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Abstract L-convexity is a concept of discrete convexity for functions defined on the integer lattice points,
and plays a central role in the framework of discrete convex analysis. In this paper, we present algorithms
for L-convex function minimization. Algorithms proposed independently in research fields such as discrete
optimization, auction theory, and computer vision can be regarded as minimization algorithms applied to
specific L-convex functions. This fact indicates the close connection between discrete convex analysis and
these research fields. We then theoretically analyze the number of iterations required by some minimization
algorithms, and show that the precise bounds can be given in terms of distance between the initial solution
and the minimizer found by the algorithms. This fact implies that the algorithms output the “nearest”
minimizer to the initial solution, and that the trajectory of solutions generated by the algorithms are
“shortest paths” from the initial solution to the found minimizer. In this way, we can provide a unified
viewpoint to algorithms appearing in various research fields by analyzing steepest descent algorithms for an
L-convex function. Finally, we apply the analysis results to iterative auctions in auction theory. We show
that the essence of the iterative auctions proposed by Ausubel (2006) lies in L-convexity, and using this
fact we analyze the behavior of the iterative auctions. We also review the iterative auctions proposed by
Murota–Shioura–Yang (2016), which are based on the understanding of discrete convex analysis.

Keywords: discrete convex function, discrete optimization, steepest descent method,
analysis of algorithm, iterative auction

1. Introduction

L-convexity and L♮-convexity are concepts of discrete convexity for functions defined on
the integer lattice points. In this paper, we consider the minimization of L-convex and
L♮-convex functions. The concept of L-convexity is introduced by Murota [27]; as a variant
of L-convexity, the concept of L♮-convexity (read “L-natural-convexity”) is introduced by
Fujishige–Murota [12]. The concepts of L/L♮-convexity are later extended to functions
in continuous variables [35]. L/L♮-convexity plays a central role in discrete convex analysis
initiated by Murota [27, 28], which is a theoretical framework for efficiently solvable discrete
optimization problems.

Minimization of an L-convex function can be found in various research fields. For exam-
ple, discrete optimization problems such as the shortest path problem and the dual of the
minimum cost flow problem can be seen as special cases of L-convex function minimization
[13, 39, 40]. Moreover, L-convex function minimization can also be found in other research
fields such as compute vision (see Section 3.3.2), auction theory (see Section 6), inventory
theory [21, 48], etc. (see also [28, 29, 33]). This fact shows that discrete convex analysis is
closely connected with various research fields through L-convex function minimization.

It is known that a global minimizer of an L-convex function can be characterized by
a local minimality (see Section 2.3). Therefore, minimization of an L-convex function can
be solved by steepest descent algorithms [28, 29]. Such algorithms can be found in other
research fields; indeed, optimization algorithms proposed independently in different research
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fields such as discrete optimization, computer vision, and auction theory coincide with
some variants of the steepest descent algorithms applied to special L-convex functions (see
Section 3.3). Hence, we can provide a unified viewpoint to algorithms appearing in various
research fields through the analysis of steepest descent algorithms for L-convex functions.

In this paper, we review the results in [13, 40] concerning the analysis of the behavior of
steepest descent algorithms for L-convex function minimization. In particular, we present a
theoretical results on the number of iterations required by the algorithms, where the exact
number of iterations is given in terms of distance between the initial solution and the set
of minimizers. This fact implies that the algorithms output the “nearest” minimizer to
the initial solution, and that the trajectory of solutions generated by the algorithms are
“shortest paths” from the initial solution to the found minimizer.

The results on the analysis of L-convex function minimization algorithms are interesting
on their own and also useful in other research fields. For example, it is a common approach
in computer vision to process some tasks for images by solving the minimization of a certain
energy function, which can be seen as a special case of L-convex function minimization. It
is known that such a minimization problem can be solved by simple algorithms similar to
a steepest descent algorithm run fast in practice. Since the running time of the steepest
descent algorithm is heavily dependent on the number of iterations of the algorithm, we
can provide a theoretical guarantee for the running time of the algorithm by a theoretical
bound for the number of iterations.

