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Abstract

This paper provides a review of recent results on scheduling with controllable pro-
cessing times. The stress is on the methodological aspects that include parametric flow
techniques and methods for solving mathematical programming problems with submodu-
lar constraints. We show that the use of these methodologies results into fast algorithms
for solving problems on single machine or parallel machines, with either one or several
objective functions. For a wide range of problems with controllable processing times we
report algorithms with the running times which match those known for the correspond-
ing problems with fixed processing times. As a by-product, we present the best possible
algorithms for a number of problems on parallel machines that are traditionally studied
within the body of research on scheduling with imprecise computation.

Keywords: scheduling with controllable processing times; scheduling with imprecise
computation; flows in networks; optimization with submodular constraints

1 Introduction

Scheduling with Controllable Processing Times (SCPT ) is an active area within scheduling
research. It reflects the modern trend that, unlike the classical scheduling models, the pro-
cessing times of the jobs are not given constants. One type of models that treat scheduling
problems with changing times are those that allow dynamic changes of the processing times
depending on the state of the processing machines, including various deterioration and/or
learning effects, as well as machine maintenance. Another type of models, which is the topic
of this review, gives the decision-maker the power of selecting the processing times from given
intervals.

Finding a solution to an SCPT problem involves two decisions: (i) selecting actual pro-
cessing times for all jobs, and (ii) allocating and sequencing the jobs on the machines in
order to achieve a required level of quality. The first decision incurs a penalty that depends
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on compression amounts of the jobs, i.e., on the reduction of a job’s processing time from
its given value. The second decision affects the system performance measured in terms of a
scheduling objective depending on job completion times, e.g., the makespan.

The SCPT research has been active for more than 35 years. What is unusual is that
during all these years there has been a parallel stream of research, termed Scheduling with
Imprecise Computation (SIC ). In the range of models studied within the SIC research the
processing machines are seen as processors, the jobs are computational tasks, and these
tasks are allowed to be processed partially, thereby generating errors of computation. No
close examination is needed to observe that the SIC models are versions or, more precisely,
particular meaningful interpretations of the SCPT models. Both the SCPT and the SIC
studies address essentially the same range of problems, and often apply the same methods.

The word “parallel”used in the previous paragraph very well describes a surprising fact
that until very recently the SCPT research and SIC research existed almost independently
of each other, with almost no interaction or cross-referencing. This mutual neglect has
taken place despite the fact that researchers of both groups are parts of the same wider
scheduling community, with common main journals and conferences. For example, a rather
comprehensive survey on the SCPT models by Shabtay and Steiner (2007) does not mention
the results obtained by researchers who study the SIC models. Similarly, only a single
paragraph in the survey on the SIC models by Leung (2004) admits a link between that area
and SCPT, without exploiting that link.

The SCPT-SIC link is also overlooked within the stream of research on late work mini-
mization, see the recent survey by Sterna (2011). As we show in Section 2, the SCPT and
SIC models are exactly the same, while the preemptive late work model can be treated as a
special case of either of these models.

Throughout this paper, we normally adopt the term SCPT as the main one; however,
the imprecise computation scenarios will also be explicitly referred to, especially when we
review and revise the results obtained within the SIC body of research.

Bringing together and establishing the true relations between the SCPT and the SIC
models is an important, but secondary goal of this survey. Our main task is to review
major changes that have taken place during the last decade, since the most recent reviews
by Shabtay and Steiner (2007) and Leung (2004) were published.

From the historical perspective, it can be observed that most of earlier publications
employed a range of rather straightforward approaches. These include simple reformulations
of the SCPT problems in terms of finding either the maximum flow or the minimum cost
flow in a special network. Many other papers supplied greedy-like procedures, normally
accompanied by lengthy justification proofs, full of cumbersome details. Applicability of
these methods was exhausted by the early 2000s, and new theoretical results on the SCPT
models became rather rare.

Major components that have extended the toolkit of the SCPT techniques include the
methods for solving parametric flow problems and methods for solving submodular optimiza-
tion problems, i.e., mathematical programming problems with submodular constraints. Both
of these components have been known for about 30 years, but the attempts to apply them
in the SCPT context have been rather limited. Among noticeable examples is the paper by
McCormick (1999) who developed a fast method for finding the maximum flow in networks
with parametric capacities of some arcs and applied this method for solving quite general
SCPT problems. With respect to the submodular optimization methodology, Nemhauser
and Wolsey were among the first who noticed that the SCPT models could be handled by
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methods of submodular optimization; see, e.g., Example 6.1 (Section 6 of Chapter III.3) of
their book (Nemhauser and Wolsey (1988)).

Thus, the methods that we discuss in this paper, strictly speaking, are not new. We
want to demonstrate that their systematic use, correct adaptation and appropriate further
development lead to a range of efficient solution algorithms. This results into a general
framework for handling the SCPT problems, which (i) replaces a collection of scattered
purpose-built algorithms by providing faster and easier justifiable techniques; (ii) is able to
solve problems which have not been addressed earlier; (iii) often supplies algorithms with
the running times that cannot be improved, at least at the current stage of knowledge.

The paper is organized as follows. The SCPT model is formally introduced in Section 2,
where we also review its applications to various problem areas, including the SIC and late
work models. The main focus is on the problems of finding deadline-feasible preemptive
schedules on either a single machine or on parallel machines.

Section 3 introduces the processing capacity function, a crucial concept for solving the
SCPT models, as well as their counterparts with fixed processing times.

Section 4 presents various network flow techniques, which constitute the first of method-
ologies discussed in this paper. Among reviewed techniques are those for finding parametric
maximum flow by Gallo et al. (1989) and their multiparametric extension by McCormick
(1999). Since most of the SCPT applications of the network flow techniques deal with unbal-
anced bipartite network, we also review the speeding-up techniques by Ahuja et al. (1994).

Section 5 illustrates the use of Methodology 1 for solving feasibility scheduling problems
with fixed processing times. In particular, we revise a perception widely accepted in the
SIC community regarding the running time needed for finding a deadline-feasible schedule
on identical parallel machines. Section 6 elaborates on Methodology 1 by applying it to the
SCPT problems of minimizing total compression cost on parallel machines, where multipara-
metric network flow techniques by McCormick (1999) give the best results.

Section 7 overviews what we call Methodology 2: solving linear programming problems
over a submodular polyhedron intersected with a box. Such a problem, that we call Prob-
lem (LP), is the main model for various SCPT problems that involve minimizing total com-
pression cost. In particular, in Section 8 Problem (LP) and Methodology 2 are used to solve
bicriteria problems on parallel machines to simultaneously minimize (in the Pareto sense)
the maximum completion time and the total compression cost.

Methodology 3 presented in Section 9 can be seen as further development of Method-
ology 2. There we present a decomposition algorithm for solving Problem (LP) designed
by Shioura et al. (2015, 2016a). In Section 10 we describe how to adapt Methodology 3 to
solving a range of SCPT problems to minimize the total compression cost.

Sections 11 and 12 address the problems that involve minimizing the maximum compres-
sion cost. Such problems are traditionally considered within the SIC body of research. We
develop new results that are based on application of Methodology 1, in particular on solving
problems of lexicographic flow sharing which is done by adapting parametric flow techniques
of Gallo et al. (1989). Resulting algorithms solve the problems on parallel machines to min-
imize the maximum cost as well as to minimize both the maximum cost and total cost (in
the lexicographic sense). The running times of these algorithms are the best possible.

New results also appear in Section 13, where we study a quadratic cost function, either
alone or in combination with another cost function, total or maximum. The algorithms of
this section are natural adaptations of those from Sections 11 and 12 due to a link known
in submodular optimization between the problems of minimizing a quadratic function and
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finding a parametric flow.
Conclusions are summarized in Section 14.

2 Models and Applications

In this paper, we mainly address scheduling problems of the following type. The jobs of set
N = {1, 2, . . . , n} have to be processed either on a single machine M1 or on parallel machines
M1,M2, . . . ,Mm, where m ≥ 2.

In the classical scheduling settings, each job j ∈ N is given its processing time p(j). In the
SCPT setting, the actual processing time p(j) of job j ∈ N is not given in advance but has
to be chosen by a decision-maker from a given interval [p(j), p(j)]. Such a decision results in
compression of the longest processing time p(j) down to p(j), and the value x(j) = p(j)−p(j)
is called the compression amount of job j. Compression may decrease the completion time
of each job j but incurs additional cost.

Given m parallel machines, we distinguish between the identical machines and the uni-
form machines. In the former case, the machines have the same speed, so that for a job j
with an actual processing time p(j) the total length of the time intervals in which this job
is processed in a feasible schedule is equal to p(j). If the machines are uniform, then it is
assumed that machine Mi has speed si, 1 ≤ i ≤ m. If for job j the value p(j) is compressed
to p (j) and this job is assigned to machine Mi alone then the duration of such processing
is p (j) /si. Throughout this paper, the uniform machines are numbered in non-increasing
order of their speeds, i.e.,

s1 ≥ s2 ≥ · · · ≥ sm. (1)

Each job j ∈ N is given a release date r(j), before which it is not available, and a deadline
d(j), by which its processing must be completed. In the processing of any job, preemption is
allowed, so that the processing can be interrupted on any machine at any time and resumed
later, possibly on another machine (in the case of parallel machines). It is not allowed to
process a job on more than one machine at a time, and a machine processes at most one job
at a time.

Let C (j) denote the completion time of job j ∈ N , provided that its processing time
is equal to p(j). A schedule is called feasible if no job j is processed outside the time
interval [r(j), d(j)]. To solve a problem with fixed processing times means either to find a
feasible schedule for the corresponding machine environment if it exists or to report that
such a schedule does not exist. Adapting standard notation for scheduling problems by
Lawler et al. (1993), we denote a generic feasibility problem with fixed processing times by
α|r(j), C(j) ≤ d (j) , pmtn|−. Here, in the first field α we write “1”for a single machine,
“P”in the case of m ≥ 2 identical machines and “Q”in the case of m ≥ 2 uniform machines.
In the middle field, the item “r(j)”implies that the jobs have individual release dates; this
parameter is omitted if the release dates are equal. The condition “C(j) ≤ d (j)”reflects
the fact that in a feasible schedule the deadlines should be respected; we write “C(j) ≤ d”,
if all jobs have a common deadline d. The abbreviation “pmtn”is used to point out that
preemption is allowed.

Solving a typical problem from the SCPT range requires two decisions: (1) finding the
compression amounts x(j) for all jobs and (2) determining a deadline-feasible preemptive
schedule with actual processing times p(j) = p(j) − x(j). The objective is to minimize
a certain penalty function Φ that depends on compression amounts x(j). For the range of
problems traditionally considered in the SCPT literature, the most studied objective function
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represents the total compression cost and we denote it by ΦΣ =
∑

j∈N wT (j)x(j), where
wT (j) is the unit cost, i.e., the cost of compressing job j ∈ N by one unit of time, and given
by a non-negative real number. Problems of minimizing the maximum compression cost are
mainly studied within the SIC body of research; we denote such an objective function by
Φmax = max{x(j)/wM (j)|j ∈ N}, where for a given positive weight wM (j) the fraction
1/wM (j) represents the unit cost. Our choice of writing out function Φmax in terms of
converting costs into weights will become clear in Section 11.

To refer to an SCPT problem, we use the generic notation α|r(j), p(j) = p(j) −
x(j), C(j) ≤ d (j) , pmtn|Φ. Here, we write “p(j) = p(j) − x(j)”to indicate that the pro-
cessing times are controllable and x(j) is the compression amount to be found. Besides, in
the third field we indicate that Φ is a penalty function to be minimized. While the notation
above is used to denote SCPT problems with a single criterion, it can be adjusted to refer to
the multicriteria problems. We also look at the constrained problems, in which one type of
the penalties, e.g., the total cost, is minimized in the class of the schedules with the minimum
value of the other penalty function (such as minmax cost), or vice versa. Problems of the
latter type are traditionally studied in the SIC literature; see Ho (2004).

We illustrate several scenarios of interpretation of the SCPT model α|r(j), p(j) = p(j)−
x(j), C(j) ≤ d (j) , pmtn|Φ in various application areas.

Resource-Dependent Times. Janiak and Kovalyov (1996) argue that the processing
times are resource-dependent, so that the more units of a single additional resource is given to
a job, the more it can be compressed. In their model, a job j ∈ N has a ‘normal’ processing
time b(j) (no resource used), and its actual processing time becomes p(j) = b(j) − a(j)u(j),
provided that u(j) units of the resource are allocated to the job, where a(j) is interpreted
as a compression rate. The amount of the resource to be allocated to a job is limited by
0 ≤ u(j) ≤ τ(j), where τ(j) is a known job-dependent upper bound. The cost of using one
unit of the resource for compressing job j is denoted by v(j), and it is required to minimize
the total cost of resource consumption. This interpretation of the resource-dependent times
is essentially equivalent to that adopted in this paper, which can be seen by setting

p(j) = b(j), p(j) = b(j) − a(j)τ(j), x(j) = a(j)u(j), w(j) = v(j)/a(j), j ∈ N.

Chen-McCormick Model. A very similar model for scheduling with controllable pro-
cessing times is due to Chen (1994), later studied by McCormick (1999). In particular,
McCormick (1999) gives algorithms for finding a preemptive schedule for parallel machines
that is feasible with respect to arbitrary release dates and deadlines. The actual process-
ing time of a job is determined by p(j) = max {b(j) − a(j)λ(j), 0} and the objective is to
minimize the function

∑
j∈N λ(j). This is also similar to our interpretation due to

p(j) = b(j), p(j) = 0, x(j) = a(j)λ(j), w(j) = 1/a(j), j ∈ N. (2)

Make-or-Buy Decision Making. Manufacturing companies often do not fulfill the
whole order internally but delegate a part of it to subcontractors. Then p(j) = p(j) − x(j)
is understood as the chosen actual time for internal manufacturing of order j, where x(j)
shows how much of the order is subcontracted and w(j)x(j) is the cost of this subcontracting.
For example, in problem 1|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ the goal is to
minimize the total subcontracting cost and to find a deadline-feasible schedule for internally
manufactured orders.

Imprecise Computation. The SCPT problems can be interpreted in terms of SIC
as follows. The jobs are seen as computational tasks to be processed with preemption in
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a computing system that consists either of one processor or of several parallel processors
(machines). In computing systems that support imprecise computation, some computations
(image processing programs, implementations of heuristic algorithms) can be run partially,
producing less precise results. In our notation, a task with processing requirement p(j) can
be split into a mandatory part which takes p (j) time, and an optional part that may take up
to p(j)−p(j) additional time units. To produce a result of reasonable quality, the mandatory
part must be completed in full, while an optional part improves the accuracy of the solution.
If instead of an ideal computation time p(j) a task is executed for p(j) = p(j) − x(j) time
units, then computation is imprecise and x(j) corresponds to the error of computation. In
this settings, the objectives ΦΣ and Φmax are understood as the total weighted error and the
maximum weighted error, respectively. A popular research direction in SIC is related to the
lexicographical optimization of the two criteria; see Ho (2004). If the maximum weighted
error Φmax should be minimized first and then further optimization is performed in the
obtained class of solutions to minimize the total weighted error ΦΣ, then the relevant problem
is generically denoted by α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Lex (Φmax,ΦΣ). In
the counterpart with Lex (ΦΣ,Φmax), the goal is to find a schedule that minimizes maximum
weighted error among all schedules with the smallest total weighted error.

Late Work Model. This model was introduced as the information loss model by
Blazewicz (1984) in the context of information processing. The term “late work”was coined
later on to reflect broader application areas. In a typical information processing scenario,
processing any job j ∈ N implies producing some output which is meaningful if it is obtained
before its due date d(j), while the part produced after d(j) has no usage and therefore is
lost. An alternative term for late work is the number of tardy job units as in Hochbaum and
Shamir (1990). If job j with the processing time p (j) is processed before its due date for z (j)
time units, then the late work of job j in such a schedule can be defined as Y (j) = p (j)−z (j).
The objective is to minimize the total late work

∑
j∈N Y (j), or in a more general case the

total weighted late work
∑

j∈N w(j)Y (j). Clearly, in the preemptive version of the problem,
all late parts can be placed at the end of the schedule or even removed from it. Thus, the
preemptive late work model becomes a special case of the more general SCPT model if we
interpret the given processing times p (j) as upper bounds p(j) and define p(j) = 0, j ∈ N , so
that the late work Y (j) becomes compression x(j). The objective function

∑
j∈N w(j)Y (j)

turns to total compression cost ΦΣ. A comprehensive review of the late work studies is
given in Sterna (2011). Interestingly, the link between late work scheduling and SIC is well
recognized, with mutual cross-references in publications, but the link to SCPT is generally
missing.

3 Processing Capacity Functions

Each SCPT problem can be seen as an extension of the corresponding problem with fixed
processing times p(j) = p(j), 1 ≤ j ≤ n, where no job compression is allowed. Problems
with fixed processing times are of interest in their own right, and algorithms for their solution
are used within the algorithms for the corresponding SCPT problems for finding an optimal
schedule.

