

No. 2017-6

An improved approximation algorithm

for the covering 0-1 integer program

 Yotaro Takazawa, Shinji Mizuno,

Tomonari Kitahara

August 2017

Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, JAPAN

http://educ.titech.ac.jp/iee/

Department of Industrial Engineering and Economics

WWWooorrrkkkiiinnnggg PPPaaapppeeerrr

An improved approximation algorithm
for the covering 0–1 integer program

Yotaro Takazawa, Shinji Mizuno, Tomonari Kitahara ∗

August 9, 2017

Abstract

We present an improved approximation algorithm for the covering 0–1
integer program (CIP), a well-known problem as a natural generalization
of the set cover problem. Our algorithm uses a primal–dual algorithm for
CIP by Fujito (2004) as a subroutine and achieves an approximation ratio of(

f − f−1
m

)
when m ≥ 2, where m is the number of the constraints and f is the

maximum number of non-zero entries in the constraints. In addition, when
m = 1 our algorithm can be regarded as a PTAS. These results improve the
previously known approximation ratio f .

keywords: Approximation algorithms, Covering integer program, Primal-dual
method

1 Introduction
The covering 0–1 integer program (CIP) is a well-known problem which gener-
alizes fundamental combinatorial optimization problems. CIP is formulated as
follows.

CIP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
min

∑
j∈N

c jx j

s.t.
∑
j∈N

ui jx j ≥ di, ∀i ∈ M,

x j ∈ {0, 1}, ∀ j ∈ N,

(1)

where M = {1, . . . ,m}, N = {1, . . . , n}, c j ≥ 0 (j ∈ N), ui j ≥ 0 (i ∈ M, j ∈ N) and
di ≥ 0 (i ∈ M). For a given minimization problem having an optimal solution,

∗Department of Industrial Engineering and Economics, Tokyo Institute of Technology

1

an algorithm is called an α-approximation algorithm if it runs in polynomial time
and produces a feasible solution whose objective value is less than or equal to α
times the optimal value.

There is no o(log m)-approximation algorithms for CIP unless P = NP since
the set cover problem is a special case of CIP (Raz and Safra 1997). Kolliopoulos
and Young (2013) present an O(log m)-approximation algorithm for CIP. Let f be
the maximum number of non-zero entries in the constraints. For any f ≥ 2 and
ϵ > 0, CIP is hard to approximate better than a factor of f − 1 − ϵ unless P=NP
(Dinur and Safra 2005) and f − ϵ under the unique games conjecture (Khot and
Regev 2008). In this paper, we focus on algorithms whose approximation ratios
depend on f .

For CIP, f -approximation algorithms are proposed in (Carr et al. 2000; Fu-
jito 2004; Fujito and Yabuta 2004). Takazawa and Mizuno (2017) present an
f2-appoximation algorithm for CIP, where f2 is the second largest number of non-
zero entries in the constraints. Note that f2 is less than or equal to f . Approxima-
tion algorithms for generalizations of CIP are also well studied. Koufogiannakis
and Young (2005) and Pritchard and Chakrabarty (2011) give f -approximation
algorithms for CIP with general upper bounds on variables. McCormick et al.
(2016) develop an approximation algorithm for precedence constrained CIP. Takazawa
et al. (2017) present an approximation algorithm for the partial CIP, where some
constraints may not be satisfied. To the best of our knowledge, there are no ap-
proximation algorithms for CIP whose approximation ratio is strictly less than f
when f ≥ 2.

While there are no approximation algorithms for CIP whose approximation
ratio is better than f , there are such approximation algorithms for special cases
of CIP such as the minimum knapsack problem (MKP), the set cover problem
(SCP) and the vertex cover problem (VCP), see Table 1. MKP is a special case
of CIP when the number of the constraints is only one and can be regarded as the
minimization version of the knapsack problem (KP). It is well-known that KP and
MKP admit a fully polynomial time approximation scheme (FPTAS) (Babat 1975;
Kellerer et al. 2004). SCP is a special case of CIP when ui j ∈ {0, 1} and di = 1 and
VCP is a special case of SCP when f = 2 and c j = 1. Halperin (2002) gives a (2−
ln ln∆/ ln∆)-approximation algorithm for VCP, where ∆ is the maximal degree
of the graph, and extends this result to SCP. Karakostas (2009) obtains a (2 −
Θ(1/

√
log m))-approximation algorithm for VCP. Both the approaches use SDP-

relaxation. Fujito (2004) gives approximation algorithms whose approximation
ratios are better than f for some special cases of CIP including SCP and VCP. For
more information on approximation algorithms for CIP and its special cases, we
refer the reader to Fujito (2004).