As an interesting application of the analysis results of the steepest descent algorithms for
L-convex function minimization, we explain iterative auctions in auction theory [41, 42] (see
Section 6). An iterative auction is an algorithm (mechanism, more precisely) to compute
equilibrium prices of goods, where prices are iteratively changed gradually by using the
bidders’ reported information. We show that the iterative auctions proposed by Ausubel [2]
can be regarded as special cases of L-convex function minimization algorithms. We also
analyze the number of iterations required by the algorithms. In an iterative auction, it is
important to obtain an estimate for the number of biddings in advance since the number
of iterations in an iterative auction is equal to the number of biddings of each bidder.
A deeper understanding of the iterative auctions of Ausubel [2] is provided in Murota–
Shioura–Yang [41, 42] from the viewpoint of discrete convex analysis; in addition, based on
the understanding, new iterative auctions are proposed in Murota–Shioura–Yang [41, 42].
We review the iterative auction algorithms by Ausubel [2] and by Murota–Shioura–Yang
[41, 42], and present the bounds on the number of iterations required by the algorithms.

The organization of this paper is as follows. In Section 2 we describe the definition of
L-convex function and present fundamental properties of minimizers. In Section 3 various
minimization algorithms for L-convex functions are presented. In Section 4, we analyze
the behavior of minimization algorithms for L-convex functions theoretically, and provide
precise bounds for the number of iterations. In Section 5 we present minimization algorithms
for L-convex functions in continuous variables, and show that some theoretical results for
the case of discrete variables extend to the case of continuous variables. Finally in Section 6,
we explain an application to iterative auctions in auction theory.

This paper is based on the manuscript [47] (in Japanese) that appeared in the proceedings
of the 27th RAMP Symposium of Operations Research Society of Japan.

2. L-convex and L♮-convex Functions

In this section we present the definitions and examples of L-convex and L♮-convex functions.
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2.1. Definitions

Let n be a positive integer and denote N = {1, 2, . . . , n}. In the following, Z+ and R+

denote the sets of non-negative integers and non-negative reals, respectively.
A function g : Zn → R ∪ {+∞} is called an L-convex function [27] if it satisfies the

following two properties:

[Submodularity] g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (∀p, q ∈ dom g), (2.1)

[Linearity in Direction of 1]

∃r ∈ R : g(p+ α1) = g(p) + αr (∀p ∈ Zn, ∀α ∈ Z), (2.2)

where dom g = {p ∈ Zn | g(p) < +∞}, 1 = (1, 1, . . . , 1), and p ∨ q, p ∧ q denote the vectors
obtained by the component-wise maximum and minimum of p and q, i.e.,

(p ∨ q)(i) = max(p(i), q(i)), (p ∧ q)(i) = min(p(i), q(i)) (i ∈ N).

Since L-convex function g has the linearity in the direction of 1 (i.e., (2.2)), the essential
information of the function g is not lost by the restriction of g to an arbitrarily chosen
coordinate plane. That is, for an L-convex function g : Zn → R ∪ {+∞} with n variables,
the function ǧ : Zn−1 → R ∪ {+∞} with n− 1 variables given by

ǧ(q(1), . . . , q(n− 1)) = g(q(1), . . . , q(n− 1), 0)

has essentially the same information as g, which we call an L♮-convex function [12]. Hence,
a function g : Zn → R ∪ {+∞} is L♮-convex function if the function g̃ : Zn+1 → R ∪ {+∞}
with n+ 1 variables given by

g̃(q(1), . . . , q(n), q(n+ 1)) = g(q(1)− q(n+ 1), . . . , q(n)− q(n+ 1)) (q ∈ Zn+1) (2.3)

is an L-convex function. Note that the function g̃ given by (2.3) always satisfies the property
(2.2). Hence, g̃ is an L-convex function if and only if g̃ satisfies the submodularity (2.1).
That is, L♮-convexity of a function g : Zn → R ∪ {+∞} is equivalent to the submodularity
of g̃.