In this section, we introduce an important notion of the processing capacity function that
is widely used not only for the problems with fixed processing times, but also for the SCPT
problems.

A set function is a function whose argument is a set. For a subset X ⊆ N = {1, 2, . . . , n},

6



let RX denote the set of all vectors p with real components p(j), where j ∈ X. For a vector
p ∈ RN , define p(X) =

∑
j∈X p(j) for every set X ∈ 2N .

For a set of jobs X ⊆ N , let φ(X) be a set function that represents the total production
capacity available for processing of the jobs of set X. If we ignore the machine speeds, then
φ(X) is essentially equal to the length of all time intervals within which the jobs of set X
can be processed. This means that for a problem with fixed processing times if a feasible
schedule exists then the inequality

p(X) ≤ φ(X) (3)

holds for all sets X ⊆ N . In fact, the opposite statement is also true.
We illustrate this notion for several problems and review algorithms for their solution.
Let us start with a single machine problem 1|r(j), C(j) ≤ d (j) , pmtn|−. Divide the

interval [minj∈N r(j),maxj∈N d(j)] into subintervals by using the release dates r(j) and the
deadlines d(j) for j ∈ N as breakpoints. Let τ0, τ1, . . . , τγ , where 1 ≤ γ ≤ 2n − 1, be the
increasing sequence of distinct numbers in the list (r(j), d(j) | j ∈ N). Introduce the intervals
Ih = [τh−1, τh], 1 ≤ h ≤ γ, and define the set of all intervals I = {Ih | 1 ≤ h ≤ γ}. Denote
the length of interval Ih by ∆h = τh − τh−1. Interval Ik is available for processing job j if
r(j) ≤ τk−1 and d(j) ≥ τk. For a job j, denote the set of the available intervals by Γ(j), i.e.,

Γ(j) = {Ih ∈ I | Ih ⊆ [r(j), d(j)]}. (4)

For a set of jobs X ⊆ N , introduce the set function

φ1(X) =
∑

Ik∈∪j∈XΓ(j)

∆k, (5)

where the right-hand side represents the lengths of all time intervals available for processing
the jobs of set X. Thus, for problem 1|r(j), C(j) ≤ d(j), pmtn|− a feasible schedule exists if
and only if (3) holds for all sets X ⊆ N and φ(X) = φ1 (X). Such a statement (in different
terms) was first formulated by Gordon and Tanaev (1973) and Horn (1974). Checking the
conditions (3) for problem 1|r(j), C(j) ≤ d (j) , pmtn|− can be done in O(n log n) time
by an algorithm that is due to Horn (1974). That algorithm, often called Algorithm EDF
(Early Deadline First), at any time when either a job arrives or a job completes, assigns for
processing the unfinished job with the smallest deadline. The running time reduces to O(n),
provided that a sorted sequence of distinct release dates and deadlines is available.

In the rest of this section, we turn to problems with a common deadline, i.e., d (j) = d,
j ∈ N . Assume that if the jobs have different release dates, they are renumbered to satisfy

r(1) ≤ r(2) ≤ . . . ≤ r(n). (6)

Notice that problem α|r(j), C(j) ≤ d, pmtn|− is closely related to problem
α|r(j), pmtn|Cmax of minimizing the maximum completion time Cmax = max {C (j) |j ∈ N},
also known as the makespan. Indeed, the optimal value of Cmax for an instance of problem
α|r(j), pmtn|Cmax delivers the smallest value of d such that a feasible schedule exists in the
corresponding instance of problem α|r(j), C(j) ≤ d, pmtn|−.

In the case of a single machine, problem 1|r(j), C(j) ≤ d, pmtn|− with a common deadline
d is solvable by Algorithm EDF. Since the algorithm still requires that the jobs are sorted in
accordance with (6), it follows that problem 1|r(j), C(j) ≤ d, pmtn|− is solvable in O (n log n)
time.
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Even in the case of parallel machines, the processing capacity function can also be easily
derived. We illustrate this for problem Q|C(j) ≤ d, pmtn|− with zero release dates. Recall
that the uniform machines are numbered in accordance with (1). We denote

S0 = 0, Sk = s1 + s2 + · · · + sk, 1 ≤ k ≤ m. (7)

Sk represents the total speed of k fastest machines; if the machines are identical, Sk = k
holds.

It is well known that for problem Q|C(j) ≤ d, pmtn|− a feasible preemptive schedule
exists if and only if the following conditions hold, which we quote in accordance with Brucker
(2007): d is large enough to guarantee a processing capacity that is sufficient for

• any job to be completed by time d if it is processed on the fastest machine M1,

• for any u, 2 ≤ u ≤ m − 1, any subset of u jobs to be completed by d on the u fastest
machines M1, M2, · · · ,Mu;

• all jobs to be completed by d on all m machines.

Given a set X ⊆ N of jobs, define

mX = min {m, |X|} , (8)

which specifies the largest possible number of machines for processing the jobs from X. Then
the processing capacity functions for problems α|C(j) ≤ d, pmtn|− can be written as

φ(X) = dSmX , for α = Q; (9)

φ(X) = dmX , for α = P. (10)

Using this fact, problem Q|C(j) ≤ d, pmtn|− can be solved in O (n+m logm) time,
which reduces to O (n) time for the problems with identical machines; see Gonzales and
Sahni (1978) and McNaughton (1959), respectively.

For the models with distinct release dates, given a set X ⊆ N of jobs, define ri(X) to be
the i-th smallest release date in set X, 1 ≤ i ≤ |X|. The processing capacity functions for
problems α|r (j) , C(j) ≤ d, pmtn|− can be written as

φ(X) = dSmX −
mX∑
i=1

siri(X), for α = Q; (11)

φ(X) = dmX −
mX∑
i=1

ri(X), for α = P. (12)

Formula (11) is shown in Martel (1982) and Shakhlevich and Strusevich (2008) in a
different (but equivalent) form. Problem Q|r (j) , C(j) ≤ d, pmtn|− can be solved in O(nm+
n log n) time, which reduces to O(n log n) time for the problem on identical machines; see
Sahni and Cho (1980) and Sahni (1979), respectively.

The running times of the relevant algorithms are summarized in Table 1. Additionally,
that table also presents the results on parallel machine feasibility problems with distinct
deadlines. Handling the problems of the latter type requires the use of algorithms for finding
flows in networks. We classify these techniques as Methodology 1 and review in the following
section. Their application for solving problems α|r (j) , C(j) ≤ d (j) , pmtn|− with α ∈ {P,Q}
is described in Section 5.
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Problems Results

1|r(j), C(j) ≤ d|− O(n log n) Horn (1974)

1|r(j), C(j) ≤ d(j)|− O(n log n) Horn (1974)

P |C(j) ≤ d, pmtn|− O(n) McNaughton (1959)

P |r(j), C(j) ≤ d, pmtn|− O(n log n) Sahni (1979)

P |r(j), C(j) ≤ d(j), pmtn|− O(n3)∗ Horn (1974)

Q|C(j) ≤ d, pmtn|− O(n+m logm) Gonzales and Sahni (1978)

Q|r(j), C(j) ≤ d, pmtn|− O(nm+ n log n) Sahni and Cho (1980)

Q|r(j), C(j) ≤ d(j), pmtn|− O(mn3)∗ Federgruen and Groenevelt (1986)

* max-flow algorithm by Ahuja et al. (1994)

Table 1: Complexity Results for Problems with Fixed Processing Times

4 Methodology 1: Flows in Networks

Various network flow techniques form an essential part of the SCPT toolkit. In this section,
we briefly review relevant techniques, including those that handle networks with parametric
capacities. Further details on this topic can be found in the monograph by Ahuja et al.
(1993).

Scheduling problems under consideration, with fixed and controllable processing times,
can be reformulated in terms of various flow problems in networks of a particular structure.
Introduce a generic network G = (V,A), schematically shown in Figure 1. The results
presented in this section normally hold for more general networks; however, for our purposes,
we give an exposition of these results in relation to network G, as the most relevant to our
review.

Figure 1: Network G = (V,A)

The set V = {s, t} ∪N ∪W of nodes consists of the source s, the sink t and two subsets
N = {1, 2, . . . , n} and W . The set A of arcs contains the arcs (s, j) for each node j ∈ N ,
but s is neither directly linked to the sink t nor to a node of set W . There are arcs from the
nodes of set N to those of set W ; arcs are also possible between the nodes of set W . The
arcs entering the sink t only come from some nodes of set W .

The capacity of arc (v, v′) is denoted by µ(v, v′), which can be infinite for some arcs.
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A flow f is a function f : A → R that assigns real numbers to arcs. We say that a flow
f : A→ R is feasible if it satisfies the capacity constraint

0 ≤ f(v, v′) ≤ µ(v, v′), (v, v′) ∈ A, (13)

and the flow balance constraint∑
v′∈V, (v,v′)∈A

f(v, v′) =
∑

v′∈V, (v′,v)∈A

f(v′, v), v ∈ V \ {s, t}. (14)

In the maximum flow problem, it is required to find a feasible flow of the maximum value,
where the value of a flow f is the total flow on the arcs that leave the source (or, equivalently,
enter the sink):

the value of flow f =
∑

v′∈N, (s,v′)∈A

f(s, v′) =
∑

v∈W, (v,t)∈A

f(v, t).

In the case of network G = (V,A), an algorithm due to Karzanov (1974) finds the
maximum flow in O(|V |3) time, while one of the fastest strongly polynomial algorithms
due to Goldberg and Tarjan (1988) takes O(|V ||A| log(|V |2/|A|)) time; see rows 1 and 2 of
Table 2.

A partition (S, T ) of the node set V such that s ∈ S and t ∈ T is called an s-t cut. The
capacity µ(S, T ) of an s-t cut (S, T ) is defined as the total capacity of the arcs that go from
nodes of set S to nodes of set T , i.e.,

µ(S, T ) =
∑

(v,v′)∈A(S,T )

µ(v, v′),

where A(S, T ) = {(v, v′) ∈ A | v ∈ S, v′ ∈ T}. An s-t cut (S, T ) is called a minimum
s-t cut if its capacity µ(S, T ) is the minimum among all s-t cuts in G. The maximum-flow
minimum-cut theorem, the most well-known statement of network optimization, asserts that
the value of the maximum flow is equal to the capacity of a minimum s-t cut.

In the minimum-cost flow problem, each arc (v, v′) ∈ A is associated with a cost c(v, v′)
and it is required to find a feasible flow of a given value that has the smallest cost. In this
paper, we will mainly be interested in the minimum-cost maximum flow problem, i.e., the
problem of finding the maximum flow of the smallest cost. The problem can be solved by an
algorithm by Orlin (1988), which is currently the fastest strongly polynomial algorithm; in
the case of network G the algorithm requires O(|A| log |V |(|A|+ |V | log |V |)) time; see row 3
of Table 2.

A range of network flow problems closely related to scheduling applications with variable
processing times contains the problems of finding a parametric maximum flow. The work
by Gallo et al. (1989) presents fast algorithms for solving the parametric maximum flow
problem, provided that the capacities of all arcs are constant, except for the capacities of the
arcs that leave the source (or enter the sink) which depend on a single parameter λ. More
precisely, the capacity on an arc (s, j), j ∈ N , is given by µλ(s, j), which is a non-decreasing
function of λ. There are several algorithms presented by Gallo et al. (1989) that find the
maximum flow for all values of the parameter λ; for our purposes, we are interested in two of
them, with the running times of O(|V |3) and O(|V ||A| log(|V |2/|A|)), respectively; see rows
4 and 5 of Table 2. These algorithms are adaptations of the algorithms by Karzanov (1974)
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# Flow Problem General Network G Bipartite Network G,
|N | ≤ |W |

1 Max-Flow O(|V |3) O(|N ||A| + |N |3)
Karzanov (1974) Ahuja et al. (1994)

2 Max-Flow O(|V ||A| log(|V |2/|A|)) O(|N ||A| log(|N |2/|A| + 2))
Goldberg and Tarjan (1988) Ahuja et al. (1994)

3 Min-Cost Max-Flow O(|A| log |V |(|A| + |V | log |V |))
Orlin (1988)

4 Parametric Max-Flow O(|V |3) O(|N |2|W | + |N |3)
(single parameter, Gallo et al. (1989) Ahuja et al. (1994)
parametric capacities
only on arcs leaving
source/entering sink)

5 O(|V ||A| log(|V |2/|A|)) O(|N ||A| log(|N |2/|A| + 2))
Gallo et al. (1989) Ahuja et al. (1994)

6 Parametric Max Flow O(|V |3) O(|N |2|W | + |N |3)
(multiple parameters, McCormick (1999) Ahuja et al. (1994)
parametric capacities
only on arcs leaving
source/entering sink)

7 O(|V ||A| log(|V |2/|A|)) O(|N ||A| log(|N |2/|A| + 2))
McCormick (1999) Ahuja et al. (1994)

8 Min-Cost Max Flow O(|V |3) O(|N |2|W | + |N |3)
(non-zero costs McCormick (1999) Ahuja et al. (1994)
only on arcs leaving Hochbaum and Hong (1995)
source/entering sink)

9 O(|V ||A| log(|V |2/|A|))
McCormick (1999) O(|N ||A| log(|N |2/|A| + 2))
Hochbaum and Hong (1995) Ahuja et al. (1994)

Table 2: Running Times of Flow Algorithms Applied to Network G = (V,A)
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and Goldberg and Tarjan (1988), respectively, and require the same running times as in the
non-parametric case; see rows 1 and 2 of Table 2.

Among network flow problems considered by McCormick (1999) there is a parametric
maximum flow problem, which can be stated with respect to our network G as follows.
Suppose that on each arc (s, j), j ∈ N , with the source s the capacity is given as non-
increasing linear function b(j) − a(j)λ(j), where b(j) and a(j) are given constants, while
λ(j) is a non-negative parameter. It is required to find such values of λ(j) that

∑
j∈N λ(j)

is minimum and there exists a flow saturating the arcs from s. The problem reduces to
finding a maximum flow, provided the capacity on an arc (s, j) leaving the source depends
on an individual parameter λ(j), rather than on a single parameter λ, common for all these
arcs, as in the models studied by Gallo et al. (1989). It is essentially proved in McCormick
(1999) that for solving this multi-parameter problem the algorithms from Gallo et al. (1989)
can be adapted without increasing their running times. For network G this means that the
multi-parameter maximum flow can be found either in O(|V |3) or in O(|V ||A| log(|V |2/|A|))
time; see rows 6 and 7 of Table 2.

Notice that Gallo et al. (1989) consider the problem of finding the maximum flow for all
values of a single parameter λ and allow the capacity functions to be arbitrary monotone
functions of λ. McCormick (1999) allows multiple parameters but considers only linear
capacity functions and aims at finding the flow that corresponds to the minimum sum of the
parameters, not the maximum flow for all values of the parameters.

McCormick (1999) also establishes the equivalence (with respect to the time complexity)
between the problem of finding a maximum flow in a network with parametric capacities on
the arcs leaving the source and the minimum-cost flow problem in a network with non-zero
costs on some arcs entering the sink. In order to solve a more general version of the latter
problem with a quadratic cost function, Hochbaum and Hong (1995) adapt the algorithms
of Gallo et al. (1989) without increasing their running times; see rows 8 and 9 of Table 2.
The results stated above also hold in a symmetric case, i.e., when the parametric capacities
are applied to only the arcs that enter the sink and non-zero costs are assigned to the arcs
that leave the source.

Notice that if there are no arcs between the nodes of W , then network G is bipartite.
Moreover, in virtually all scheduling applications, network G is not balanced, i.e., |N | ≤ |W |.
It is demonstrated by Ahuja et al. (1994) that many network flow algorithms can be run faster
on unbalanced bipartite networks, so that the running time depends not on the total number
of nodes but rather on the number of nodes in the part of the lower cardinality. This is
reflected in the last column of Table 2.

5 Fixed Processing Times. Parallel Machines. Distinct Re-
lease Dates and Deadlines

In this section, we discuss problems α|r(j), C(j) ≤ d (j) , pmtn|− with α ∈ {P,Q} of
checking the existence of a feasible schedule, provided that the processing times are known
and fixed. We illustrate how these problems reduce to the network flow problems, so that
Methodology 1 can be used for their solution. In particular, we clarify that the fastest known
correct algorithm for solving problem P |r(j), C(j) ≤ d (j) , pmtn|− requires O

(
n3

)
time,

and not O
(
n2 log2 n

)
, as is often assumed in the literature on the SIC models; see Leung

(2004) and Ho (2004).
We start with the feasibility problem P |r(j), C(j) ≤ d (j) , pmtn|− on m identical par-
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allel machines and with its special case 1|r(j), C(j) ≤ d (j) , pmtn|− on a single machine.
Introduce network GP = (V,A) and define it as the following version of the generic network
G = (V,A) outlined in Figure 1. The node set V consists of the source s, the sink t, set N
of job nodes and set W = I = {I1, I2, . . . , Iγ} of the interval nodes. The set A of arcs is
defined as A = As ∪A0 ∪At, where

As = {(s, j) | j ∈ N},
A0 = {(j, Ih) | j ∈ N, Ih ∈ Γ(j)},
At = {(Ih, t) | Ih ∈ I}.