2

Table 1: Approximation ratios for problems related to CIP

Problem Names Restrictions on CIP Approximation Ratios
Covering 0–1 integer program - f (Carr et al. 2000; Fujito 2004;
(CIP) Fujito and Yabuta 2004;

Koufogiannakis and Young 2005;
Pritchard and Chakrabarty 2011)

f2 (Takazawa and Mizuno 2017)
f − f−1

m (this paper)
Minimum Knapsack Problem m = 1 FPTAS (Babat 1975)
(MKP)
(Weighted) Set Cover Problem ui j ∈ {0, 1}, di = 1 f

(
1 − (f − 1) ln ln∆

ln∆

)
(Halperin 2002)

(SCP)
Vertex Cover Problem ui j ∈ {0, 1}, di = 1 2 − ln ln∆

ln∆ (Halperin 2002)
(VCP) c j = 1, f = 2 2 − Θ(1/

√
log m) (Karakostas 2009)

where i∗ ∈ M is an index such that |{ j ∈ N | ui∗ j > 0}| = f and

f = maxi∈M |{ j ∈ N | ui j > 0}|,
f2 = maxi∈M\i∗ |{ j ∈ N | ui j > 0}|,
∆ = maxi∈N |{i ∈ M | ui j > 0}|.

(2)

Contribution
In this paper we propose an

(
f − f−1

m

)
-approximation algorithm for CIP when m ≥

2. When m = 1 (MKP), for any fixed ϵ > 0, our algorithm finds a solution
whose objective value is less than or equal to (1 + ϵ) times the optimal value within
polynomial in m, n and n⌈1/ϵ⌉, that is, it can be regarded as a polynomial time
approximation scheme (PTAS). Our algorithm is the first algorithm for CIP whose
approximation ratio is strictly less than f when f ≥ 2.

Our algorithm, which we call the main algorithm, uses a primal-dual f -approximation
algorithm (PD) for CIP by Fujito (2004). The main algorithm solves O(n2) sub-
problems of CIP by using PD as a subroutine. Similar approaches can be seen
in literature of the partial covering problems (Gandhi et al. 2004; Könemann et
al. 2011; Takazawa et al. 2017). Note that analysis of the main algorithm is a
non-trivial work even though the algorithm uses PD presented by Fujito.

Notation and Assumption
Let I = (U ,d, c) be a data of (1), where U is the matrix of ui j. We call I an
instance of CIP. Let CIP(I) be the problem for instance I. Let I0 be an instance to

3

be solved. Without loss of generality, for the problem CIP(I0), we assume that

• f ≥ 2,

• CIP(I0) is feasible.

Let OPT (I) be the optimal value of CIP(I) when CIP(I) is feasible. For any
subset S ⊆ N, we define a vector x(S) ∈ Rn as follows:

x j(S) =
{

1 if j ∈ S
0 if j < S for any j ∈ N. (3)

2 Main algorithm
In this section, we introduce the main algorithm. The main algorithm solves many
subproblems of CIP by the algorithm PD in Fujito (2004) as a subroutine. The
algorithm PD and its analysis are presented in Section 3. This section is organized
as follows:

1. We show a property (Lemma 1) of the solution generated by PD.

2. We explain that we can get an
(

f − f−1
m

)
-approximation solution by using

PD if we know partial information about an optimal solution.

3. We introduce the main algorithm which gives an
(

f − f−1
m

)
-approximation

without information about an optimal solution.

First, we state a property of the solution generated by PD. Details of PD and
the proof of Lemma 1 are shown in Section 3.

Lemma 1. For any instance I, the algorithm PD presented in Section 3 runs in
O(mn2) and determines feasibility of CIP(I). If CIP(I) is feasible, the algorithm
PD produces a feasible solution x satisfying∑

j∈N
c jx j ≤

(
f − f − 1

m

)
OPT (I) + cmax,

where cmax = max j∈N c j.