It is known that L♮-convexity is equivalent to the following property (see Figure 2.1):

[Translation Submodularity]

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p ∧ (q + α1)) (∀p, q ∈ dom g, ∀α ∈ Z+). (2.4)

L♮-convexity is also equivalent to a discrete version of mid-point convexity:

[Discrete Mid-point Convexity]

g(p) + g(q) ≥ g

(⌈
p+ q

2

⌉)
+ g

(⌊
p+ q

2

⌋)
(∀p, q ∈ dom g), (2.5)

where
⌈
p+q
2

⌉
and

⌊
p+q
2

⌋
denote the integral vectors obtained by component-wise rounding

up and rounding down of the vector p+q
2
.

From the discussion above, we obtain the following equivalence.
Theorem 2.1 ([12]). For a function g : Zn → R∪{+∞} the following three conditions are
equivalent:

(a) L♮-convexity, i.e., L-convexity of g̃ in (2.3),
(b) translation submodularity (2.4),
(c) discrete mid-point convexity (2.5).
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Figure 1: Vectors (p − α1) ∨ q and p ∧ (q + α1) in the translation submodularity (2.4):
(Left) Case of p ≥ q, (Right) Case of p(1) > q(1) and p(2) < q(2). Trajectory of the two
vectors when α is increased from 0 is drawn by dashed arrows. Note that if p ≤ q, then
(p− α1) ∨ q = q and p ∧ (q + α1) = p for every α ≥ 0.

The concept of L♮-convex function is essentially equivalent to the concept of L-convex
function by its definition. On the other hand, an L-convex function can be seen as a special
case of an L♮-convex function. Indeed, translation submodularity of an L-convex function
can be shown as follows, where p, q ∈ dom g and α ∈ Z+:

g(p) + g(q) = g(p− α1) + αr + g(q) (by (2.2))

≥ g((p− α1) ∨ q) + g((p− α1) ∧ q) + αr (by (2.1))

= g((p− α1) ∨ q) + g(p ∧ (q + α1)) (by (2.2)).

2.2. Examples

We present several examples of L-convex and L♮-convex functions. See Section 3.3 for more
examples.
Example 2.2 (linear functions). For a real vector c ∈ Rn, the linear function given by
g(p) =

∑n
i=1 c(i)p(i) (p ∈ Zn) is L-convex as well as L♮-convex. Moreover, given a(i, j) ∈

Z ∪ {−∞} (i, j ∈ N, i ≤ j) and b(i, j) ∈ Z ∪ {+∞} (i, j ∈ N, i ≤ j), the function
g : Zn → R ∪ {+∞} given by

dom g = {p ∈ Zn | a(i, i) ≤ p(i) ≤ b(i, i) (i ∈ N),

a(i, j) ≤ p(i)− p(j) ≤ b(i, j) (i, j ∈ N, i < j)},

g(p) =
n∑

i=1

c(i)p(i) (p ∈ dom g)

is L♮-convex, provided that dom g is nonempty; the function g is L-convex if a(i, i) = −∞
(i ∈ N) and b(i, i) = +∞ (i ∈ N), in addition.
Example 2.3 (quadratic functions). A quadratic function g(p) = p⊤Ap (p ∈ Zn) given by
an n × n real symmetric matrix A is L♮-convex if and only if each off-diagonal component
a(i, j) (i, j ∈ N, i ̸= j) is non-positive and the sum of components in each row (or column)∑n

j=1 a(i, j) (i ∈ N) is non-negative [37].
Example 2.4 (maximum-value functions). Define

g(p) = max{p(1), p(2), . . . , p(n)} (p ∈ Zn),

g0(p) = max{0, p(1), p(2), . . . , p(n)} (p ∈ Zn).
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Then, g is an L-convex function and g0 is an L♮-convex function. We also consider the
following functions associated with real numbers a(0), a(1), . . . , a(n), b(0), b(1), . . . , b(n) ∈ R:

g̃(p) = max
1≤i≤n

{p(i) + a(i)} − min
1≤i≤n

{p(i) + b(i)} (p ∈ Zn),

g̃0(p) = max
0≤i≤n

{p(i) + a(i)} − min
0≤i≤n

{p(i) + b(i)} (p ∈ Zn),

where p(0) = 0. Function g̃ is L-convex and g̃0 is L♮-convex [33].