Thus, in GP the source is connected to each job node, each interval node is connected to the
sink, and each job node is connected to the nodes associated with the intervals during which
the corresponding job can be processed; see Figure 2.

Figure 2: Network GP = (V,A)

Given an instance of a feasibility problem P |r(j), C(j) ≤ d (j) , pmtn|− on m identical
parallel machines (or of problem 1|r(j), C(j) ≤ d (j) , pmtn|− on a single machine), define
the arc capacity function µ : A→ R by

µ(s, j) = p(j), (s, j) ∈ As,
µ(j, Ih) = ∆h, (j, Ih) ∈ A0,
µ(Ih, t) = m∆h, (Ih, t) ∈ At.

Recall that solving a feasibility scheduling problem reduces to testing the inequality (3)
for each set X ⊆ N of jobs, where φ is a suitably defined processing capacity function. In
the case under consideration, such a testing can be translated in terms of the network flow
problem, as independently shown by Gordon and Tanaev (1973) and Horn (1974).

Lemma 1 (cf. Gordon and Tanaev (1973); Horn (1974)) For positive real numbers
p(j), j ∈ N , there exists a feasible schedule for processing the jobs of set N on m paral-
lel identical machines (or on a single machine if m = 1) such that job j ∈ N has the actual
processing time of p(j) if and only if there exists a feasible flow f : A → R+ in network GP

satisfying f(s, j) = p(j) for all j ∈ N .

13



Hence, problem P |r(j), C(j) ≤ d (j) , pmtn|− can be tested by solving the maximum
flow problem in network GP : if the value of the maximum flow is equal to

∑
j∈N p(j), then

problem P |r(j), C(j) ≤ d (j) , pmtn|− is feasible; otherwise, it is infeasible.
A feasible flow f(j, Ih) on arc (j, Ih) defines for how long job j is processed in the time

interval Ih. On a single machine, a feasible flow easily translates into a feasible schedule
and vice versa, since there is a one-to-one correspondence between the flow incoming into an
interval node Ih and durations of jobs processed within the corresponding time interval on
a single machine. In the case of m identical parallel machines, the link between a feasible
flow and a feasible schedule is less evident. To know the flow values f(j, Ih) is insufficient to
define a schedule. We need a linear time algorithm by McNaughton (1959) to find a feasible
preemptive schedule for each interval Ih, and then the overall schedule can be found as a
concatenation of these schedules.

Network GP contains O(n) nodes. For such a network, finding a maximum flow requires
O(n3) time by Karzanov’s algorithm; see row 2 of Table 2. The running time of O(n3) does
not depend on the number of machines in the scheduling problem, and remains valid if the
described flow approach is used for the single machine problem. However, the single machine
feasibility problem 1|r(j), C(j) ≤ d (j) , pmtn|− can be solved much faster, in O(n log n)
time by Algorithm EDF; see Section 3.

For a single machine, an algorithm that is based on the network flow reasoning but runs
faster than in O(n3) time is developed by Chung et al. (1989) and Shih et al. (1989). The idea
is to transform the original network GP shown in Figure 2, replacing the set of the interval
nodes by a balanced binary tree, in which the original interval nodes are the leaves at the
lowest level. The tree is created recursively starting from the leaves, so that each pair of nodes
of the same height that represent two adjacent intervals become children of a node of the
higher level that represents the union of these intervals. The tree is completed with creating
the root that is associated with the interval [τ0, τγ ]. The arc capacities are redistributed
accordingly. Without going into technical details, which can be found in Chung et al. (1989),
Shih et al. (1989), here we just illustrate this approach with a small size example.

Consider an instance of problem 1|r(j), C(j) ≤ d (j) , pmtn|− with three jobs and the set
I of intervals consisting of four intervals Ih = [τh−1, τh], h ∈ {1, 2, 3, 4}, such that the intervals
[τ0, τ4], [τ1, τ3] and [τ2, τ4] are available for processing job 1, job 2 and job 3, respectively.
See Figure 3 for the corresponding network GP , with the arcs capacities shown explicitly.
The modified network G′

P , with the interval nodes organized as a binary tree, is shown in
Figure 4.

For problem 1|r(j), C(j) ≤ d (j) , pmtn|− with γ intervals in set I, there are O(γ) nodes
in the binary tree of the modified network G′

P . At most 2 log γ arcs leave each job node.
Thus, given that γ = O(n), we deduce that in the network G′

P associated with problem
1|r(j), C(j) ≤ d (j) , pmtn|− there are O(n) nodes and O(n log n) arcs. This network is not
bipartite, but still is a version of the generic network G shown in Figure 1. We apply the
algorithm by Goldberg and Tarjan (1988); see row 2 of Table 2. Since |A| ≥ n, we deduce
that a maximum flow in G′

P can be found in O(n2 log2 n) time.
Chung et al. (1989) and Shih et al. (1989) claim that this approach can be extended

to parallel identical machines, but give no implementation details. That claim is known
in the imprecise computation research community, and several authors, assuming that the
claim is true, assert that problem P |r(j), C(j) ≤ d (j) , pmtn|−, and even its extension with
controllable processing times P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ is solvable
in O(n2 log2 n) time; see, e.g., surveys by Leung (2004) and Ho (2004).
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Figure 3: Network GP for the three-job example with a single machine (m = 1)

Figure 4: Network G′
P for the three-job example with a single machine (m = 1)

We, on the other hand, are confident that the claim that problem P |r(j), C(j) ≤ d (j) ,
pmtn|− with m ≥ 2 can be solved by finding a maximum flow in the modified network G′

P

does not hold. To handle multiple machines, each interval that is contained in the binary
tree of the interval nodes should be made available for all m machines. To achieve this, the
capacity of each arc that leaves an interval node has to be multiplied by m (as is done in
network GP ). But in this case a feasible flow does not necessarily translate into a feasible
schedule. To illustrate this, for the example above assume that m = 2, p(1) = 6, ∆1 = 3,
∆2 = 2. Then the capacity of the arc that enters node [τ0, τ2] should become equal to
m × (∆1 + ∆2) = 10, while the capacity of the arc that enters node [τ0, τ1] to m × ∆1 = 6.
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A feasible flow may be equal to 6 on each of these two arcs, but such a flow admits no
scheduling interpretation, since it would imply that job 1 is processed during 6 time units in
the interval [τ0, τ1] of length 3, i.e., it is processed simultaneously on both machines.

A possible alternative attempt to reduce problem P |r(j), C(j) ≤ d (j) , pmtn|− to the
maximum flow problem that is based on the binary tree representation of the interval nodes
is to introduce m copies of the tree on interval nodes, one tree for each machine. However,
a feasible flow again may lead to an infeasible schedule, since there is no mechanism to stop
assigning one job to the same time interval on several machines.

The example given above shows that reducing the feasibility problem to the maximum
flow problem in the network that uses a binary tree representation of the interval nodes works
only for a single machine.

Remark 1 The fastest correct algorithm for solving problem P |r(j), C(j) ≤ d (j) , pmtn|−
requires O(n3) time. In the literature on imprecise computation, solving problems P |r(j),
C(j) ≤ d (j) , pmtn|− and P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ is often
used as a subroutine for various problems on identical parallel machines, and the reported
running times are derived under the assumption that each of these problems can be solved in
O(n2 log2 n) time. In the subsequent sections, we will correct the estimates of earlier known
algorithms that use that assumption, increasing the running time of the subroutine to O(n3)
and making the reference to this remark.

We now pass to the feasibility problem Q|r(j), C(j) ≤ d (j) , pmtn|− on m uniform
machines. For simplicity of exposition, assume that the machine speeds are pairwise distinct
and the machines are numbered in the decreasing order of their speeds, i.e., s1 > s2 > · · · >
sm. For completeness, define sm+1 = 0. Taking into consideration the speed of each machine,
notice that in an interval Ih total processing that could be done on machine M1 is s1∆h, on
machine M2 is s2∆h, and so on.

Federgruen and Groenevelt (1986) reduce the feasibility problem Q|r(j), C(j) ≤ d (j) ,
pmtn|− to the maximum flow problem in a special network, which we call network GQ; for
illustration see Figure 5. This network is also a variant of the generic network G. In GQ,
the set of nodes contains the set N of job nodes, and the set W consists of machine-interval
nodes (Ih,Mh). The set A of arcs is defined as A = As ∪A0 ∪At, where

As = {(s, j) | j ∈ N},
A0 = {(j, (Ih,Mi)) | j ∈ N, Ih ∈ Γ(j), 1 ≤ i ≤ m},
At = {((Ih,Mi), t) | Ih ∈ I, 1 ≤ i ≤ m}.

The capacities on the arcs are as follows:

µ(s, j) = p(j), (s, j) ∈ As,
µ(j, (Ih,Mi)) = ∆h(si − si+1), (j, (Ih,Mi)) ∈ A0,
µ((Ih,Mi), t) = i∆h(si − si+1), (Ih,Mi) ∈ At.

Again, the feasibility scheduling problem can be reduced to the maximum flow problem:
as shown by Federgruen and Groenevelt (1986) the statement of Lemma 1 holds for the case
of uniform machines, with network GP replaced by GQ. For this problem we can apply
Karzanov’s algorithm adapted to an unbalanced bipartite network (row 1 of Table 2) to
finding the maximum flow in the network GQ. Since |N | = n and |A| = O(mn2), such an
algorithm will solve problem Q|r(j), C(j) ≤ d (j) , pmtn|− in O(mn3) time.
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Figure 5: An illustration of network GQ = (V,A) for three uniform machines

See Table 1 for the summary of the results from Sections 3 and 5 for various versions of
the feasibility problem α|r(j), C(j) ≤ d(j), pmtn|− with fixed processing times.

The running times in Table 1 establish lower bounds on the running times of algorithms
for solving problems with controllable processing times. One of the achievements reported
in this paper is that almost all problems of the range α|r(j), p(j) = p(j) − x(j), C(j) ≤
d(j), pmtn|Φ with controllable processing times and distinct release dates and deadlines are
not harder computationally than their counterparts with fixed processing times. The tools
needed for this purpose include parametric flow problems (Methodology 1) and/or techniques
of submodular optimization that are reviewed further on.

6 Total Cost. Parallel Machines. Distinct Release Dates and
Deadlines

In this section, we discuss the algorithms for solving problems α|r(j), p(j) = p(j) − x(j),
C(j) ≤ d (j) , pmtn|ΦΣ, where α ∈ {P,Q}, to minimize the total cost ΦΣ =

∑
j∈N wT (j)x(j)

on identical and uniform parallel machines. We assume that all weights wT (j) are non-
negative. Notice that most of the previously known results on these problems are derived
within the body of research of the SIC models. Below, we provide a critical review of these
results by (i) clarifying the running time needed to solve problem P |r(j), p(j) = p(j)−x(j),
C(j) ≤ d (j) , pmtn|ΦΣ based on Remark 1 of Section 5; (ii) demonstrating that the use of
advanced techniques of Methodology 1, such as finding parametric flows, results into solution

17



Problem Previously known Methodology 1:

Multiparametric flow

P |r(j), p(j) = p(j) − x(j), O(n4log n)∗ O(n3)
C(j) ≤ d(j), pmtn|ΦΣ Blazewicz and Finke (1987) McCormick (1999)

Chung et al. (1989) Section 6

Shih et al. (1989, 1991)

Leung (2004)

Q|r(j), p(j) = p(j) − x(j), O(m2n4logmn) O(mn3)
C(j) ≤ d(j), pmtn|ΦΣ Blazewicz and Finke (1987) McCormick (1999)

Leung (2004) Section 6

O(mn4)
Shakhlevich and Strusevich (2008)

∗After correcting a faulty claim that problem P |r(j), C(j) ≤ d(j), pmtn|− is solvable

in O(n2 log2 n) time, see Remark 1 of Section 5

Table 3: Complexity of Problems with Different Deadlines

algorithms for problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ which have the
same running time as the best known for the counterparts of these problems with fixed
processing times; see Table 1.

We start with the problems of minimizing the total compression or the unweighted com-
pression cost Φu =

∑
j∈N x(j), which is often considered in the SIC literature as a special case

of the weighted error function; see Leung (2004). Clearly, minimizing
∑

j∈N x(j) is equiv-
alent to maximizing the sum of the actual processing times

∑
j∈N p(j). As demonstrated

in Section 5, the latter problem reduces to finding the maximum flow in either network GP

(if the machines are identical) or in GQ (if the machines are uniform). The networks GP

and GQ are of the same structure as described in Section 5, except each arc (s, j), j ∈ N ,
that leaves the source has an upper bound p(j) and a lower bound p(j) on its capacity. The
resulting problems are computationally equivalent to problems P |r(j), C(j) ≤ d (j) , pmtn|−
and Q|r(j), C(j) ≤ d (j) , pmtn|−, and can be solved by Karzanov’s algorithm adapted to an
unbalanced bipartite network; see row 1 of Table 2. Thus, problems α|r(j), p(j) = p(j)−x(j),
C(j) ≤ d (j) , pmtn|Φu, α ∈ {P,Q} to minimize the unweighted function

∑
j∈N x(j), can be

solved in O(n3) time and in O(mn3) time, respectively.
Further in this section, we show that minimizing the total weighted compression cost

ΦΣ =
∑

j∈N wT (j)x(j) for problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ,
α ∈ {P,Q}, is computationally no harder than their unweighted counterparts. Note that
problems α|r(j), p(j) = p(j)−x(j), C(j) ≤ d (j) , pmtn|ΦΣ, α ∈ {P,Q} are among the most
popular problems studied within the body of research on SIC. The main solution approach
has been based on the reduction of the problem to finding a minimum-cost maximum flow
in a special network.

We start with illustrating this approach for problem P |r(j), p(j) = p(j) − x(j), C(j) ≤
d (j) , pmtn|ΦΣ with identical machines. The corresponding network, denoted by HP , is
shown in Figure 6. It can be described as an extension of network GP , introduced in Section 5
for the feasibility problem with fixed processing times: the second set of nodes W is enlarged
by adding nodes X = {X1, X2, . . . , Xn}. For every job j ∈ N , we introduce a so-called
“compression”node Xj , with a single incoming arc (j,Xj) and a single outgoing arc (Xj , t),
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both having capacity θ(j) = p(j)− p(j). For a feasible flow in HP , the amount of flow passing
via nodes Xj corresponds to the compression amounts x(j) of jobs j ∈ N , while the flow via
nodes in I specifies the actual schedule. The flow costs are zero except for arcs connecting
the X -nodes and t: the cost of one unit of flow via arc (Xj , t) is wT (j). For the corresponding
minimum-cost maximum flow problem, the total cost is ΦΣ =

∑
j∈N wT (j)x(j), where x(j) is

the flow on arc (Xj , t). Notice that network HP is slightly different from the one used in the
literature on imprecise computation; see, e.g., Leung (2004, Figure 34.3). These differences
are minor, and the numbers of arcs and nodes in both networks are of the same order, i.e.,
|V | = O(n) and |A| = O(n2).

The minimum-cost maximum flow problem in network HP can be solved by an algorithm
by Orlin (1988) (row 3 of Table 2). Its direct application solves problem P |r(j), p(j) =
p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ in O(n4 log n) time. Notice that the latter problem
cannot be modelled as a modified network HP with the interval nodes arranged in a balanced
binary tree. Thus, in accordance with Remark 1 of Section 5, the estimate of O(n4 log n)
should replace the running time of O(n2 log3 n) reported in Leung (2004).

Figure 6: Network HP = (V,A) for problem ΠΣ(P ) on identical machines

Consider now problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ with uniform
machines. The corresponding network, denoted by HQ, is shown in Figure 7. It is an
extension of network GQ from Section 5 obtained by adding the set of compression nodes
X = {X1, X2, . . . , Xn} in the same way, as set X is added to GP resulting in HP .

Again, the introduced network HQ is only slightly different from the one often used in
the imprecise computation literature; see, e.g., Leung (2004, Figure 34.4), while the major
characteristics, such as |V | = O(mn) and |A| = O(mn2), are the same for both networks.
The running time for solving problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ
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Figure 7: Network HQ = (V,A) for problem ΠΣ(Q) on m = 3 uniform machines

reported in Leung (2004) is derived from applying Orlin’s algorithm (row 3 of Table 2) to
the network HQ and is equal to O(m2n4 logmn). A faster algorithm for problem Q|r(j),
p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ is given by Shakhlevich and Strusevich (2008); it
requires O(mn4) time.

As seen, the quoted best times known for problems α|r(j), p(j) = p(j) − x(j), C(j) ≤
d (j) , pmtn|ΦΣ, α ∈ {P,Q}, exceed those known for solving the corresponding feasibility
problems α|r(j), C(j) ≤ d (j) , pmtn|−; see Table 1. Below we show that using an alternative
approach, the times needed to solve problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|ΦΣ can be reduced to match those for problems α|r(j), C(j) ≤ d (j) , pmtn|−, as
stated in Table 3.