For any A ⊆ N, define

N(A) = { j ∈ N\A | c j ≤ min j′∈A c j′},
N̄(A) = { j ∈ N\A | c j > min j′∈A c j′}.

(4)

4

We can see that {A, N(A), N̄(A)} is a partition of N. For an instance I0 and A ⊆ N,
we consider a subproblem of CIP(I0) by fixing some variables as follows:

x j = 1 if j ∈ A,
x j = 0 if j ∈ N̄(A).

This subproblem can be expressed as:

min
∑

j∈N(A)

c jx j

s.t.
∑

j∈N(A)

ui jx j ≥ max

di −
∑
j∈A

ui j, 0

, ∀i ∈ M,

x j ∈ {0, 1}, ∀ j ∈ N(A).

(5)

Note that this problem is also CIP and the number of decision variables is |N(A)|.
Let I0(A) be the instance of this subproblem . Let x̄A ⊆ {0, 1}|N(A)| be an output
by the algorithm PD for the subproblem CIP(I0(A)) when CIP(I0(A)) is feasible.
Define a solution xA ⊆ {0, 1}n for CIP(I0) as

xA =

x̄A

j if j ∈ N(A),
1 if j ∈ A,
0 if j ∈ N̄(A).

(6)

Let S ∗ be a subset of N such that x(S ∗) is an optimal solution of CIP(I0). For
any positive integer k such that k ≤ |S ∗|, we define A∗k ⊆ S ∗ as { j1, . . . , jk} such
that {c j1 , . . . , c jk} is a set of the k largest numbers in {c j | j ∈ S ∗}. We can get an(

f − f−1
m

)
-approximation solution for CIP(I0) by using PD if we know A∗2.

Lemma 2. If m ≥ 2, k = 2 and k < |S ∗|, then xA∗k defined by (6) is feasible to
CIP(I0) and the following inequality holds:∑

j∈N
c jx

A∗k
j ≤

(
f − f − 1

m

)
OPT (I0).

Proof. First, we will prove that xA∗k is feasible to CIP(I0). The problem CIP(I0(A∗k))
is feasible since a subvector of x(S ∗\A∗k) is a feasible solution for CIP(I0(A∗k)).
Thus, PD outputs a feasible solution x̄A∗k for CIP(I0(A∗k)). Then, a solution xA∗k

defined by (6) is clearly feasible to CIP(I0).
Let α = f − f−1

m . Let f ′ be the maximum number of non-zero entries in the
constraints of the subproblem CIP(I0(A∗k)). we can see that f ′ − f ′−1

m ≤ α from

5

f ′ ≤ f . From Lemma 1, the algorithm PD outputs a solution x̄A∗k for the problem
CIP(I0(A∗k)) and the next inequality holds:∑

j∈N(A∗k)

c j x̄
A∗k
j ≤

(
f ′ − f ′ − 1

m

)
OPT (I0(A∗k)) + max

j∈N(A∗k)
c j ≤ αOPT (I0(A∗k)) + max

j∈N(A∗k)
c j.

(7)
From the definition of the subproblem CIP(I0(A∗k)), we have that

OPT (I0) =
∑

j∈S ∗\A∗k

c j +
∑
j∈A∗k

c j = OPT (I0(A∗k)) +
∑
j∈A∗k

c j. (8)

From the definition of N(A∗k) in (4), we obtain that

max
j∈N(A∗k)

c j ≤ min
j∈A∗k

c j ≤
1
k

∑
j∈A∗k

c j. (9)

From (7), (8) and (9), we have that∑
j∈N

c jx
A∗k
j =

∑
j∈N(A∗k)

c j x̄A∗
j +

∑
j∈A∗k

c j

≤ αOPT (I0(A∗k)) + max
j∈N(A∗k)

c j +
∑
j∈A∗k

c j

= α

OPT (I0(A∗k)) +
∑
j∈A∗k

c j

 + (1 − α)
∑
j∈A∗k

c j + max
j∈N(A∗k)

c j

≤ αOPT (I0) +
(
1 − α + 1

k

)∑
j∈A∗k

c j (10)

Since m ≥ 2 and f ≥ 2 from the assumptions, α = f − f−1
m ≥ 3/2 holds. From this

observation and k = 2, we obtain that(
1 − α + 1

k

)∑
j∈A∗k

c j ≤
(
1 − 3

2
+

1
2

)∑
j∈A∗k

c j = 0.