2.3. Properties of minimizers

We show fundamental properties of minimizers of L-convex and L♮-convex functions.
For an L♮-convex function, the global minimality can be characterized by the local min-

imality with respect to a certain neighborhood. For a function g : Zn → R ∪ {+∞},
p ∈ dom g, and d ∈ Zn, we denote by g′(p; d) the slope of g at p in the direction d, i.e.,
g′(p; d) = g(p+ d)− g(p). We denote by argmin g the set of minimizers of g, i.e.,

argmin g = {p ∈ Zn | g(p) ≤ g(q) (∀q ∈ Zn)}.

Theorem 2.5 ([27, 28, 29]). Let g : Zn → R ∪ {+∞} be an L♮-convex function and p ∈
dom g. Then, we have p ∈ argmin g if and only if g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n∪
{0,−1}n.

For p ∈ dom g, a vector d = d∗ ∈ {0,+1}n ∪ {0,−1}n minimizing g′(p; d) is called a
steepest descent direction of g at p. Since g′(p;0) = 0, every steepest descent direction d∗
satisfies g′(p; d∗) ≥ g′(p;0) = 0. Therefore, we have the following equivalence:

g′(p; d) ≥ 0 (∀d ∈ {0,+1}n ∪ {0,−1}n)
⇐⇒ g′(p; d∗) = 0 (∀d∗ : steepest descent direction at p)

⇐⇒ d∗ = 0 is a steepest descent direction at p.

If we know in advance that a vector p ∈ dom g is a lower bound (or an upper bound)
of some minimizer, then we can characterize the global minimality of p by using the local
minimality with respect to a smaller neighborhood.
Theorem 2.6 (cf. [40]). Let g : Zn → R ∪ {+∞} be an L♮-convex function, and p ∈ dom g
be a vector that is a lower bound of some minimizer p∗ of g (i.e., p ≤ p∗ holds).
(i) There exists a steepest descent direction d of g at p such that d ≥ 0 (i.e., d ∈ {0,+1}n).
(ii) p ∈ argmin g holds if and only if g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n.
Theorem 2.7 (cf. [40]). Let g : Zn → R ∪ {+∞} be an L♮-convex function, and p ∈ dom g
be a vector that is an upper bound of some minimizer p∗ of g (i.e., p ≥ p∗ holds).
(i) There exists a steepest descent direction d of g at p such that d ≤ 0 (i.e., d ∈ {0,−1}n).
(ii) p ∈ argmin g holds if and only if g′(p; d) ≥ 0 holds for every d ∈ {0,−1}n.

For an L-convex function g that has a minimizer p∗, the real number r in the condition
(2.2) must be equal to zero, from which follows that p∗ + α1 is also a minimizer of g for
every α ∈ Z. Therefore, every p ∈ dom g is a lower bound of some minimizer as well as an
upper bound of another minimizer, which, together with Theorems 2.6 and 2.7, implies the
following property.
Theorem 2.8. For an L-convex function g : Zn → R ∪ {+∞} and a vector p ∈ dom g, the
following three conditions are equivalent:
(a) p ∈ argmin g, (b) g′(p; d) ≥ 0 (∀d ∈ {0,+1}n), (c) g′(p; d) ≥ 0 (∀d ∈ {0,−1}n).
We then consider minimizers of L♮-convex functions. Since every L♮-convex function

satisfies submodularity, the following properties hold.
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Theorem 2.9. Let g : Zn → R ∪ {+∞} be an L♮-convex function.
(i) For p, q ∈ argmin g, we have p ∨ q, p ∧ q ∈ argmin g.
(ii) Minimal and maximal minimizers of g are uniquely determined if they exist. In par-
ticular, if argmin g is bounded, then minimal and maximal minimizers of g are uniquely
determined.
It should be noted that there may exist many minimal and maximal minimizers for a general
function.

