congestion game by
Milchtaich (1996) and Konishi et al. (1997a), the results of these two games differ
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from each other in the finite case. Somewhat surprisingly, the presence/absence
of single-terraces (time slots that are chosen by the same number of players as
the capacities) can alter the structure of the equilibria of the bottleneck game.
This is because there is an asymmetry between an increase and a reduction in
population at single-terraces: the former reduces payoffs while the latter has no
effect on them. In contrast, in an atomless bottleneck game, we need essentially
no condition for the result. There is no such asymmetry: players can simply
choose the most preferable time slot given the queue structure without affecting
the queues. This is why we can recover the nice equivalence result between Nash
and strong equilibria as in Konishi et al. (1997a).

Thus, whether the traffic bottleneck model started by Vickrey (1969) would
provide us useful insights or not depends on how we interpret the ”atomless”
assumption of the model. If we accept this assumption as an reasonable ap-
proximation of the real world, we can enjoy nice properties and rich results of
the model. However, if we question the legitimacy of atomless players, then we
need to suffer from the ill-behaved model coming from finite problems.
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