Therefore, we get ∑
j∈N

c jx
A∗k
j ≤ αOPT (I0).

□

When m = 1, we can get a
(
1 + 1

k

)
-approximation solution for any fixed posi-

tive integer k such that k < |S ∗|.

6

Lemma 3. If m = 1, for any positive integer k such that k < |S ∗|, xA∗k is feasible
to CIP(I) and the following inequality holds:∑

j∈N
c jx

A∗k
j ≤

(
1 +

1
k

)
OPT (I0).

Proof. The proof of Lemma 2 until (10) also holds in this case. By substituting
α = f − f−1

m = 1 in (10), we have that

∑
j∈N

c jx
A∗k
j ≤ OPT (I0) +

1
k

∑
j∈A∗k

c j ≤
(
1 +

1
k

)
OPT (I0),

where the last inequality holds since
∑

j∈A∗k c j ≤ OPT (I0) from A∗k ⊆ S ∗. □

Even though Lemma 2 and Lemma 3 require the information about A∗k, we
don’t need it in advance if we execute PD for all supproblems CIP(I0(A)) such
that A ⊆ N and |A| ≤ k. The main algorithm is presented as follows:

The main algorithm

Input: I0 = (U ,d, c) and a positive integer k.

Step 0: CalculateD(k) defined by

D(k) = {A ⊆ N | |A| ≤ k |}.

Step 1: For each A ∈ D(k), do the following process:
Let I0(A) be the data derived from the subproblem (5). If x(A) is feasible to
CIP(I0), that is

∑
j∈A ui j ≥ di for any i ∈ M, go to Step 1-A. Otherwise go to

Step 1-B.
(Step 1-A): Make a solution for CIP(I0) as follows:

xA = x(A).

(Step 1-B): Execute the algorithm PD for the subproblem CIP(I0(A)) de-
fined by (5). If the problem CIP(I0(A)) is feasible, the algorithm outputs a
feasible solution for CIP(I0(A)). Denote this solution by x̄A ⊆ {0, 1}|N(A)|.
By using this solution, make a solution xA for CIP(I0) by (6):

xA =

x̄A

j if j ∈ N(A),
1 if j ∈ A,
0 if j ∈ N̄(A).

7

Step 2: Set Â = arg min
A⊆D(k)

∑
j∈N c jxA

j and output xÂ.

Theorem 1. Suppose m ≥ 2 and set k = 2 in the main algorithm. Then the main
algorithm is an

(
f − f−1

m

)
-approximation algorithm for CIP.

Proof. The running time of one iteration of Step 1 is O(mn2) from Lemma 1. The
number of iterations of the main algorithm is O(nk). Thus, the main algorithm
runs in polynomial time.

If k ≥ |S ∗|, that implies S ∗ ∈ D(k). We consider when Step 1 is executed for
A = S ∗. In this case, the algorithm goes to Step 1-A since x(S ∗) = x∗ is feasible to
CIP(I0) and sets xS ∗ = x∗ at this iteration. Thus, the algorithm outputs an optimal
solution.

Next we consider the case when k < |S ∗|. In this case, A∗k ∈ D(k) holds and
that implies the main algorithm executes Step 1-B for the set A∗k since x(A∗k) is
infeasible to CIP(I0). From Lemma 2, we have that∑

j∈N
c jx

A∗k
j ≤

(
f − f − 1

m

)
OPT (I0).

Therefore, we get∑
j∈N

c jxÂ
j = min

A⊆D(k)

∑
j∈N

c jxA
j ≤

∑
j∈N

c jx
A∗k
j ≤

(
f − f − 1

m

)
OPT (I0).

□

When m = 1, we have the following result from Lemma 3 in the same way as
the proof of Theorem 1.

Theorem 2. For any fixed ϵ > 0, set k = ⌈1/ϵ⌉ in the main algorithm. If m = 1,
then the main algorithm finds a feasible solution whose objective value is less than
or equal to (1 + ϵ) times the optimal value within polynomial in m, n and n⌈1/ϵ⌉.