3. Minimization Algorithms

In this section we explain minimization algorithms for L-convex and L♮-convex functions.
Since the minimization of an L-convex function is a special case of the minimization of an
L♮-convex function, we mainly deal with the latter in this section. Throughout this section,
we assume that g : Zn → R ∪ {+∞} is an L♮-convex function with bounded dom g.

3.1. Fundamental algorithms

We present three minimization algorithms. The first algorithm finds a minimizer by itera-
tively moving a solution along steepest descent directions.
Algorithm 1 (Greedy).
Step 0: Select an initial solution p0 ∈ dom g arbitrarily, and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n ∪ {0,−1}n, then output p and stop.
Step 2: Find d = d∗ ∈ {0,+1}n ∪ {0,−1}n minimizing g′(p; d). Set p := p+ d∗ and

go to Step 1.
By Theorem 2.5, the algorithm Greedy outputs a minimizer when applied to L♮-convex

function g. Since the function value g(p) decreases strictly in each iteration and dom g is
bounded, the algorithm Greedy terminates in a finite number of iterations. Note that the
computation of a steepest descent direction in each iteration can be done in polynomial time
(in n) by reduction to the minimization of submodular set functions ρ+p , ρ

−
p given by

ρ+p (X) = g′(p; +eX), ρ−p (X) = g′(p;−eX) (X ⊆ N),

where eX ∈ {0,+1}n denotes the characteristic vector of X ⊆ N ; see [22, 45] for the
strongly-polynomial time algorithms for submodular set function minimization.

If a lower bound of some minimizer of g is available as the initial solution, then an
increasing-type steepest descent algorithm can be applied by Theorem 2.6. Here, an “increasing-
type” algorithm means that in the algorithm each component of vector p is monotonically
increasing (non-decreasing).
Algorithm 2 (GreedyUp).
Step 0: Select an initial solution p0 ∈ dom g that is a lower bound of some minimizer of g,

and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then output p and stop.
Step 2: Find d = d∗ ∈ {0,+1}n minimizing g′(p; d). Set p := p+ d∗ and go to Step 1.

Similarly, if an upper bound of some minimizer of g is available as the initial solution,
then a decreasing-type steepest descent algorithm can be applied by Theorem 2.7.
Algorithm 3 (GreedyDown).
Step 0: Select an initial solution p0 ∈ dom g that is an upper bound of some minimizer of g,

and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,−1}n, then output p and stop.
Step 2: Find d = d∗ ∈ {0,−1}n minimizing g′(p; d). Set p := p+ d∗ and go to Step 1.
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Figure 2: The behavior of the steepest descent algorithms. Each numbers associated with
each integer lattice point denotes the function value of g at the point. The shaded region
shows the set of minimizers of g.

Remark 3.1. The algorithmGreedyUp is originally proposed as a minimization algorithm
of L-convex functions (see, e.g., [29, Section 10.3.1]). If an L-convex function g has a
minimizer, then for every initial vector p0 ∈ dom g there exists some minimizer p∗ of g such
that p∗ ≥ p0 (see the discussion just before Theorem 2.8). Hence, a minimizer of L-convex
function g can be obtained by GreedyUp with an arbitrarily chosen initial vector p0.
Similarly, GreedyDown can be also applied to a minimizer of an L-convex function.
Remark 3.2. The behavior of vector p ∈ Rn in the algorithm Greedy applied to an L♮-
convex function g : Zn → R ∪ {+∞} coincides with the behavior of the original variable
vector p ∈ Rn in GreedyUp applied to L-convex function g̃ : Zn+1 → R∪{+∞} with n+1
variables given by (2.3).

3.2. A numerical example

To illustrate the behavior of the steepest descent algorithms explained above, we consider a
numerical example of L♮-convex function g : Z2 → R∪{+∞} given as follows (see Figure 2):

dom g = {(p(1), p(2)) ∈ Z2 | 0 ≤ p(i) ≤ 4 (i = 1, 2)},
g(p(1), p(2)) = max(0, −p(1) + 2, −p(2) + 1, p(1)− 3,

−p(1) + p(2)− 1, 2p(1)− p(2)− 5) ((p(1), p(2)) ∈ dom g).