We present the parametric maximum flow approach that results from adapting the meth-
ods developed by Chen (1994) and McCormick (1999). In those papers, a scheduling problem
with controllable processing times is addressed, and the actual processing time of a job j
is determined by p(j) = max{b(j) − a(j)λ(j), 0}, where b(j) and a(j) are given constants
while λ(j) is a non-negative parameter, and the objective is to minimize

∑
j∈N λ(j). This

scheduling problem is equivalent to a special case of problem α|r(j), p(j) = p(j) − x(j),
C(j) ≤ d (j) , pmtn|ΦΣ with zero lower bounds on processing times; see (2). Notice that the
parametric flow algorithms by McCormick (1999) are developed for the flow problems with
zero lower bounds on the arc capacities; in scheduling terms that means zero lower bounds
on processing times, p(j) = 0, j ∈ N . The algorithms can be extended to deal with non-zero
lower bounds p(j), j ∈ N , by standard network flow techniques.

Following McCormick (1999), to solve problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
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pmtn|ΦΣ, where α ∈ {P,Q}, consider the problem of finding the maximum flow in network
Gα, defined in Section 5, provided that the fixed capacity p(j) of each arc (s, j), j ∈ N , is
replaced by a parametric capacity max{p(j) − x(j), 0} = max{b(j) − a(j)λ(j), 0}. Suppose
that f(a), a ∈ A, is the found maximum flow. Then for the arcs (s, j) entering the job-nodes
the flow f(s, j) determines p(j), the actual processing time of job j. For network GP , the
flow on an arc (j, Ih) defines for how long job j is processed in the time interval Ih, while for
network GQ, the flow on an arc (j, (Ih,Mi)) defines for how long job j is processed in the
time interval Ih on machine Mi.

Thus, problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ can be solved by
McCormick’s algorithms for solving the multi-parametric maximum flow problem; see rows
6 and 7 of Table 2. An important requirement, satisfied for both networks GP and GQ,
that makes McCormick’s techniques applicable, is the common tail s of the parametric arcs.
Besides, since each network GP and GQ is bipartite, the running time of the algorithms can
be sped-up by the techniques of Ahuja et al. (1994).

We apply the adapted McCormick’s algorithm with the running time O(|N |2|W |+ |N |3);
see row 6 of Table 2. In network GP , we have that |V | = |N |+ |W | ≤ 3n; thus, the algorithm
solves problem P |r(j), p(j) = p(j)−x(j), C(j) ≤ d (j) , pmtn|ΦΣ in O(n3) time. In network
GQ, we have that |W | ≤ 2mn, so that problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|ΦΣ is solved in O(mn3) time.

Applying the other version of McCormick’s algorithm of time complexity
O(|N ||A| log(|N |2/|A| + 2)) (row 7 of Table 2) proves to be less efficient. In the case
of network GP , we have that n ≤ |A| ≤ 2n2, while for network GQ the inequalities
mn ≤ |A| ≤ 2mn2 hold. Using the stated lower bounds on |A|, we deduce that |N |2/|A|
is O(n) for the identical machines, and is O (n/m) for the uniform machines. Thus, the
algorithm solves problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ in O(n3 log n)
time, while the time required to solve problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|ΦΣ is no less than O(mn3 log(n/m)).

The main conclusion of this section is that the running times O(n3) and O(mn3) that are
required to solve the problems of minimizing the total cost on parallel identical and uniform
machines, respectively, coincide with those reported in Table 3. These values are much better
that those previously known in the SIC literature.

7 Methodology 2: Optimization over Submodular Polyhedra

In this section, we briefly remind some basic definitions and approaches of submodular opti-
mization. The key tool which provides efficient algorithms for many SCPT problems is the
greedy algorithm that solves linear programming problems over submodular polyhedra.

We mainly follow a comprehensive monograph on submodular optimization by Fujishige
(2005), see also Katoh and Ibaraki (1998) and Schrijver (2003).

For a positive integer n, letN = {1, 2, . . . , n} be a ground set, and let 2N denote the family
of all subsets of N . As in Section 3, for a subset X ⊆ N , let RX denote the set of all vectors
p with real components p(j), where j ∈ X. For two vectors p = (p(1), p(2), . . . , p(n)) ∈ RN

and q = (q(1), q(2), . . . , q(n)) ∈ RN , we write p ≤ q if p(j) ≤ q(j) for each j ∈ N . For a
vector p ∈ RN , define p(X) =

∑
j∈X p(j) for every set X ∈ 2N .
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A set function φ : 2N → R is called submodular if the inequality

φ(X) + φ(Y ) ≥ φ(X ∪ Y ) + φ(X ∩ Y )

holds for all sets X,Y ∈ 2N . For a submodular function φ defined on 2N such that φ(∅) = 0,
the pair (2N , φ) is called a submodular system on N , while φ is referred to as its rank function.

For a submodular system (2N , φ), define two polyhedra

P (φ) = {p ∈ RN | p(X) ≤ φ(X), X ∈ 2N};

B(φ) = {p ∈ RN | p ∈ P (φ), p(N) = φ(N)},

called the submodular polyhedron and the base polyhedron, respectively, associated with the
submodular system.

The main problem of our interest is as follows:

(LP) : max
∑
j∈N

w(j)p(j)

s.t. p(X) ≤ φ(X), X ∈ 2N ,
p(j) ≤ p(j) ≤ p(j), j ∈ N,

(15)

where φ : 2N → R is a submodular function with φ(∅) = 0, p ∈ RN is a vector of decision
variables, w ∈ RN

+ is a non-negative weight vector, and p,p ∈ RN are vectors of upper and
lower bounds on the components of vector p, respectively. Further in this survey, we refer
to (15) as Problem (LP). This problem serves as a mathematical model for many SCPT
problems, as demonstrated below.

Problem (LP) can be classified as a problem of maximizing a linear function over a
submodular polyhedron intersected with a box. As shown in Shakhlevich et al. (2009),
Problem (LP) can be reduced to optimization over a base polyhedron.

Theorem 2 (cf. Shakhlevich et al. (2009)) If Problem (LP) has a feasible solution,
then the set of its maximal feasible solutions is a base polyhedron B(φ̃) associated with the
submodular system (2N , φ̃), where the rank function φ̃ : 2N → R is given by

φ̃(X) = min
Y ∈2N

{φ(Y ) + p(X \ Y ) − p(Y \X)}. (16)

Notice that in (16) computing the value φ̃(X) for a given X ∈ 2N reduces to minimization
of a submodular function. It is well known that an arbitrary submodular function can be
minimized in polynomial time; see Schrijver (2000) and Iwata et al. (2001). However, the
running time of these general algorithms is fairly large. In many special cases of Problem
(LP), including its applications to the SCPT problems, the value φ̃(X) can be computed
more efficiently, as shown later.

Throughout this paper, we assume that Problem (LP) has a feasible solution, which is
equivalent to the conditions p ∈ P (φ) and p ≤ p; see, e.g., Fujishige (2005). Theorem 2
implies that Problem (LP) reduces to the following problem:

max
∑
j∈N

w(j)p(j) (17)

s.t. p ∈ B(φ̃),

where the rank function φ̃ : 2N → R is given by (16).
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An advantage of the reduction of Problem (LP) to a problem of the form (17) is that
the solution vector can be obtained essentially in a closed form by a greedy algorithm. To
determine an optimal vector p∗, the algorithm starts with p∗ = p, considers the components
of the current p∗ in non-increasing order of their weights and gives the current component
the largest possible increment that keeps the vector feasible.

Let σ = (σ (1) , σ (2) , . . . , σ (n)) be a permutation of elements in N = {1, 2, . . . , n} such
that w(σ(1)) ≥ w(σ(2)) ≥ · · · ≥ w(σ(n)), and define Nt(σ) = {σ(1), . . . , σ(t)} for t =
1, 2, . . . , n, where, for completeness, N0(σ) = ∅.

Theorem 3 (cf. Fujishige (2005)) Vector p∗ ∈ RN given by

p∗(σ(t)) = φ̃ (Nt(σ)) − φ̃ (Nt−1(σ)) , t = 1, 2, . . . , n,

is an optimal solution to problem (17) (and also to the problem (15)).

We now demonstrate that the SCPT problems to minimize the total weighted compression
cost can be reformulated in terms of solving Problem (LP) of the form (15), where the rank
function φ (X) is a suitable processing capacity function defined in Section 3.

Take a generic problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ, for which
φ(X) is the corresponding processing capacity function. Notice that function φ (X) is sub-
modular; see, e.g., Shakhlevich and Strusevich (2005, 2008). Intuitively, submodularity of
the processing capacity function can be naturally explained by using an equivalent defini-
tion of a submodular function, known as the law of diminishing returns: a set function φ is
submodular if and only if the inequality

φ (X ∪ {j}) − φ (X) ≥ φ (Y ∪ {j}) − φ (Y )

holds for all sets X ⊂ Y ⊆ N and all j ∈ N \Y . Since in our case φ (X) is the total duration
of all time intervals available for processing of jobs of set X, the value φ (X ∪ {j}) − φ (X)
is the length of all intervals in which the job j can be processed, while none of the jobs of
set X can. The inequality above holds due to X ⊂ Y .

Recall that in the problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ, it is
required to find a feasible schedule with the job processing times p(j) = p(j) − x(j), j ∈ N ,
that minimizes the total compression cost ΦΣ =

∑
j∈N wT (j)x (j). As follows from Section 3

(see (3)), a feasible schedule exists if and only if the inequality p(X) ≤ φ (X) holds for each
set X ⊆ N . Moreover, minimizing the total compression cost ΦΣ =

∑
j∈N wT (j)x(j) is

equivalent to maximizing the total weighted processing time W =
∑

j∈N wT (j)p(j). Hence,
problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ can be reformulated as Problem
(LP) of the form (15).

Theorem 4 In order to solve problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ it
suffices to solve Problem (LP), where φ (X) is the corresponding processing capacity function
and w(j) = wT (j), j ∈ N .

By Theorems 3 and 4, optimal processing times p∗(j), j ∈ N of the problem α|r(j),
p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ are given as

p∗(σ(t)) = φ̃ (Nt(σ)) − φ̃ (Nt−1(σ)) , t = 1, 2, . . . , n,
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and the optimal total weighted processing time is W =
∑n

t=1wT (σ(t))p∗(σ(t)). We can
also obtain optimal compression amounts x∗(j), j ∈ N by x∗(σ(t)) = p(σ(t)) − p∗(σ(t)),
t = 1, 2, . . . , n, and the optimal total compression cost ΦΣ is given as

ΦΣ =
n∑

t=1

wT (σ(t))(p(σ(t)) − p∗(σ(t))) =
n∑

t=1

wT (σ(t))p(σ(t)) −
n∑

t=1

wT (σ(t))p∗(σ(t))

=
n∑

t=1

wT (σ(t))p(σ(t)) −W. (18)

As far as we are aware, the first observation of the link between the SCPT problems and
Problem (LP) was made by Nemhauser and Wolsey (1988), who considered a single machine
problem with no lower and upper bounds on the processing times. Since 2005, our team has
performed a systematic exploration of that link and demonstrated how useful such a link is,
bringing a powerful toolkit of submodular optimization into the study of SCPT.

If one reads earlier papers on SCPT, e.g., those reviewed in Nowicki and Zdrza lka (1990)
and Shabtay and Steiner (2007), most of them have a common feature. An algorithm based on
the greedy ideas is offered and its correctness is proved usually from the first principles using
a problem-dependent scheduling argument. An immediate advantage of Theorem 4 is that
most of the SCPT problems admit a solution by the greedy algorithm. Other advantages
include a possibility of solving efficiently bicriteria problems without using a scheduling
argument, as outlined below in Section 8, as well as single criterion problems, applying a
novel decomposition algorithm developed for Problem (LP); see Section 10.

8 Controllable Processing Times. Bicriteria Problems

In this section, we review recent results on solving the SCPT problems in which it is required
to simultaneously minimize two objective functions, e.g., F1 and F2. In problems of this type
we need to find the set of Pareto-optimal schedules. Recall that a schedule S′ is called Pareto-
optimal if there exists no schedule S′′ such that F1(S

′′) ≤ F1(S
′) and F2(S

′′) ≤ F2(S
′), where

at least one of these inequalities is strict. We demonstrate that Methodology 2 provides the
foundation to an approach to solve a range of bicriteria SCPT problems. In particular, for
these problems Theorems 3 and 4 allow finding the efficiency frontier in a closed form.

Notice that for the problems of the range under consideration previously known algo-
rithms are usually based on scheduling reasoning: typically, they enumerate the breakpoints
of the efficiency frontier one by one, constructing the next breakpoint from the previous one
by changing the underlying schedule by compressing/decompressing a job.

8.1 Parallel Machines

We start with problems Q|p(j) = p(j) − x(j), pmtn| (Cmax,ΦΣ) and α|r(j), p(j) = p(j) −
x(j), pmtn| (Cmax,ΦΣ) with α ∈ {P,Q}. In the third field of the above notation, we write
(Cmax,ΦΣ) to indicate that it is required to find the set of Pareto-optimal solutions with
respect to two criteria, the makespan Cmax and the total compression cost ΦΣ. The material
of this section is mainly based on Shioura et al. (2013).

Given an instance of a bicriteria problem of the indicated range, consider a schedule
with a makespan Cmax = d that minimizes the total compression cost ΦΣ = ΦΣ(d). Note
that ΦΣ(d) depends on the makespan d and is a piecewise-linear function in d representing

24



the efficiency frontier. In a bicriteria problem, our task is to compute the piecewise-linear
function ΦΣ(d).

As discussed in Section 7, the value ΦΣ(d) for a given d can be found by solving an
appropriate problem of the form (15). Since in this case the rank functions φ(X) and φ̃(X)
of the form (16) should be seen not only as functions of set X but also as functions of d, in
this section we may write φ(X, d) and φ̃(X, d) whenever we want to stress that dependence
on d. In particular, the value ΦΣ(d) can be obtained by solving the problem

max
∑
j∈N

wT (j)p(j)

s.t. p(X) ≤ φ(X, d), X ∈ 2N ,
p(j) ≤ p(j) ≤ p(j), j ∈ N,

(19)

where φ(X, d) is a suitably chosen processing capacity function that guarantees that the jobs
of set X can be completed by time d. This problem is a parametric version of Problem (LP),
and the second line of its constraints describes a parametric submodular polyhedron. As in
Section 7, let σ = (σ (1) , σ (2) , . . . , σ (n)) be a permutation of elements in N = {1, 2, . . . , n}
such that wT (σ(1)) ≥ wT (σ(2)) ≥ · · · ≥ wT (σ(n)), and define Nt(σ) = {σ(1), . . . , σ(t)} ,
1 ≤ t ≤ n, where, for completeness, N0(σ) = ∅. Then, an optimal solution p∗(j, d), j ∈ N ,
to problem (19) is given as

p∗(σ(t), j) = φ̃(Nt(σ), d) − φ̃(Nt−1(σ), d), t = 1, 2, . . . , n, (20)

and the optimal value W (d) of problem (19) is given by

W (d) =
n∑

t=1

wT (σ(t))p∗(σ(t), d). (21)

Hence, the total compression cost ΦΣ(d) is represented as

ΦΣ(d) =
n∑

t=1

wT (σ(t))p(σ(t)) −W (d); (22)

see equation (18). It should be noted that the term
∑n

t=1wT (σ(t))p(σ(t)) in (22) is inde-
pendent of the makespan d and is a constant for all d. Therefore, the function ΦΣ(d) can
be easily obtained from the piecewise-linear function W (d) by a simple transformation (22),
and it suffices to compute W (d) instead of ΦΣ(d).

Given a value of d, define a function

ψt(d) = φ̃(Nt(σ), d), 1 ≤ t ≤ n. (23)

By (20) and (21), the value W (d) is represented as

W (d) =
n∑

t=1

wT (σ(t)) (ψt(d) − ψt−1(d))

=

n−1∑
t=1

(wT (σ(t)) − wT (σ(t+ 1)))ψt(d) + wT (σ(n))ψn(d). (24)

Thus, the piecewise-linear function W (d) can be obtained by first computing the functions
ψt(d), 1 ≤ t ≤ n, and then computing their weighted sum according to (24). It is shown
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in (Shioura et al., 2013, Section 2) that once these functions ψt(d), 1 ≤ t ≤ n, are found,
their weighted sum (24) can be computed in O (nm log n) time, provided that each function
ψt(d) has at most O(m) breakpoints. Below we explain how to compute functions ψt(d) for
all t = 1, 2, . . . , n.

It follows from (16) applied to X = Nt(σ) that

ψt(d) = min
Y ∈2N

{
φ(Y, d) + p(Nt(σ) \ Y ) − p(Y \Nt(σ))

}
= p(Nt(σ)) + min

Y ∈2N

{
φ(Y, d) − p(Nt(σ) ∩ Y ) − p(Y \Nt(σ))

}
. (25)

For the problem Q|p(j) = p(j) − x(j), pmtn| (Cmax,ΦΣ), the value φ(Y, d) is given by
φ(Y, d) = dSmY with mY = min {m, |Y |}; see (9). Using equation (25) and the fact that
the value SmY takes at most m + 1 values, we can show that ψt(d) is represented as a
piecewise-linear (concave) function with m+1 pieces. For the other two scheduling problems
under consideration, due to (11) and (12), we can still show that ψt(d) is represented as a
piecewise-linear (concave) function with m+ 1 pieces.