3 Algorithm PD and proof of Lemma 1
In this section, we introduce the algorithm PD proposed by Fujito (2004) and
prove Lemma 1. First we show a relaxation problem of CIP, which is utilized by
PD. Let

di(A) = max{0, di −
∑

j∈A ui j}, ∀i ∈ M,∀A ⊆ N,
ui j(A) = min{ui j, di(A)}, ∀i ∈ M,∀A ⊆ N,∀ j ∈ N\A,
M(A) = {i ∈ M | di(A) > 0}, ∀A ⊆ N,

U j(A) =
∑

i∈M(A)

ui j(A)
di(A)

, ∀A ⊆ N,∀ j ∈ N\A
(11)

8

Using these symbols, we have the following problem.

min
∑
j∈N

c jx j

s.t.
∑

j∈N\A
U j(A)x j ≥ |M(A)|, ∀A ⊆ N

x j ≥ 0, ∀ j ∈ N.

(12)

This problem is a relaxation problem of CIP from Proposition 1 in Fujito (2004).

Lemma 4. (12) is a relaxation problem of CIP, that is, any feasible solution x for
CIP is feasible to (12).

The dual problem of (12) is expressed as

max
∑
A⊆N

|M(A)|y(A)

s.t.
∑

A⊆N: j<A

U j(A)y(A) ≤ c j, ∀ j ∈ N,

y(A) ≥ 0, ∀A ⊆ N.

(13)

Now, we introduce a useful and well-known result in analysis of the primal-dual
method.

Lemma 5. Let x ∈ {0, 1}n and let y be a feasible solution to (13). For α ≥ 0, if x
and y satisfy

(a) ∀ j ∈ N, x j = 1⇒ ∑
A⊆N: j<A U j(A)y(A) = c j,

(b) ∀A ⊆ N, y(A) > 0⇒ ∑
j∈N\A U j(A)x j ≤ α|M(A)|,

then the following inequality holds:∑
j∈N

c jx j ≤ αOPT (I).

Proof. Suppose x and y satisfy the conditions of Lemma 5. Let S = { j ∈ N | x j =

1}. From the condition (a), we have that∑
j∈N

c jx j =
∑
j∈S

c j =
∑
j∈S

∑
A⊆N: j<A

U j(A)y(A) =
∑
A⊆N

∑
j∈S \A

U j(A)y(A).

From the condition (b), we obtain that∑
A⊆N

∑
j∈S \A

U j(A)y(A) =
∑
A⊆N

y(A)
∑
j∈S \A

U j(A) ≤ α
∑
A⊆N

|M(A)|y(A).

9

Since y is feasible to (13), the objective value of y is less than or equal to the
optimal value of (12), which is less than or equal to OPT(I). Therefore, we get∑

j∈N
c jx j ≤ α

∑
A⊆N

|M(A)|y(A) ≤ αOPT (I).

□

The algorithm PD is presented below. Solutions generated by the algorithm,
except for the final solution, satisfy all the conditions in Lemma 5 for α = f − f−1

m .

Algorithm PD

Input: an instance I.

Step 0: Set x = 0, y = 0 and c̄ = c. Check whether the solution (1, · · · , 1)
is feasible to CIP(I) or not. If it is not feasible, declare INFEASIBLE and
stop.

Step 1: Let
S = { j ∈ N | x j = 1},

di(S) = max{0, di −
∑

j∈S ui j}, ∀i ∈ M,
ui j(S) = min{ui j, di(S)}, ∀i ∈ M,∀ j ∈ N\S ,
M(S) = {i ∈ M | di(S) > 0},
U j(S) =

∑
i∈M(S)

ui j(S)
di(S) , ∀ j ∈ N\S ,

N>0(S) = { j ∈ N\S | U j(S) > 0}.
If M(S) = 0, output x, y and stop. Otherwise, go to Step 2.

Step 2: Increase y(S) as much as possible while maintaining dual feasibility for
(13). That is, set

y(S) =
c̄t

Ut(S)
,

where
t = arg min

j∈N>0(S)

c̄ j

U j(S)
.

Set c̄ j B c̄ j − U j(S)y(S) for all j ∈ N>0(S). Update xt = 1. Go back to Step
1.