L♮-convexity of this function can be checked by using the translation submodularity (2.4)
or discrete-midpoint convexity (2.5) (see Theorem 2.8).

Suppose that the algorithm Greedy is applied to the function g with the initial solution
p0 = (1, 4). Then, the trajectory of vector p is given by one of the three dotted arrows in
Figure 2 starting from (1, 4). In particular, the minimizer found by the algorithm is either
of (3, 4) and (2, 3).

We then suppose that the algorithmGreedy orGreedyUp is applied to g with another
initial solution p0 = (0, 0). Then, the trajectory of vector p is given by one of the three
dashed arrows in Figure 2 starting from (0, 0). In particular, the minimizer found by the
algorithm is either of (2, 1) and (2, 2).

3.3. Steepest descent algorithms in other research fields

We show that various optimization algorithms proposed independently in other research
fields can be seen as steepest descent algorithms in Section 3.1 applied to special L♮-convex
(or L-convex) functions.

7



3.3.1. Hassin’s algorithm for the minimum cost flow problem

Given a directed graph G = (V,E), non-negative edge capacity c(e) ∈ R+ (e ∈ E), and edge
cost γ(e) ∈ R (e ∈ E), the minimum cost flow problem (minimum cost circulation problem)
is formulated as follows:

Minimize
∑

(u,v)∈E

γ(u, v)x(u, v)

subject to
∑

v:(u,v)∈E

x(u, v)−
∑

v:(v,u)∈E

x(v, u) = 0 (u ∈ V ),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).

This is a linear programming problem, and its dual is given as

Maximize gH(p) ≡
∑

(u,v)∈E

c(u, v)min{0, p(u)− p(v) + γ(u, v)}

subject to p(v) ∈ R (v ∈ V ).

Hassin’s algorithm [20] solves the minimum cost flow problem by finding an optimal solution
of the dual problem, instead of solving the primal problem directly.

Assume that edge cost γ(u, v) is integer for each (u, v) ∈ E. Then, it can be shown that
the dual problem has an integral optimal solution. Hence, we may restrict the values of
dual variables p(v) (v ∈ V ) to integers, and the objective function gH can be regarded as
a function in discrete variables. It is known that this function gH is an L-concave function
in discrete variables (see [28, 29, 32, 38]). Moreover, Hassin’s algorithm coincides with the
algorithm GreedyUp (more precisely, the algorithm GreedyUpMinimal in Section 3.4)
applied to L-convex function −gH (see [39] for details).

For the minimum cost submodular flow problem, which is a generalization of the min-
imum cost flow problem, Chung–Tcha [6] proposed an algorithm by generalizing Hassin’s
algorithm under the integrality assumption for the problem input. This algorithm can be
also seen as a (variant of) the algorithm GreedyUp applied to an L-convex function arising
from the dual of the minimum cost submodular flow problem (see [39] for details).

3.3.2. Discrete optimization approach in computer vision

Given an undirected graph G = (V,E) and univariate convex functions φv : Z → R∪{+∞}
(v ∈ V ), ψuv : Z → R ∪ {+∞} ((u, v) ∈ E), consider the following optimization problem:

(P): Minimize gCV(p) ≡
∑
v∈V

φv(p(v)) +
∑

(u,v)∈E

ψuv(p(v)− p(u))

subject to p(v) ∈ Z (v ∈ V ).

Here, we say that a univariate function φ : Z → R∪{+∞} is convex if 2φ(α) ≤ φ(α− 1)+
φ(α+1) holds for every α ∈ Z with φ(α) < +∞. The objective function gCV of the problem
(P) is an L♮-convex function. Moreover, if the first term

∑
v∈V φv(p(v)) is removed from the

function gCV, then the resulting function is an L-convex function (see [28, 29, 32, 38]).
The problem (P) is used to process various tasks in computer vision such as panoramic

image stitching [49], image restoration [5], minimization of total variation [8], phase unwrap-
ping in SAR images [3], etc. In these problems, the vertex set V of the graph G corresponds
to the set of pixels in a given image, and edges of the graph represent the neighborhood
relation of pixels. Variable p(v) represents the label of the pixel v such as disparity and
intensity. The function φv for each v ∈ V is called the data term and used to evaluate the
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label of the pixel v. The function ψuv for (u, v) ∈ E is called the smoothness term and used
to evaluate the difference of the labels for a pair of adjacent pixels u and v. The objective
function gCV of the problem (P) is called an energy function in the context of Markov ran-
dom field [17], and its minimizer corresponds to a set of labels maximizing the a-posteriori
probability.