Computing functions ψt(d), 1 ≤ t ≤ n, for all relevant values of d is a problem dependent
procedure. As shown in Shioura et al. (2013), such a procedure requires O (n log n+ nm) time
for problem Q|p(j) = p(j)−x(j), pmtn|(Cmax,ΦΣ), and the overall time complexity for solv-
ing that problem is O (nm logm). For problems α|r(j), p(j) = p(j) − x(j), pmtn| (Cmax,ΦΣ)
with non-zero release dates, computing functions ψt(d), 1 ≤ t ≤ n, takes O

(
n2 logm

)
time

and O(n2m) time for α = P and α = Q, respectively, and these values determine the running
times needed for solving these problems.

We conclude this subsection by considering problem P |p(j) = p(j) −
x(j), pmtn|(Cmax,ΦΣ). In principle, it can be solved using the approach outlined
above for a more general problem P |r (j) , p(j) = p(j) − x(j), pmtn|(Cmax,ΦΣ). However,
even if all release dates are zero, we are not aware how to implement the approach faster
than in O(n2) time. A more efficient approach presented in Shakhlevich and Strusevich
(2005) uses the submodular optimization reasoning to justify the use of the greedy algorithm
and is based on the following property of optimal solutions. For any fixed value d, there is
a subset of decompressed jobs Nt(σ) with the processing times min {p(j), d}, while each
remaining job j ∈ N\Nt(σ) remains fully compressed, with the processing time p(j). Within
the set N \ Nt(σ), the preference for decompression is always given to the jobs with the
largest weights wT (j). It is demonstrated in Shakhlevich and Strusevich (2005) that the
solution with the smallest Cmax-value can be found in O(n logn) time. Starting from it,
each next breakpoint of the efficiency frontier can be constructed in O(log n) time from the
previous one. With the total number of breakpoints bounded by 2n + 1, the overall time
complexity of that approach is O(n logn).

8.2 Single Machine

Below, we briefly review the results on single machine bicriteria SCPT problems.
Problem 1|r (j) , p(j) = p(j) − x(j), pmtn|(Cmax,ΦΣ) is a special case of the problem

P |p(j) = p(j) − x(j), pmtn|(Cmax,ΦΣ) considered in the last subsection, and therefore can
be solved in O (n log n) time; see Shakhlevich and Strusevich (2005).

Problem 1|r (j) , p(j) = p(j) − x(j), pmtn|(Lmax,ΦΣ), where job j ∈ N has a due date
d (j) (not a deadline) and Lmax = max {C (j) − d (j) |j ∈ N} is the maximum lateness, is
also studied in Shakhlevich and Strusevich (2005). Recall that in scheduling the difference
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between the deadlines and the due dates is that the latter can be violated, which is usually
associated with a penalty to be paid for a late completion of jobs. The submodular opti-
mization reasoning is applied to justify and develop a version of the greedy algorithm, and
the resulting algorithm requires O

(
n2

)
time.

Consider now problem 1|p(j) = p(j) − x(j)| (Fmax,ΦΣ), where the first objective repre-
sents the schedule quality measured in the terms of the maximum processing cost Fmax =
maxj∈N fj(C (j)). For job j ∈ N , function fj(C (j)) is a non-decreasing piecewise-linear
function that penalizes the completion of job j at time C (j) and consists of lj linear pieces.

This problem is among historically the first SCPT problems (see Van Wassenhove and
Baker (1982)), and admits a natural interpretation in terms of the make-or-buy decision-
making; see Section 2. Here the machine is seen as the internal production facility. The cost
function fj(Cj) is the work-in-process cost of order j, so that Fmax is the processing cost, i.e.,
represents the maximum cost of processing those orders and their parts that are accepted for
internal manufacturing. The other objective function ΦΣ expresses the total subcontracting
cost.

The algorithm presented in Shakhlevich et al. (2009) combines the reformulations in terms
of linear programming problems over parametric submodular polyhedra with computational
geometry techniques. It starts with a pre-processing step, that requires O(nL log n) time
with L =

∑
j∈N lj , and is aimed at splitting the whole range of possible values of fj(Cj)

into intervals [yℓ−1, yℓ] such that within each interval the functions fj(t) do not intersect
and do not change their linear shape. Such a splitting ensures that for every interval the
job sequence is fixed, and the approach similar to that outlined in Section 8.1 is applicable
to each of the O(nL) intervals of the form [yℓ−1, yℓ]. Since the time complexity of finding
ΦΣ(d) in a single interval is O(n2) and the total number of the relevant intervals is O(nL),
the overall time complexity is O(n3L).

It is clear that the algorithm for solving problem 1|p(j) = p(j)−x(j)| (Fmax,ΦΣ) delivers
an optimal solution to a single criterion problem of minimizing one of the objectives Fmax or
ΦΣ, provided that the other one is bounded. However, as shown in Shakhlevich et al. (2009),
these single criterion problems can be solved faster by specialized algorithms. The problem
of minimizing the total compression cost ΦΣ subject to a bounded maximum processing cost
Fmax requires O (n log n+ λ) time with λ =

∑
j∈N log lj . On the other hand, minimizing

the maximum processing cost Fmax subject to a bounded total compression cost ΦΣ takes
O
(
L+ n2 + (λ+ n log n) logL

)
time. If each lj is bounded by a constant, the above estimates

reduce to O (n log n) and O
(
n2 + n log2 n

)
, respectively.

The summary of the results on the bicriteria problems and their comparison are presented
in Table 4.

9 Methodology 3: Submodular Optimization via Decomposi-
tion Algorithm

Due to Theorems 3 and 4, Problem (LP) can be solved by a greedy algorithm in at most
n iterations, each of which involves minimization of a submodular function. In this section,
we present a recursive decomposition algorithm that solves Problem (LP) with a depth of
recursion O (log n). The decomposition algorithm can be adapted to solving several SCPT
problem to minimize the total compression cost. Our presentation of the decomposition
algorithm is based on Shioura et al. (2015, 2016a).

Our algorithm is different from a well-known decomposition algorithm from Fujishige
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Problem Previously known Methodology 2

1|r (j) , p(j) =p(j) − x(j), N/A O(n log n)
pmtn|(Cmax,ΦΣ) Shakhlevich and Strusevich (2005)

1|r (j) , p(j) =p(j) − x(j), N/A O(n2)
pmtn|(Lmax,ΦΣ) Shakhlevich and Strusevich (2005)

1|p(j) =p(j) − x(j)| O(n4L2)∗ O(n3L)∗

( maxj∈N fj(C(j)),ΦΣ) Hoogeveen and Woeginger (2001) Shakhlevich et al. (2009)

P |p(j) =p(j) − x(j), O(n2) O(n log n)
pmtn|(Cmax,ΦΣ) Nowicki and Zdrza lka (1995) Shakhlevich and Strusevich (2005)

P |r(j), p(j) =p(j) − x(j), N/A O(n2 logm)
pmtn|(Cmax,ΦΣ) Shioura et al. (2013)

Q|p(j) =p(j) − x(j), O(n logn+ nm4) O(nm logm)
pmtn|(Cmax,ΦΣ) Shakhlevich and Strusevich (2008) Shioura et al. (2013)

Q|r(j), p(j) =p(j) − x(j), N/A O(n2m)
pmtn|(Cmax,ΦΣ) Shioura et al. (2013)

∗ L is the total number of pieces of of all functions fj , j ∈ N

Table 4: Complexity of Bicriteria Problems

(1980, 2005) which minimizes a separable convex function over a base polyhedron. Even
for a linear objective function, the depth of recursion of Fujishige’s algorithm in the worst
case is n. A detailed comparison of Fujishige’s algorithm and our decomposition algorithm
is provided in Shioura et al. (2015).

Given Problem (LP) of the form (15), a subset N̂ ⊆ N is called a heavy-element subset
of N with respect to the weight vector w if it satisfies the condition

min
j∈N̂

wT (j) ≥ max
j∈N\N̂

wT (j).

For completeness, we also regard the empty set as a heavy-element subset of N . For a given
set X ⊆ N , in accordance with (16) define a set Y∗ ⊆ N such that the equality

φ̃(X) = φ(Y∗) + p(X \ Y∗) − p(Y∗ \X) (26)

holds. In the remainder of this paper, we call Y∗ an instrumental set for set X.
The statement below explains an important role that the instrumental set plays in solving

Problem (LP).

Lemma 5 (cf. Shioura et al. (2015, 2016a)) Let N̂ ⊆ N be a heavy-element subset of
N with respect to w, and Y∗ ⊆ N be an instrumental set for set N̂ . Then there exists an
optimal solution p∗ of Problem (LP) such that

(a) p∗(Y∗) = φ(Y∗), (b) p∗(j) = p(j), j ∈ N̂ \ Y∗, (c) p∗(j) = p(j), j ∈ Y∗ \ N̂ .

In what follows, we use two fundamental operations on a submodular system
(
2N , φ

)
, as

defined in (Fujishige, 2005, Section 3.1). For a set A ∈ 2N , define a set function φA : 2A → R
by φA(X) = φ(X), X ∈ 2A. Then, (2A, φA) is a submodular system on A and it is called
a restriction of (2N , φ) to A. On the other hand, for a set A ∈ 2N define a set function
φA : 2N\A → R by φA(X) = φ(X∪A)−φ(A), X ∈ 2N\A. Then, (2N\A, φA) is a submodular
system on N \A and it is called a contraction of (2N , φ) by A.
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Theorem 6 (cf. Shioura et al. (2015, 2016a)) Let N̂ ⊆ N be a heavy-element subset of
N with respect to w, and Y∗ be an instrumental set for set N̂ . Let p1 ∈ RY ∗

and p2 ∈ RN\Y ∗

be optimal solutions of the linear programs (LPR) and (LPC), respectively, given by

(LPR) : max
∑
j∈Y∗

w(j)p(j)

s.t. p(X) ≤ φ(X), X ∈ 2Y∗ ,

p(j) ≤ p(j) ≤ p(j), j ∈ Y∗ ∩ N̂ ,
p(j) = p(j), j ∈ Y∗ \ N̂ ,

(LPC) : max
∑

j∈N\Y∗

w(j)p(j)

s.t. p(X) ≤ φ(X ∪ Y∗) − φ(Y∗), X ∈ 2N\Y∗ ,

p(j) ≤ p(j) ≤ p(j), j ∈ (N \ Y∗) \
(
N̂ \ Y∗

)
,

p(j) = p(j), j ∈ N̂ \ Y∗.

Then, the vector p∗ ∈ RN given by the direct sum p∗ = p1 ⊕ p2, where

(p1 ⊕ p2)(j) =

{
p1(j), if j ∈ Y∗,
p2(j), if j ∈ N \ Y∗,

is an optimal solution of Problem (LP).

Notice that Problem (LPR) is obtained from Problem (LP) as a result of restriction to Y∗
and the values of components p(j), j ∈ Y∗ \ N̂ , are fixed to their lower bounds in accordance
with Property (c) of Lemma 5. Similarly, Problem (LPC) is obtained from Problem (LP)
as a result of contraction by Y∗ and the values of components p(j), j ∈ N̂ \ Y∗, are fixed to
their upper bounds in accordance with Property (b) of Lemma 5.

Now we explain how the original problem (LP) can be decomposed recursively based on
Theorem 6, until we obtain a collection of trivially solvable problems with no non-fixed vari-
ables. As described in Shioura et al. (2015, 2016a), in each stage of the recursive procedure,
we need to solve a subproblem that can be written in the following generic form:

LP(H,F,K, l,u) : max
∑
j∈H

wT (j)p(j)

s.t. p(X) ≤ φH
K(X) = φ(X ∪K) − φ(K), X ∈ 2H ,

l(j) ≤ p(j) ≤ u(j), j ∈ H \ F,
p(j) = u(j) = l(j), j ∈ F,

(27)

where H ⊆ N is the index set of components of vector p; l = (l(j) | j ∈ H) and u = (u(j) |
j ∈ H) are, respectively, the current vectors of the lower and upper bounds on variables
p(j), j ∈ H; F ⊆ H is the index set of fixed components, i.e., l(j) = u(j) holds for each
j ∈ F ; K ⊆ N \ H is the set that defines the rank function φH

K : 2H → R such that
φH
K(X) = φ(X ∪K) − φ(K), X ∈ 2H .

Suppose that Problem LP(H,F,K, l,u) of the form (27) contains at least one non-fixed
variable, i.e., |H \ F | > 0. We define a function φ̃H

K : 2H → R by

φ̃H
K(X) = min

Y ∈2H
{φH

K(Y ) + u(X \ Y ) − l(Y \X)}. (28)
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By Theorem 2, the set of maximal feasible solutions of Problem LP(H,F,K, l,u) is given as
a base polyhedron B(φ̃H

K) associated with the rank function φ̃H
K . Therefore, if |H \ F | = 1

and H \ F = {j′}, then an optimal solution p∗ ∈ RH is given by

p∗(j) =

{
φ̃H
K({j′}) (if j = j′),

u(j) (if j ∈ F ).
(29)

Suppose that |H \ F | ≥ 2. Then, we call a recursive Procedure Decomp(H,F, K, l,u)
explained below. Let Ĥ ⊆ H be a heavy-element subset of H with respect to the vector
(w(j) | j ∈ H), and Y∗ ⊆ H be an instrumental set for set Ĥ, i.e.,

φ̃H
K(Ĥ) = φH

K(Y∗) + u(Ĥ \ Y∗) − l(Y∗ \ Ĥ). (30)

Without going into implementation details, we follow Shioura et al. (2015, 2016a) and
give a formal description of the recursive procedure. For the current problem LP(H,F,K,
l, u), we compute optimal solutions p1 ∈ RY∗ and p2 ∈ RH\Y∗ of the two subproblems by
calling Procedures Decomp(Y∗, F1,K, l1,u1) and Decomp(H \ Y∗, F2,K ∪ Y∗, l2,u2). By
Theorem 6, the direct sum p∗ = p1⊕p2 is an optimal solution of Problem LP(H,F,K, l,u),
which is the output of Procedure Decomp(H,F,K, l,u).

Procedure Decomp(H,F,K, l,u)

Step 1. If |H \ F | = 0, then output the vector p∗ = u ∈ RH and return.
If |H \ F | = 1 and H \ F = {j′}, then compute the value φ̃H

K({j′}), output the vector
p∗ given by (29) and return.

Step 2. Select a heavy-element subset Ĥ of H \ F with respect to w, and determine an
instrumental set Y∗ ⊆ H for set Ĥ satisfying (30).

Step 3. Define the vectors l1,u1 ∈ RY∗ and set F1 by

l1(j) = l(j), j ∈ Y∗, u1(j) =

{
l(j), j ∈ Y∗ \ Ĥ,
u(j), j ∈ Y∗ ∩ Ĥ,

; F1 = Y∗ \ Ĥ.

Call Procedure Decomp(Y∗, F1,K, l1,u1) to obtain an optimal solution p1 ∈ RY∗ of
Problem LP(Y∗, F1,K, l1,u1).

Step 4. Define the vectors l2,u2 ∈ RH\Y∗ and set F2 by

l2(j) =

{
u(j), j ∈ Ĥ \ Y∗,
l(j), j ∈ H \ (Y∗ ∪ Ĥ),

u2(j) = u(j), j ∈ H \ Y∗;

F2 = (Ĥ ∪ (H ∩ F )) \ Y∗.

Call Procedure Decomp(H \ Y∗, F2,K ∪ Y∗, l2,u2) to obtain an optimal solution p2 ∈
RH\Y∗ of Problem LP(H \ Y∗, F2,K ∪ Y∗, l2,u2).

Step 5. Output the direct sum p∗ = p1 ⊕ p2 ∈ RH and return.

The original problem (LP) is solved by calling Procedure Decomp(N, ∅, ∅, p,p). Its

actual running time depends on the choice of a heavy-element subset Ĥ in Step 2 and on
the time complexity of finding an instrumental set Y∗. As proved in Shioura et al. (2015),
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if at each level of recursion a heavy-element set is chosen to contain roughly a half of the
non-fixed variables, then the overall depth of recursion of Procedure Decomp applied to
Problem LP(N, ∅, ∅,p,p) is O(log n).

For a typical iteration of Procedure Decomp applied to Problem LP(H,F,K, l,u) with
|H| = h and |H \ F | = g, let TY∗(h) denote the running time for computing the value
φ̃H
K(Ĥ) for a given set Ĥ ⊆ H and finding an instrumental set Y∗ in Step 2. In Steps 3 and

4, Procedure Decomp splits Problem LP(H,F,K, l,u) into two subproblems: one with h1
variables among which g1 ≤ min{h1, ⌈g/2⌉} variables are not fixed, and the other one with
h2 = h−h1 variables, among which g2 ≤ min{h2, ⌊g/2⌋} variables are not fixed. Let TSplit (h)
denote the time complexity for setting up the instances of these two subproblems. It is shown
in Shioura et al. (2015, 2016a) that Problem (LP) can be solved by Procedure Decomp in
O((TY∗(n) + TSplit(n)) log n) time.