Fujito (2004) shows that the algorithm PD is an f -approximation algorithm for
CIP since we can easily show that outputs of PD satisfies the conditions in Lemma
5 for α = f . In this study, we show that solutions produced by PD satisfies the
stronger conditions in Lemma 5.

10

Lemma 6. Let x be the output by PD and xℓ be the variable which becomes 1
from 0 at the last iteration of PD. Let x̃ be the solution obtained by setting xℓ = 0
in x. Let ỹ be the dual solution at the end of the iteration before xℓ becomes 1.
Then x̃ and ỹ satisfy the conditions in Lemma 5 for α = f − f−1

m .

Proof. Let S̃ = { j ∈ N | x̃ j = 1}. ỹ is feasible to the dual (13) since PD starts from
the dual feasible solution y = 0 and maintains dual feasibility at every iteration.
Note that x̃ is infeasible to (1). x̃ and ỹ satisfies (a) in Lemma 5 by the way the
algorithm updates x and y. Therefore it suffices to show that (b) in Lemma 5
holds, that is, for any A ⊆ N such that ỹ(A) > 0, the following holds:∑

j∈N\A
U j(A)x̃ j =

∑
j∈S̃ \A

U j(A) =
∑

i∈M(A)

∑
j∈S̃ \A

ui j(A)
di(A)

≤
(

f − f − 1
m

)
|M(A)|,

where we use the definition of U j(A) by (11).
Now, we fix A ⊆ N such that ỹ(A) > 0. From Step 2, ỹ(A) > 0 implies

A ⊆ S̃ . (14)

From (14) and the definition of M(A) by (11), we have that

M(S̃) ⊆ M(A), (15)

and for any i ∈ M(S̃) ∑
j∈S̃

ui j < di. (16)

From (11), (14) and (16), for any i ∈ M(S̃), we obtain that∑
j∈S̃ \A

ui j(A) ≤
∑
j∈S̃ \A

ui j =
∑
j∈S̃

ui j −
∑
j∈A

ui j < di −
∑
j∈A

ui j ≤ di(A).

Note that di(A) > 0 for any i ∈ M(A). By dividing both sides by di(A) and taking
sum of i ∈ M(S̃), we get ∑

i∈M(A)∩M(S̃)

∑
j∈S̃ \A

ui j(A)
di(A)

< |M(S̃)|, (17)

where we use M(S̃) = M(A) ∩ M(S̃) from (15). From the definition of f and
ui j(A) ≤ di(A), we have that for any i ∈ M(A),∑

j∈S \A
ui j(A) ≤

∑
j∈S

ui j(A) ≤ f di(A).

11

By dividing both sides by di(A) and taking sum of i ∈ M(A)\M(S̃), we get∑
i∈M(A)\M(S̃)

∑
j∈S̃ \A

ui j(A)
di(A)

≤ f (|M(A)| − |M(S̃)|). (18)

From (17) and (18), we obtain that∑
j∈S̃ \A

U j(A) =
∑

i∈M(A)

∑
j∈S̃ \A

ui j(A)
di(A)

=
∑

i∈M(A)∩M(S̃)

∑
j∈S̃ \A

ui j(A)
di(A)

+
∑

i∈M(A)\M(S̃)

∑
j∈S̃ \A

ui j(A)
di(A)

< |M(S̃)| + f (|M(A)| − |M(S̃)|)
= (1 − f)|M(S̃)| + f |M(A)|.

Since x̃ is infeasible, 1 ≤ |M(S̃)| holds. Also, 1 ≤ M(A) ≤ m holds. From f ≥ 2,
we finally obtain that∑

j∈S̃ \A

U j(A) ≤ (1 − f)|M(S̃)| + f |M(A)|

≤ 1 − f + f |M(A)|

=

(
f − f − 1
|M(A)|

)
|M(A)|

≤
(

f − f − 1
m

)
|M(A)|.

□

Now we can easily prove Lemma 1.

Proof of Lemma 1. From Lemma 6, we have that∑
j∈N

c jx j =
∑
j∈N

c j x̃ j + cℓ ≤
(

f − f − 1
m

)
OPT (I) + cmax.