10 Total Cost. Decomposition Algorithm

In this section, we demonstrate the power of Methodology 3 by adapting the decomposition
algorithm from Section 9 to solving the SCPT problems with the total compression cost
objective. We split our consideration into two parts, depending on a particular way of
finding an instrumental set Y∗.

10.1 Parallel Machines. Common Deadline

In this subsection, we assume that all jobs have a common deadline. We exclude from con-
sideration problem P |p(j) = p(j)−x(j), C (j) ≤ d, pmtn|ΦΣ, since this problem, the simplest
of the range under consideration, admits a linear time algorithm. Indeed, as pointed out in
Jansen and Mastrolilli (2004), the problem reduces to the continuous knapsack problem.

Thus, in this subsection, we focus on the problems Q|p(j) = p(j) − x(j), C (j) ≤
d, pmtn|ΦΣ and α|r(j), p(j) = p(j) − x(j), C (j) ≤ d, pmtn|ΦΣ with α ∈ {P,Q}. Of course,
each of these problems can be solved by adapting an output of the corresponding algorithm
for the relevant bicriteria problem; see Section 8. However, as shown below, each of these
problems can be solved faster by applying the decomposition algorithm from Section 9. The
material is this subsection is based on Shioura et al. (2015).

In accordance with Theorem 4, each of these three problems reduces to Problem (LP).
The corresponding rank functions are given by (9) for problem Q|p(j) = p(j)− x(j), C (j) ≤
d, pmtn|ΦΣ, by (12) for problem P |r(j), p(j) = p(j) − x(j), C (j) ≤ d, pmtn|ΦΣ and by (11)
for problem Q|r(j), p(j) = p(j) − x(j), C (j) ≤ d, pmtn|ΦΣ.

In line with the decomposition algorithm for Problem (LP), take an initial Prob-
lem LP(N, ∅, ∅, l,u), associated with one of the three scheduling problems above, where
l (j) = p(j) and u (j) = p(j), j ∈ N . Assume that the following preprocessing is done in
O(n log n) time before calling Procedure Decomp(N, ∅, ∅, l,u): the jobs are numbered in
non-decreasing order of their release dates in accordance with (6); the machines are num-
bered in non-increasing order of their speeds in accordance with (1), and the partial sums
Sv are computed for all v, 0 ≤ v ≤ m, by (7); the lists (l(j) | j ∈ N) and (u(j) | j ∈ N) are
formed and their elements are sorted in non-decreasing order.

For each of the three problems under consideration, the rank functions are relatively
simple, so that the instrumental set Y∗ can be found directly, as a minimizer of a cer-
tain submodular function. In a typical iteration of Procedure Decomp applied to Problem
LP(H,F,K, l,u) of the form (27) with the rank function φH

K(Y ) = φ(Y ∪K) − φ(K), it is
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shown in Shioura et al. (2015) that for a given set X ⊆ H the function φ̃H
K : 2H → R can be

computed as
φ̃H
K(X) = u(X) − φ(K) + min

Y ∈2H
{φ(Y ∪K) − b(Y )}, (31)

where φ is the initial rank function associated with the scheduling problem under consider-
ation, and

b(j) =

{
u(j), if j ∈ X,
l(j), if j ∈ H \X. (32)

Notice that if the minimum in the right-hand side of (31) is achieved for Y = Y∗, then Y∗ is
an instrumental set for set X.

To illustrate this, consider, e.g., problem Q|p(j) = p(j) − x(j), pmtn, C (j) ≤ d|ΦΣ. For
Problem LP(H,F,K, l,u) associated with that problem it follows from (9) and (31) that

φ̃H
K(X) = u(X) − dSmin{m,k} + min{Φ′,Φ′′}, (33)

where k = |K|,

Φ′ =

 min
0≤v≤min{h,m−k−1}

{dSv+k −
v∑

i=1

bi}, if m > k,

+∞, otherwise,

with bi being the i-th largest value in the list (b(j) | j ∈ H), and

Φ′′ =

{
dSm − b(H), if h > m− k − 1,
+∞, otherwise.

In any case, in terms of the notions introduced in Section 9 we deduce that TY∗(h) =
TSplit(h) = O (h), so that the overall running time needed to solve problem Q|p(j) =
p(j) − x(j), pmtn,C (j) ≤ d|ΦΣ by the decomposition algorithm based on recursive ap-
plications of Procedure Decomp is O (n log n). An alternative implementation of the same
approach, also presented in Shioura et al. (2015), does not involve a full preprocessing and
requires O(n+m logm log n) time.

When Methodology 3 is applied to problems P |r(j), p(j) = p(j)−x(j), C(j) ≤ d, pmtn|ΦΣ

and Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|ΦΣ, the decomposition algorithm can be
implemented in O(n log n logm) time and in O(mn log n) time, respectively.

The summary of the results for the single criterion parallel machine problems with a
common deadline is presented in Table 5.

10.2 Single Machine

Problem 1|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), pmtn|ΦΣ for many years has been an object
of intensive study, mainly within the body of research on SIC. The history of studies on this
problem is a race for developing an O (n log n)-time algorithm, matching the best possible
estimate of O(n log n) achieved for a simpler feasibility problem 1|r(j), C(j) ≤ d(j), pmtn|−,
see Table 6.

The time complexity of problem 1|r(j), p(j) = p(j)−x(j), C(j) ≤ d(j), pmtn|ΦΣ is finally
settled in Shioura et al. (2016a), where an O (n log n)-time algorithm is produced using
Methodology 3. The algorithm is based on the decomposition algorithm for Problem (LP)
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Problem Previously known Methodology 3:

Decomposition Algorithm

P |r(j), p(j) = p(j) − x(j), O(n) N/A

C(j) ≤ d, pmtn|ΦΣ Jansen and Mastrolilli (2004)

P |r(j), p(j) = p(j) − x(j), O(n4logn)∗, # O(n log n logm)
C(j) ≤ d, pmtn|ΦΣ Blazewicz and Finke (1987) Shioura et al. (2015)

Chung et al. (1989)

Shih et al. (1989, 1991)

Leung (2004)

O(n2logm)†

Shioura et al. (2013)

Q|p(j) = p(j) − x(j), O(mn+ n log n) O(min{n logn,
C(j) ≤ d, pmtn|Φ Nowicki and Zdrza lka (1995) n+m logm log n})

Shakhlevich and Strusevich (2008) Shioura et al. (2015)

O(mn logm)†

Shioura et al. (2013)

Q|r(j), p(j) = p(j) − x(j), O(mn4)∗ O(mn log n)
C(j) ≤ d, pmtn|Φ Wan et al. (2007) Shioura et al. (2015)

Shakhlevich and Strusevich (2008)

O(mn2)†

Shioura et al. (2013)
∗ Derived for the problem with arbitrary deadlines
#After correcting a faulty claim that problem P |r(j), C(j) ≤ d(j), pmtn|− is solvable

in O(n2 log2 n) time, see Remark 1 of Section 5
† Methodology 2: Bicriteria problems via submodular optimization, Section 8

Table 5: Complexity of Problems with a Common Deadline

and uses an algorithm from Hochbaum and Shamir (1990) as a subroutine for solving auxiliary
problems with the unweighted penalty function Φu =

∑
x(j).

The efficient implementation of the decomposition algorithm developed in Shioura et al.
(2016a) is based on the following statement.

Theorem 7 (cf. (Fujishige, 2005, Corollary 3.4)) For a submodular system (2H , φ)
and a vector b ∈ RH , the equality

min
Y ∈2H

{φ(Y ) + b(H \ Y )} = max{p(H) | p ∈ P (φ), p ≤ b}

holds. In particular, if b ≥ 0 and φ (X) ≥ 0 for all X ⊆ N then the right-hand side is equal
to max{p(H) | p ∈ P (φ), 0 ≤ p ≤ b}.

Given Problem LP(H,F,K, l,u) of the form (27), for a set X ⊆ H define the vector
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Problem Previously known Methodology 3

Decomposition Algorithm

1|r(j), p(j) = p(j) − x(j), O(n2log2n) O(n log n)
C(j) ≤ d(j), pmtn|ΦΣ Chung et al. (1989), Shioura et al. (2016a)

Shih et al. (1989)

O(n2) for ΦΣ =
∑
wT (j)x(j)

O(n log n) for Φu=
∑
x(j)

Hochbaum and Shamir (1990)

O(n log n+ κn)∗

Leung et al. (1994)

O(n log2n)#

Shih et al. (2000)
∗ κ is the number of distinct weights wT (j)
# for integer input data

Table 6: Results for the Single Machine Problem

b ∈ RH by (32), and for a set X ⊆ H represent φ̃H
K(X) in the form

φ̃H
K(X) = min

Y ∈2H
{φH

K(Y ) + u(X \ Y ) − l(Y \X)}

= −l(H \X) + min
Y ∈2H

{φH
K(Y ) + b(H \ Y )}.

Since −l(H \X) is a constant, in order to find an instrumental set Y∗ that defines φ̃H
K(X)

it suffices to find a minimizer for minY ∈2H{φH
K(Y ) + b(H \ Y )}. By Theorem 7, the latter

minimization problem is equivalent to the following auxiliary problem:

(AuxLP) : max
∑
j∈H

q(j)

s.t. q(Y ) ≤ φH
K(Y ), Y ∈ 2H ;

0 ≤ q(j) ≤ b(j), j ∈ H.

(34)

Let q∗ ∈ RH be an optimal solution to Problem (AuxLP) with the values b (j) defined
with respect to a set X ⊆ H. It is proved in Shioura et al. (2016a) that a set Y∗ is an
instrumental set that defines φ̃H

K(X) if and only if

q∗(Y∗) = φH
K(Y∗); q(j) = b(j), j ∈ H \ Y∗.

Problem 1|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), pmtn|ΦΣ reduces to Problem (LP) with
the rank function φ = φ1 defined by (5). Consider a typical iteration of Procedure Decomp
applied to Problem LP(H,F,K, l,u) of the form (27) related to the rank function φH

K(Y ) =
φ(Y ∪ K) − φ(K). For a set X ⊆ H of jobs, a meaningful interpretation of φH

K(X) is the
total length of the time intervals originally available for processing the jobs of set X ∪ K
after the intervals for processing the jobs of set K have been completely used up.

Select a heavy-element set Ĥ and define the values b(j) by (32) applied to X = Ĥ. Our
goal is to find an instrumental set Y∗ for set Ĥ. As described above, for this purpose we may
solve the auxiliary Problem (AuxLP).
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Problem (AuxLP) can be seen as a version of a scheduling problem 1|r(j), q(j) = b(j) −
x(j), C(j) ≤ d(j), pmtn|

∑
x(j), in which it is required to determine the actual processing

times q(j) of jobs of set H to maximize the total (unweighted) actual processing time,
provided that 0 ≤ q(j) ≤ b(j) for each j ∈ H. It can be solved by an algorithm developed by
Hochbaum and Shamir (1990), which uses the UNION-FIND technique and finds the actual
processing times of all jobs and the corresponding optimal schedule in O(h) time, provided
that the jobs are renumbered in non-increasing order of their release dates. The algorithm
is based on the latest-release-date-first rule. Informally, the jobs are taken one by one in the
order of their numbering and each job j ∈ H is placed into the current partial schedule to
fill the available time intervals consecutively, from right to left, starting from the right-most
available interval. The assignment of a job j is completed either if its actual processing time
q(j) reaches its upper bound b(j) or if no available interval is left. Only a slight modification
of the Hochbaum-Shamir algorithm is required to find not only the optimal values q∗(j) of the
processing times, but also an associated instrumental set. The running time of the modified
algorithm is still O (h).

In terms of the notions introduced in Section 9 we deduce that TY∗(h) = TSplit(h) =
O (h), so that the overall running time needed to solve problem 1|r(j), p(j) = p(j) −
x(j), C(j) ≤ d(j), pmtn|ΦΣ by the decomposition algorithm based on recursive applications
of Procedure Decomp is O (n log n).

We conclude this section by reviewing the results for the special case of problem
1|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), pmtn|ΦΣ with a common due date d, which is proba-
bly one of the most studied SCPT problems; see, e.g., Vikson (1980), Nowicki and Zdrza lka
(1990), Janiak and Kovalyov (1996), Hoogeveen and Woeginger (2001) and Shakhlevich and
Strusevich (2005). Problem 1|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|ΦΣ is known to be
solvable in O (n log n) time. The algorithms by Janiak and Kovalyov (1996), Hoogeveen and
Woeginger (2001) and Shakhlevich and Strusevich (2005) are justified by a schedule-based
reasoning and the running time of O (n log n) is achieved by using special data structures,
such as heaps or 2-3-trees. On the other hand, Methodology 2 delivers the same result for
problem 1|r(j), p(j) = p(j)−x(j), C(j) ≤ d, pmtn|ΦΣ as a direct consequence of the fact that
the bicriteria problem 1|r(j), p(j) = p(j) − x(j), pmtn| (Cmax,ΦΣ) is solvable in O (n log n)
time; see Shakhlevich and Strusevich (2005) and Section 8.2.

11 Maximum Cost

In this section, we consider problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax,
α ∈ {1, P,Q}, of minimizing the function Φmax = maxj∈N{x(j)/wM (j)}, where wM (j) are
positive weights. Problems of this type have been extensively studied in the SIC literature;
see Ho (2004) and Wan et al. (2007) for reviews; see also Table 7. In the discussion in the
forthcoming sections we may use the SIC terminology, i.e., to refer to jobs as tasks and to
the compression costs (total or maximum) as errors.

Similarly to Section 6, below we provide a critical review of the earlier results by (i)
clarifying the running time needed to solve problem P |r(j), p(j) = p(j) − x(j), C(j) ≤
d (j) , pmtn|Φmax based on Remark 1 of Section 5; (ii) demonstrating that using advanced
techniques of Methodology 1, such as solving the flow sharing problems by parametric flows
methods, results into solution algorithms for problems α|r(j), p(j) = p(j) − x(j), C(j) ≤
d (j) , pmtn|Φmax which have the same running times as the best algorithms known for the
counterparts of these problems with fixed processing times; see Table 1.
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Problem Previously known Methodology 1:

Parametric flow

1|r(j), p(j) = p(j) − x(j), O(n2) N/A

C(j) ≤ d(j), pmtn|Φmax Ho et al. (1994)

Ho (2004)

P |r(j), p(j) = p(j) − x(j), O(n4)∗ O(n3)
C(j) ≤ d(j), pmtn|Φmax Ho et al. (1994) Section 11

Ho (2004)

Q|p(j) = p(j) − x(j), O(m2n4logmn) O(mn3)
C(j) ≤ d(j), pmtn|Φmax Wan et al. (2007) Section 11

∗After correcting a faulty claim that problem P |r(j), C(j) ≤ d(j), pmtn|− is solvable

in O(n2 log2 n) time, see Remark 1 of Section 5

Table 7: Complexity of Problems with Maximum Cost

Note that for identical parallel machines, the best algorithm known within SIC imple-
ments an idea of an appropriate redistribution of the minimum total compression amount∑

j∈N x(j); see Ho et al. (1994) and Leung et al. (1994). The algorithm is iterative, and
each of its n steps requires finding the minimum total cost for a modified system of tasks.
It is claimed that such a step can be done in O(n2 log2 n) time, by solving an appropriate
problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|

∑
x(j) with the unweighted total

cost function. However, as follows from our consideration in Section 6, solving such a prob-
lem requires O(n3) time, even for the unweighted case. Thus, in accordance with Remark 1
of Section 5, we deduce that the previously known approaches are able to solve problem
P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax only in O(n4) time, not in O(n3 log2 n)
time, as claimed in Ho et al. (1994) and Ho (2004). For problem 1|r(j), p(j) = p(j) − x(j),
C(j) ≤ d (j) , pmtn|Φmax the algorithm in Ho (2004) requires O

(
n2

)
time and remains the

fastest.
In the case of uniform machines, the best known algorithm for problem Q|r(j), p(j) =

p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax is due to Wan et al. (2007). The algorithm requires
O(mn4) time and is based on the algorithm for problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤
d (j) , pmtn|ΦΣ by Shakhlevich and Strusevich (2008).

We now present more efficient algorithms for parallel machines that are based on Method-
ology 1, in particular on solving the flow sharing problems in networks HP and HQ, which
are solved by parametric maximum flow algorithms, as described in Gallo et al. (1989).

In the flow sharing problems, we consider a network that is structurally similar to network
HP or HQ, introduced in Section 6, where each arc a = (v, t) ∈ At entering the sink t has
a positive weight w(a), and it is required to find a maximum flow f that guarantees certain
properties of the ratios f(a)/w(a). In particular, for our purposes we are interested in three
versions of the flow sharing problems:

• minimax sharing : find a maximum flow f(a), a ∈ At, that minimizes the largest ratio
f(a)/w(a);

• lexicographic sharing : find a maximum flow f(a), a ∈ At, such that the sequence of
the ratios f(a)/w(a), a ∈ At, arranged in the non-decreasing order

f(a1)

w(a1)
≤ f(a2)

w(a2)
≤ · · · ≤ f(ag)

w(ag)
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is lexicographically maximum (here g = |At|);

• co-lexicographic sharing : find a maximum flow f(a), a ∈ At, such that the sequence of
the ratios f(a)/w(a), a ∈ At, arranged in the non-increasing order

f(a1)

w(a1)
≥ f(a2)

w(a2)
≥ · · · ≥ f(ag)

w(ag)

is lexicographically minimum.

Clearly, an optimal solution to the co-lexicographic sharing problem delivers an optimal so-
lution to the minimax sharing problem, although the converse does not necessarily hold. It
is known (cf. (Fujishige, 2005, Section 9.1)) that the lexicographic and the co-lexicographic
sharing problems are equivalent; more precisely, a maximum flow is an optimal solution to the
lexicographic sharing problem if and only if it is an optimal solution to the co-lexicographic
sharing problem. Hence, in the remainder of this paper, we will use the term “the lexico-
graphic sharing problem” to refer to the co-lexicographic sharing problem.

For α ∈ {P,Q}, take a network Hα and for each arc aj = (Xj , t), j ∈ N , define the
weight w(aj) = wM (j); for all other arcs a ∈ At entering t prescribe infinitely large weights
w(a). Then a solution to problem α|r(j), p(j) = p(j)−x(j), C(j) ≤ d (j) , pmtn|Φmax can be
derived from a solution to either the minimax sharing problem or the lexicographic sharing
problem for the network Hα introduced above.

As demonstrated by Gallo et al. (1989), both problems can be reduced to finding a
parametric maximum flow. In the case of network Hα, define the capacity of each arc
aj = (Xj , t), j ∈ N , to be equal to w(aj)λ, where λ is a non-negative parameter. Below we
remind how that reduction works for the lexicographic sharing problem, since (i) solving this
problem suffices for solving the associated problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|Φmax, and (ii) as shown later in Section 13, a solution to the lexicographic sharing
problem also helps solving problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φquad

with a quadratic cost function.
Suppose that f(a), a ∈ A, is a maximum flow in network Hα with the modified capacities

of the arcs entering the sink t. Let κ(λ) represent the capacity of a minimum cut, as a
function of λ. It follows from Gallo et al. (1989) that κ(λ) is a piecewise-linear function of
λ and has n breakpoints, one for each arc aj = (Xj , t), j ∈ N . Moreover, Gallo et al. (1989)
present an algorithm that finds all these breakpoints. For an arc aj , let λj be the breakpoint
at which node Xj moves from the source side of a minimum cut to the sink side. Change
the capacity of each arc aj = (Xj , t), j ∈ N , to w(aj)λj , and find a maximum flow f∗ in the
resulting network. It is proved by Gallo et al. (1989), that flow f∗ solves the lexicographic
sharing problem.

Once the flow f∗ is found, it determines an optimal solution to problem α|r(j), p(j) =
p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax. For j ∈ N , the flow f∗(s, j) on the arc (s, j) entering
the job-node j determines the value p(j), the actual processing time of job j, while the flow
f∗(Xj , t) on the arc (Xj , t) entering the sink determines x(j), the compression amount of job
j. Similarly to Section 6, for network HP the flow on an arc (j, Ih) defines for how long job
j is processed in the time interval Ih, while for network HQ the flow on an arc (j, (Ih,Mi))
defines for how long job j is processed in the time interval Ih on machine Mi.

Since network Hα, α ∈ {P,Q}, is bipartite, the techniques by Ahuja et al. (1994) can be
used to speed up the algorithm by Gallo et al. (1989); see row 4 of Table 2. Thus, problem
P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax can be solved in O(n3) time, and
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problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax in O(mn3) time, as stated in
Table 7.

12 Lexicographic Minimization of Total Cost and Maximum
Cost Criteria

In this section, we consider SCPT problems of lexicographical minimization. Each job
j ∈ N is associated with two weights: wT (j) that defines the total compression cost
ΦΣ =

∑
wT (j)x(j) and wM (j) that determines the maximum compression cost Φmax =

max {x(j)/wM (j)}. Problems of this range are known in the SIC literature as the ‘doubly
weighted’ problems. Under the SIC interpretation ΦΣ is called the total error, while Φmax is
called the maximum error. A review of the previously known results on the doubly weighted
SIC problems is contained in Ho (2004), where the focus is on the lexicographically ordered
objective functions. One of these objectives (the primary function Φ1) is minimized and
then the minimum of the other objective (the secondary function Φ2) is sought among the
schedules that are optimal with respect to the primary function. To denote the problems of
lexicographic minimization, in the three-field scheduling notation we write Lex (Φ1,Φ2).

As in Sections 6 and 11, below we present improved algorithms for identical parallel
machines and uniform parallel machines obtained by advanced techniques of Methodology 1.
In particular, we show that the doubly-weighted problems with the lexicographically ordered
objectives Lex(Φmax,ΦΣ) and Lex(ΦΣ,Φmax) can be solved in a similar way and within the
same running time as the singly-weighted problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|Φ, where α ∈ {P,Q} and Φ ∈ {ΦΣ,Φmax}, see Table 8. For completeness, the table also
contains the previously known results on the relevant single machine problems. It remains
to be seen whether the running times for these single machine problems can be reduced.
The approaches to solving parallel machine problems with the objectives Lex(Φmax,ΦΣ) and
Lex(ΦΣ,Φmax) are presented in Sections 12.1 and 12.2, respectively.

12.1 (Total Cost, Maximum Cost) Lexicographic Minimization

Consider problems α|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j)|Lex(Φmax,ΦΣ) for α ∈ {P,Q},
where the goal is to minimize the total cost ΦΣ in the class of schedules with the smallest
maximum cost Φmax. The previously known algorithms are based on the following idea:
find an optimal schedule for problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax,
redefine the durations of the mandatory and optional parts for each task and output a
schedule that delivers the minimum total cost for the modified task system. For identical
parallel machines, the best previously known algorithm is due to Ho et al. (1994) and Ho
(2004). Solving problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax is the most
time-consuming part of the algorithm, which should be estimated as O(n4) (again, due to
Remark 1, the running time of O(n3 log2 n) claimed in Ho et al. (1994) and Ho (2004) is
incorrect). For a single machine, the algorithm requires O

(
n2

)
time. For uniform parallel

machines, the described approach can be implemented in O(mn4) time; see Wan et al. (2007).
Below, we outline a straightforward approach to solving problems α|r(j), p(j) = p(j) −

x(j), C(j) ≤ d(j)|Lex(Φmax,ΦΣ), where α ∈ {P,Q}, which leads to faster algorithms. Let
ξmin be the minimum value of Φmax (with respect to weights wM (j), j ∈ N) obtained by
solving problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Φmax. It is clear that the
problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Lex(Φmax,ΦΣ) is nothing else but
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Problem Previously known Methodology 1

1|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), O(n2) N/A
pmtn|Lex(Φmax,ΦΣ) Ho et al. (1994)

Ho (2004)

1|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), O(n3) N/A
pmtn|Lex(ΦΣ,Φmax) Ho and Leung (2004)

Ho (2004)

P |r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), O(n4)∗ O(n3)
pmtn|Lex(Φmax,ΦΣ) Ho et al. (1994) Section 12.1

Ho (2004)

P |r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), O(n5)∗ O(n3)
pmtn|Lex(ΦΣ,Φmax) Ho and Leung (2004) Section 12.2

Ho (2004)

Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), O(mn4) O(mn3)
pmtn|Lex(Φmax,ΦΣ) Wan et al. (2007) Section 12.1

Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j), O(mn5) O(mn3)
pmtn|Lex(ΦΣ,Φmax) Wan et al. (2007) Section 12.2

∗ after correcting a faulty claim that problem P |r(j), C(j) ≤ d(j), pmtn|− is solvable
in O(n2 log2 n)time, see Remark 1 of Section 5.

Table 8: Complexity of Problems with Ordered Criteria

problem α|r(j), p(j) = p(j)− x(j), C(j) ≤ d (j) , pmtn|ΦΣ with additional upper bounds on
the x-values:

x(j) ≤ ξminwM (j), j ∈ N.

As discussed in Section 6, the resulting problem, and therefore the original problem α|r(j),
p(j) = p(j)−x(j), C(j) ≤ d (j) , pmtn|Lex(Φmax,ΦΣ) can be solved in O(n3) time for α = P
and in O(mn3) time for α = Q.

12.2 (Maximum Cost, Total Cost) Lexicographic Minimization

We now consider problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d(j)|Lex(ΦΣ,Φmax) for α ∈
{P,Q}, where the goal is to minimize the maximum cost Φmax in the class of schedules with
the smallest total error cost ΦΣ. The previously known algorithms are based on the following
approach. The algorithm consists of k iterations, where k is the number of distinct weights
wT (j), j ∈ N . In an iteration j, a modified task system is treated, in which the optional
parts p(j) are set to zero, except for those tasks whose wT -weight is the j-th largest. For
such a system a schedule that delivers the minimum total cost is found, and the durations
of mandatory parts are appropriately adjusted to be used in the next iteration.

For identical parallel machines, an algorithm that implements this idea is due to Ho
and Leung (2004). The running time of such an algorithm should be estimated as O(kn4)
(again the claimed running time of O(kn3 log2 n) time is incorrect, see Remark 1). In the
worst case, all wT -weights are distinct, and hence the algorithm solves problem P |r(j),
p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Lex(ΦΣ,Φmax) in O(n5) time. For a single ma-
chine, the algorithm requires O

(
n3

)
time. For uniform machines, Wan et al. (2007) give

an implementation of this approach in O(kmn4) time, which in the worst case of k = O(n)
leads to O(mn5). An alternative approach to solving problem Q|r(j), p(j) = p(j) − x(j),
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C(j) ≤ d (j) , pmtn|Lex(ΦΣ,Φmax) requires O(kcmn3), where c is not a strongly polynomial
parameter that depends on the problem’s input; see Wan et al. (2007). Below, we describe
an approach that leads to faster algorithms for solving problems α|r(j), p(j) = p(j) − x(j),
C(j) ≤ d (j) , pmtn|Lex(ΦΣ,Φmax) for α ∈ {P,Q}.

Recall that problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|ΦΣ can be solved as
a minimum-cost maximum flow problem for the underlying network Hα = (V,A), in which
an upper bound on the capacity of an arc a ∈ A is denoted by µ(a), and an arc (Xj , t) has
the cost wT (j), j ∈ N , while the weights of all other arcs are zero; see Section 6. Hence,
feasible schedules for problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Lex(ΦΣ,Φmax)
correspond to minimum-cost maximum flows in Hα, and our scheduling problem reduces to
the problem of finding a minimum-cost maximum flow f that minimizes the maximum cost

Φmax = max

{
f(Xj , t)

wM (j)

∣∣∣∣ j ∈ N, f is a min-cost max-flow in Hα

}
.

Notice that compression amounts x(j) correspond to f(Xj , t), j ∈ N .
To perform the search over the minimum-cost maximum flows f in Hα, we use their

characterization in terms of node potentials and reduced costs; see, e.g., Ahuja et al. (1993,
Theorem 9.4). For node potentials π(v), v ∈ V , the reduced cost of an arc a = (v′, v′′) ∈ A
is defined as

cπ(a) = wT (a) − π(v′) + π(v′′).

We denote by fΣ a minimum-cost maximum flow in network Hα, which is fixed in the fol-
lowing discussion. The lemma formulated below can be seen as the complementary slackness
theorem for linear programming problems applied to the minimum-cost maximum flow prob-
lem.

Lemma 8 There exist node potentials π(v), v ∈ V , such that a maximum flow f in Hα is a
minimum-cost maximum flow if and only if it satisfies the following conditions:

if cπ(a) > 0, then f(a) = 0 (= fΣ(a)),
if 0 < f(a) < µ(a), then cπ(a) = 0,
if cπ(a) < 0, then f(a) = µ(a) (= fΣ(a)).

 (35)

Moreover, such node potentials can be computed by solving a specially defined shortest path
problem in a residual network associated with fΣ.

Let us call the arcs a with cπ(a) ̸= 0 fixed arcs. If for some j ∈ N , only one arc of the
pair (j,Xj) and (Xj , t) is fixed and the other is not, then we treat the other arc also as fixed.
This can be done since f(j,Xj) = f(Xj , t) holds for all feasible flows f .

The discussion above implies that problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|Lex(ΦΣ,Φmax) reduces to the minimax sharing (or lexicographic sharing) problem
(with weights wM (j)) in the network Hα with an additional condition that

f(a) = fΣ(a) for all fixed arcs a ∈ A. (36)

We will find an optimal flow f∗ of this problem by using the algorithm by Gallo et al. (1989)
as in Section 5, adjusting it to handle the additional condition (36). Namely, we find f∗ as
the sum of two flows f ′ and f ′′, such that for each arc (Xj , t) at most one value f ′(Xj , t) or
f ′′(Xj , t) is positive.

Flow f ′ is a feasible flow in network Hα that is responsible for keeping the flow on fixed
arcs a to fΣ(a). It satisfies the following conditions:
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(i) for any fixed arc a, the equality f ′(a) = fΣ(a) holds;

(ii) for any non-fixed arc (Xj , t) the equality f ′(Xj , t) = 0 holds.

Flow f ′′ delivers the optimal flow on non-fixed arcs (Xj , t). It satisfies the conditions:

(iii) for any fixed arc a, the equality f ′′(a) = 0 holds;

(iv) flow f ′′(Xj , t) for every non-fixed arc (Xj , t) is part of an optimal flow f∗, i.e.,
f ′′(Xj , t) = f∗(Xj , t).

Flow f ′ can be found as follows. Recall that for each j ∈ N , the arcs of each pair (j,Xj)
and (Xj , t) are either both fixed or both non-fixed. For each pair of non-fixed arcs (j,Xj)
and (Xj , t), define f ′(j,Xj) = f ′(Xj , t) = 0 and f ′(s, j) = p(j)−fΣ(Xj , t). For the remaining
arcs a of network Hα, define f ′(a) = fΣ(a). It is easy to verify that f ′ satisfies the properties
(i) and (ii) above.

In order to find flow f ′′, we need to solve the lexicographic sharing problem in a residual
network. Let Rα(f ′) be the residual network associated with the flow f ′. Since the amount of
flow on fixed arcs in Hα must be fixed, we delete all (forward and reverse) arcs in Rα(f ′) that
are associated with fixed arcs in Hα. In the obtained network, which we still denote Rα(f ′),
for each non-fixed arc (Xj , t) the forward arc has capacity θ(j), while the reverse arc does not
exist since f ′(Xj , t) = 0. Flow f ′′ can be determined by finding a lexicographically optimal
flow in network Rα(f ′). Notice that the algorithm by Gallo et al. (1989) is applicable, since
every arc has zero lower bound for the amount of flow. Hence, conditions (iii) and (iv) are
satisfied, and the flow f∗ = f ′+f ′′ gives an optimal flow of the lexicographic sharing problem
in the network Hα with the additional condition (36).

To summarize, the algorithm for solving problem α|r(j), p(j) = p(j)−x(j), C(j) ≤ d (j) ,
pmtn|Lex(ΦΣ,Φmax) performs the following steps.

Algorithm Total-Max

Step 1. Find a minimum-cost maximum flow fΣ in network Hα.

Step 2. Compute the node potentials and the reduced costs that satisfy the conditions (35),
and determine fixed and non-fixed arcs in Hα.

Step 3. Find flow f ′.

Step 4. Create the residual network Rα(f ′) and find flow f ′′ by solving the lexicographic
sharing problem in that network.

Step 5. Set f∗ = f ′ + f ′′. Output the vector x given by x(j) = f∗(Xj , t), j ∈ N , as an
optimal solution to α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|Lex(ΦΣ,Φmax).

We now analyze the time complexity of the Algorithm Total-Max. Step 1 requires solving
the minimum-cost maximum flow problem and can be done in O(n3) time for α = P and in
O(mn3) time for α = Q by adapting McCormick’s algorithm, as demonstrated in Section 6.
In Step 2, we create and process the residual network associated with flow fΣ. It is known
that for the minimum-cost maximum flow problem, the node potentials and the associated
reduced costs that satisfy (35) can be found by solving the shortest path problem in the
residual network (see, e.g., Ahuja et al. (1993, Section 9.3)), which requires O(|V | · |A|) time,
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so that Step 2 can be implemented in O(n3) time for HP and in O(mn3) time for HQ. Step
3 can be done easily in O(|A|) time. Step 4 solves the lexicographic sharing problem and
hence requires O(n3) and O(mn3) time for α = P and α = Q, respectively. Step 5 can
be done in O(|A|) time in a straightforward way. Thus, we conclude that problem α|r(j),
p(j) = p(j)−x(j), C(j) ≤ d (j) , pmtn|Lex(ΦΣ,Φmax) can be solved in O(n3) time for α = P
and in O(mn3) time for α = Q.