Fujito (2004) shows that the algorithm PD runs in O(mn2) time. □

4 Conclusions
The covering 0-1 integer program (CIP) is a generalization of fundamental combi-
natorial optimization problems. Several f -approximation algorithms are proposed

12

for CIP and generalizations of CIP, where f is the maximum number of non-zero
entries in the constraints. No approximation algorithms, whose approximation ra-
tios is better than f , are proposed for CIP while such algorithms exist for special
cases for CIP. In this paper, we propose an

(
f − f−1

m

)
-approximation algorithm for

CIP when m ≥ 2, where m is the number of constraints. When m = 1, our al-
gorithm can be regarded as a PTAS. Our algorithm is the first algorithm whose
approximation ratio is strictly less than f when f ≥ 2. Our algorithm solves sub-
problems of CIP by using an f -approximation algorithm for CIP by Fujito (2004)
as a subroutine.

Acknowledgment
This research is supported in part by Grant-in-Aid for Science Research (A) 26242027
of Japan Society for the Promotion of Science and Grant-in-Aid for Young Scien-
tist (B) 15K15941.

References
[1] Babat LG (1975) Linear function on the n-dimentional unit cube. Dokl Akad

Nauk SSSR221 761-762 (in Russian)

[2] Carr RD, Fleischer L, Leung VJ, Phillips CA (2000) Strengthening integrality
gaps for capacitated network design and covering problems. In: Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp 106–
115

[3] Dinur I, Safra S (2005) On the hardness of approximating minimum vertex
cover. Annals of Mathematics 162:439–485

[4] Fujito T (2004) On combinatorial approximation of covering 0–1 integer pro-
grams and partial set cover. Journal of combinatorial optimization 8.4:439–
452

[5] Fujito T, Yabuta T (2004) Submodular integer cover and its application to pro-
duction planning. In: Proceedings of of the Second international conference
on Approximation and Online Algorithms, pp 154-166.

[6] Gandhi R, Khuller S, Srinivasan A (2004) Approximation algorithms for par-
tial covering problems. Journal of Algorithms 53.1:55–84

13

[7] Halperin E (2002) Improved approximation algorithms for the vertex cover
problem in graphs and hypergraphs. SIAM Journal on Computing 31.5:1608–
1623

[8] Karakostas G (2009) A better approximation ratio for the vertex cover prob-
lem. In: Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming, pp 1043-1050

[9] Kellerer H, Pferschy U, Pisinger D (2004) Knapsack Problems. Springer-
Verlag, Berlin

[10] Khot S and Regev O (2008) Vertex cover might be hard to approximate to
within 2-ϵ. Journal of Computer and System Sciences 74:335–349

[11] Kolliopoulos SG, Young NE (2005) Approximation algorithms for cov-
ering/packing integer programs Journal of Computer and System Sciences
71.4:495–505

[12] Könemann J, Parekh O, Segev D (2011) A unified approach to approximat-
ing partial covering problems. Algorithmica 59.4:489–509

[13] Koufogiannakis D, Young NE (2013) Greedy δ-approximation algorithm
for covering with arbitrary constraints and submodular cost. Algorithmica
66:113–152

[14] McCormick ST, Peis B, Verschae J, Wierz A (2016) Primaldual algorithms
for precedence constrained covering problems. Algorithmica 78.3:771787

[15] Pritchard D, Chakrabarty D (2011) Approximability of sparse integer pro-
grams. Algorithmica 61.1:75–93

[16] Raz R, Safra S (1997) A sub-constant error-probability low-degree test and
a sub-constant error-probability PCP characterization of NP. In: Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, pp 475–484

[17] Takazawa Y, Mizuno S (2017) A 2-approximation algorithm for the mini-
mum knapsack problem with a forcing graph. Journal of Operations Research
Society of Japan 60.1:15–23

[18] Takazawa Y, Mizuno S, Kitahara T (2017) An approximation algorithm for
the partial covering 0–1 integer program. Optimization Online.
http://www.optimization-online.org/DB_HTML/2017/01/5798.

html. Accessed 6 August 2017

14

Yotaro Takazawa
Department of Industrial Engineering and
Management
Tokyo Institute of Technology
2–12–1 Ohokayama
Meguro-ku Tokyo 152–8552, Japan
E-mail: takazawa.y.ab@m.titech.ac.jp

15

	CoverWP2017-6
	TAK-MIZ-KIT_CIP_v3_OO