13 Quadratic Costs

In this section, we turn to the SCPT problems with quadratic cost functions. Notice that
the cost functions of this type have not been earlier studied in the context of SCPT and SIC,
although the smallest weighted sum of squares is a very natural measure, often used in math-
ematics and statistics. We demonstrate that again advanced techniques of Methodology 1
allow us to handle the whole range of relevant problems.

Consider problems α|r(j), p(j) = p(j)−x(j), C(j) ≤ d (j) , pmtn|Φquad with α ∈ {P,Q},
in which the objective function is the weighted sum of squares of compression amounts

Φquad =
∑
j∈N

w′
T (j)x(j)2, (37)

where w′
T (j), j ∈ N , are positive weights. For problems of these range, each job j ∈ N may

be associated with up to three weights: wT (j) used for computing total error ΦΣ, wM (j)
used for computing the maximum error Φmax, and w′

T (j) that is involved in (37). Below, we
demonstrate that for all versions of the problem involving Φquad, even in combination with
ΦΣ and Φmax, the running times of the algorithms remain the same as for the problems with
fixed processing times.

Optimizing quadratic functions is a popular topic of research within submodular opti-
mization; see, e.g., Fujishige (1980) and Hochbaum and Hong (1995). It appears that the
SCPT problems defined as the network flow problems in networks HP and HQ belong to
the class of optimization problems over submodular polyhedra. Indeed, for a network Hα,
α ∈ {P,Q}, let Vt be the set of nodes connected to the sink t. Assume that the value of
a maximum flow in Hα is equal to

∑
j∈N p(j), i.e., there exists a feasible flow f such that

f(s, j) = p(j) for all j ∈ N . For α ∈ {P,Q}, consider the polyhedron

Bα = {y ∈ RVt | there exists a maximum flow f in Hα

such that y(v) = f(v, t) for v ∈ Vt}. (38)

It is known (see, e.g., Lemma 4.1 from Megiddo (1974), Hochbaum and Hong (1995), and
Section 2.2 from Fujishige (2005), where flow problems in a similar network are considered)
that Bα is the base polyhedron with the rank function φα : 2Vt → R given by

φα(X) = max

{∑
v∈X

f(v, t) | f is a feasible flow in Hα

}
, X ⊆ Vt.

The problems considered in Sections 6 and 11 can be respectively reformulated as the
following optimization problems ΠΣ(α) and Πmax(α) over the corresponding base polyhedra:

ΠΣ(α) : minimize
∑
j∈N

wT (j)x(j) subject to x ∈ Bα, (39)
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Πmax(α) : minimize max
j∈N

x(j)

wM (j)
subject to x ∈ Bα, (40)

while the problem under consideration can be formulated as

Πquad(α) : minimize
∑
j∈N

w′
T (j)x(j)2 subject to x ∈ Bα,

where x(j) = x(Xj) for j ∈ N . Adapting a general result from Fujishige (1980) and from
Section 9.2 of Fujishige (2005) on the equivalence of quadratic and lexicographic optimization
with submodular constraints, we deduce the following statement.

Lemma 9 For network Hα, let f
∗(a), a ∈ A, be a maximum flow that is lexicographically

optimal with respect to the ratios f∗(Xj , t)/w
′
T (j), j ∈ N . Then, the flow f∗ minimizes the

quadratic objective function
∑

j∈N w′
T (j)f∗(Xj , t)

2 among all maximum flows in Hα, and the
values x(j) = f∗(Xj , t), j ∈ N , define an optimal solution to problem Πquad(α).

Using the algorithm for solving the lexicographic sharing problem discussed in Section 11,
we deduce that problem Πquad(α) can be solved in O(n3) time for α = P and in O(mn3)
time for α = Q.

We now pass to considering various constrained versions of scheduling problems of im-
precise computation that involve quadratic cost. Let parameters ηmin and ξmin denote the
minimum value of the total cost and the minimum value of the maximum cost, respectively;
in other words, ηmin is the optimal value of the objective function for problem (39), while
ξmin is that for problem (40).

We start with the constrained problem ΠLex(max,quad)(α), in which the optimal value
of Φquad is to be found among the solutions with the smallest maximum cost ξmin. The
corresponding problem is of the form:

ΠLex(max,quad)(α) : minimize
∑
j∈N

w′
T (j)x(j)2

subject to x ∈ Bα,
x(j)

wM (j)
≤ ξmin, j ∈ N.

This problem can be treated in a similar way as the problems with Lex(Φmax,ΦΣ) objective
considered in Section 12.1. That is, problem ΠLex(max,quad)(α) reduces to problem Πquad(α)
with the additional upper bounds x(j) ≤ ξminwM (j) on variables x(j).

Consider the constrained problem ΠLex(Σ,quad)(α), in which the optimal value of function
Φquad is to be found among the solutions with the minimum total weighted cost ηmin. This
can be expressed as

ΠLex(Σ,quad)(α) : minimize
∑
j∈N

w′
T (j)x(j)2

subject to x ∈ Bα,
∑
j∈N

wT (j)x(j) = ηmin.

Problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn| Lex(ΦΣ,Φmax) presented in
Section 12.2 has the same feasible region as problem ΠLex(Σ,quad)(α). This implies that the
first three steps of Algorithm Total-Max, which manipulate the feasible region, are applicable
to problem ΠLex(Σ,quad)(α). As a result of these steps, problem ΠLex(Σ,quad)(α) is reduced to
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problem Πquad(α), similarly to the reduction of problem ΠLex(Σ,max)(α) to problem Πmax(α)
presented in Section 12.2. An optimal solution to problem Πquad(α) is delivered by solving
the corresponding problem of lexicographic flow sharing.

Finally, consider the constrained problems ΠLex(quad,Σ)(α) and ΠLex(quad,max)(α), in
which ΦΣ and Φmax are respectively minimized subject to the minimum value of Φquad.
The problems ΠLex(quad,Σ)(α) and ΠLex(quad,max)(α) have the same feasible region

x ∈ Bα,
∑
j∈N

w′
T (j)x(j)2 = ζmin,

where ζmin is the minimum value of Φquad.
In order to find ζmin, we solve problem Πquad(α), which is done by solving the lexico-

graphic sharing problem, as shown in Lemma 9. Notice that an optimal solution to the
lexicographic sharing problem is unique (see Fujishige (1980, Theorem 3.1)). This implies
that for the original problems ΠLex(quad,Σ)(α) and ΠLex(quad,max)(α), their feasible regions
consist of a single solution. This leaves no freedom for optimizing ΦΣ and Φmax. Thus, the
solution to problem ΠLex(quad,Σ)(α) and problem ΠLex(quad,max)(α) does not depend on the
weights wT (j) and wM (j) of the objective functions ΦΣ and Φmax and remains the same for
any of these two functions.

Hochbaum and Hong (1995) deal with a quadratic function with a linear term:

ΦQuad =
∑
j∈N

w′
T (j)x(j)2 +

∑
j∈N

wT (j)x(j), (41)

in addition to a quadratic function Φquad without a linear term. It is demonstrated in
Hochbaum and Hong (1995) that the techniques by Gallo et al. (1989) cannot be applied
directly to solve the problem of minimizing ΦQuad with a linear term. They also show how
to adjust the parametric flow algorithms by Gallo et al. (1989) to make them handle this
problem without increasing their running times. Hence, we deduce that all results mentioned
in this section remain valid if a quadratic function without a linear term is extended to the
one with a linear term (informally, if the subscript “quad” is replaced by “Quad” in the
notation of the problem). Thus, we can conclude that for all SCPT problems which involve
a quadratic objective function, with or without a linear term, time complexities O(n3) and
O(mn3) hold for the parallel machine models with α = P and α = Q, respectively.

It is clear that all results discussed in this section for the problems on parallel machines
carry on for a single machine counterpart. It remains to be seen whether for the single
machine problems that involve minimization of a quadratic cost function it is possible to
develop an algorithm of the running time lower than O

(
n3

)
. Methodology 1 cannot be

used for this purpose. Indeed, if such an algorithm existed it would be based on the ideas
different from finding the parametric flow, since for the latter problem the fastest known
algorithm requires O

(
n3

)
time. The use of Methodology 2 seems to be more promising, as

we demonstrate below for the problem of minimizing function (41), provided that the jobs
have a common deadline d.

Using compressions x(j), j ∈ N , problem 1|r(j), p(j) = p(j)−x(j), C(j) ≤ d, pmtn|ΦQuad

can be written as a quadratic programming problem with submodular constraints:

min
∑
j∈N

w′
T (j)x(j)2 +

∑
j∈N

wT (j)x(j)

s.t. p(X) − x (X) ≤ d− min
h∈X

r(h), X ∈ 2N ,

0 ≤ x(j) ≤ p(j) − p(j), j ∈ N.
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If the jobs are renumbered in accordance with (6) then the problem above simplifies to

min
∑
j∈N

w′
T (j)x(j)2 +

∑
j∈N

wT (j)x(j)

s.t.
n∑

j=k

(p(j) − x (j)) ≤ d− r(k), k = 1, . . . , n;

0 ≤ x(j) ≤ p(j) − p(j), j ∈ N.

Now we change the decision variables to the actual processing times p (j) = p(j) − x (j),
j ∈ N . The objective function becomes∑

j∈N
w′
T (j)(p(j) − p(j))2 +

∑
j∈N

wT (j) (p(j) − p (j))

=
∑
j∈N

w′
T (j)p (j)2 −

∑
j∈N

(
2p(j)w′

T (j) + wT (j)
)
p(j) + L,

where
L =

∑
j∈N

w′
T (j)p(j)2 +

∑
j∈N

wT (j)p(j).

If the constant L is removed, problem 1|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|ΦQuad

reduces to

min
∑
j∈N

w′
T (j)p (j)2 −

∑
j∈N

(
2p(j)w′

T (j) + wT (j)
)
p(j)

s.t.

n∑
j=k

p (j) ≤ d− r (k) , k = 1, . . . , n;

p(j) ≤ p(j) ≤ p(j), j ∈ N.

This problem can be classified as the resource allocation problem with a separable quadratic
function under nested constraints. Such a problem can be solved in O (n log n) time, as
proved in Hochbaum and Hong (1995).

14 Conclusions

To conclude, we summarize the main points addressed in the survey.

1. The term “scheduling with controllable processing times” and associated terminology
are sufficiently abstract and general to provide a unified framework for all associated
models in which the actual processing time is to be selected from a given interval.
The models of scheduling with imprecise computation and of late work minimization
(with preemption) should be seen as meaningful interpretations of the general SCPT
models, driven by particular applications. We hope that a correct positioning of these
and other specialized models within the body of research on SCPT will help avoiding
potential rediscoveries and duplications. Besides, such a positioning will allow merging
the corresponding toolkits to attack joint research challenges.

2. Processing capacity set functions φ introduced in Section 3 are crucial for solving prob-
lems with fixed and controllable data. Their submodularity links SCPT to optimization
with submodular constraints.
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3. Methodology 1 based on the network flow methods is useful for the most general models
with multiple parallel machines (models P and Q) and arbitrary r(j) and d(j), j ∈ N .

(a) For fixed data, standard max-flow techniques deliver a solution as presented in
Section 5.

(b) Multiparametric network flow methods by McCormick (1999) are useful in han-
dling SCPT problems that involve minimizing the total compression cost ΦΣ; see
Section 6.

(c) Single-parameter flow algorithms by Gallo et al. (1989) form the basis for solving
SCPT problems that involve minimizing the maximum compression cost Φmax

and/or the quadratic cost; see Sections 11-13.

For the networks that have a structure relevant to this study, the running times of the
parametric flow algorithms match those developed for solving the problems on networks
with fixed arc capacities, see Table 2. This is the main reason why the whole range of the
SCPT problems on parallel machines with different release dates and deadlines require
the same running times as their feasibility counterparts with fixed data: O

(
n3

)
in the

case of identical machines and O
(
mn3

)
in the case of uniform machines. The range of

these problems include not only problems with a single objective (total, maximum, or
quadratic cost), but also all problems with two lexicographically ordered criteria. The
reported running times should be seen as the best possible and can only be improved
if faster algorithms are found for solving the feasibility problems with fixed data.

4. In Section 5, we demonstrate that checking the existence of a feasible schedule on
identical parallel machines requires O

(
n3

)
time, and not O

(
n2 log2 n

)
as has been

claimed in the SIC literature. This leads to repairing of the running times of algorithms
previously known for solving the corresponding SCPT problems; see Remark 1 and the
references to that remark throughout.

5. Methodology 2 makes use of the important property of processing capacity functions φ,
their submodularity. It provides a rather direct way to finding Pareto-optimal solutions
to bicriteria problems with ΦΣ being one of the objectives; see Section 8. The feasible
region of the relevant problems is a parametric submodular polyhedron intersected with
a box, and this allows deducing an analytical description of the efficiency frontier. The
power of this analytical approach can be seen from the fact that among the problems,
that are handled that way, there are those on parallel machines with distinct release
dates, which were previously open. The analytical approach appears to be more effi-
cient and less tedious than the traditional one, based on generating breakpoints of the
frontier one after another by tracing changes in the structure of schedules subject to
compression/decompression of some jobs.

On the other hand, Section 8 gives examples of bicriteria problems for which fast
algorithms are derived based on the traditional approach, since those problems are
relatively simple and the corresponding efficiency frontier has a rather small number of
breakpoints. But even then Methodology 2 provides a natural justification of actions
taken by these algorithms.

6. Methodology 3 is a further development of Methodology 2; see Section 9. The decom-
position algorithm is applicable to solving linear programming problems for which the
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feasible region is the intersection of an arbitrary submodular polyhedron and a box. In
Section 10, we discuss its adaptation for solving SCPT problems to minimize the total
compression cost ΦΣ. Those problems can be solved by a straightforward application
of the greedy algorithm (Methodology 2), but the application of the decomposition al-
gorithm delivers solutions faster. In particular, for problem 1|r(j), p(j) = p(j) − x(j),
C(j) ≤ d (j) , pmtn|ΦΣ the best possible running time of O (n log n) is achieved, which
has been a long-standing goal.

7. Sections 11 and 12 contain new results on the SCPT problems which involve minimizing
the maximum cost Φmax. The problems of this type form the main direction in the SIC
research. We demonstrate that an appropriate use of Methodology 1, i.e., an application
of the single-parameter flow techniques, results in a collection of algorithms with the
best possible running times.

8. Section 13 addresses the problems that involve minimizing a quadratic cost function.
Such SCPT problems have not been studied before. It appears to be fairly easy to
extend the methods developed in Sections 11 and 12 to achieve the best possible algo-
rithms for the parallel machine problems of that range.

Now we state several open questions that might motivate further studies in the area of
scheduling with controllable processing times.

1. For the SCPT problems with arbitrary release dates and deadlines that involve min-
imizing the maximum or quadratic cost functions on a single machine there is still a
complexity gap between the running times of the best known algorithms and O (n log n),
i.e., the time needed to solve the feasibility problem with fixed data. Such a gap has
been removed in the case of parallel machines due to the use of parametric flow tech-
niques. The flow approach will not give algorithms faster than O

(
n3

)
time and is

therefore not applicable for getting improved algorithms for a single machine. We hope
that the existing gaps could be eventually closed, as has happened to all problems of
minimizing the total compression cost ΦΣ.

2. For the SCPT problems with a common deadline that involve minimizing the maximum
or quadratic cost functions there is a need for developing algorithms with the running
times better than those available in the case of arbitrary deadlines. In Section 13, we
present an O (n log n)-time algorithm for problem 1|r(j), p(j) = p(j)− x(j), C(j) ≤ d,
pmtn|ΦQuad and expect that algorithms with a similar performance can be developed
for the remaining problems.

3. There are no results on finding Pareto-optimal solutions to the SCPT problems in
which one of the objectives is either the maximum cost or quadratic cost.

4. There is a lack of results on finding Pareto-optimal solutions to the SCPT problems
with arbitrary due dates in which one of the objective is the maximum lateness Lmax. In
Section 8.2, we mention the solved problem 1|r(j), p(j) = p(j)−x(j), pmtn| (Lmax,ΦΣ)
and expect that similar bicriteria problems will be addressed.

5. In our recent paper (Shioura et al. (2016b)), we demonstrate how the flow and submod-
ular optimization techniques can be applied to the off-line problems of speed scaling.
These problems reduce to minimizing convex separable functions under submodular
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constraints. The algorithms that we develop outperform those previously known in the
area and also are able to tackle problems with more general objectives than studied
before. We hope that a systematic methodological study, similar to that done for the
SCPT problem, can also be performed in the area of speed scaling.

6. We are interested in finding other areas, even not related to scheduling, in which the
described methodologies can be useful. In particular, we would like to find out practical
situations that give rise to Problem (LP) so that the decomposition algorithm can be
applied.
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