In computer vision, many algorithms for the problem (P) have been proposed (see, e.g.,
[3, 24]). In particular, Kolmogorov [24] proposed a general framework of minimization algo-
rithms that includes the algorithms Greedy, GreedyUp, and GreedyDown as special
cases. An algorithm by Bioucas-Dias–Valadão [3] coincides with the algorithm GreedyUp
applied to the problem (P) without the first term

∑
v∈V φv(p(v)).

3.3.3. Iterative auction in auction theory

Consider an auction with multiple indivisible items. In such an auction, the auctioneer
needs to find “appropriate” prices of items as well as “appropriate” allocation of items to
bidders. An ascending auction due to Ausubel [2], which is an algorithm for computing such
“appropriate” prices by using the Lyapunov function, can be regarded as an application of
the algorithm GreedyUp to a special L♮-convex function. We discuss this topic in more
details in Section 6.

3.4. Computation of minimal and maximal minimizers

For an L♮-convex function with bounded effective domain, minimal and maximal minimizers
are uniquely determined by Theorem 2.9. We show that unique minimal and maximal
minimizers can be computed by using variants of the algorithms in Section 3.1.

We first consider the minimal minimizer. The minimal minimizer of function g is the
same as the unique minimizer of the function

gε(p) = g(p) + ε
n∑

i=1

p(i),

where ε is a sufficiently small positive number. Since the function gε is also an L♮-convex
function, its minimizer can be computed by the algorithm GreedyUp, although we need
to select the value of ε appropriately so that a minimizer of gε is also a minimizer of
g. In fact, we do not need to compute such ε explicitly. The behavior of the algorithm
GreedyUp applied to the function gε with a sufficiently small ε > 0 coincides with the
behavior of GreedyUpMinimal to be explained below applied to the original function g.
The difference between GreedyUpMinimal and GreedyUp is in the choices of the initial
solution and a steepest descent direction in each iteration.
Algorithm 4 (GreedyUpMinimal).
Step 0: Select an initial solution p0 ∈ dom g that is a lower bound of the minimal minimizer

of g, and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then output p and stop.
Step 2: Find a (unique) minimal minimizer d = d∗ ∈ {0,+1}n of g′(p; d). Set p := p+ d∗

and go to Step 1.
Note that a minimal minimizer d = d∗ ∈ {0,+1}n of g′(p; d) found in Step 2 is uniquely

determined due to the submodularity of g.
Proposition 3.3. For an L♮-convex function g : Zn → R ∪ {+∞} with bounded dom g, the
algorithm GreedyUpMinimal outputs the unique minimal minimizer.

Based on a similar idea, the algorithm Greedy can also be used to find the minimal
minimizer by modifying the condition of the termination and the choice of a steepest descent
direction.
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Algorithm 5 (GreedyMinimal).
Step 0: Select an initial solution p0 ∈ dom g arbitrarily and set p := p0.
Step 1: Find a (unique) minimal minimizer d = d∗ ∈ {0,+1}n ∪ {0,−1}n of g′(p; d).
Step 2: If d∗ = 0, then output p and stop. Otherwise, set p := p+ d∗ and go to Step 1.
Proposition 3.4. For an L♮-convex function g : Zn → R ∪ {+∞} with bounded dom g, the
algorithm GreedyMinimal outputs the unique minimal minimizer.

By modifying the algorithmGreedyDown in a similar way, we can obtain the algorithm
GreedyDownMinimal that finds the minimal minimizer.
Remark 3.5. Iteration of the algorithm GreedyMinimal does not necessarily stop even if
the current vector p is a minimizer of g. For example, let us consider the L♮-convex function
g in Section 3.2. If we apply GreedyMinimal with the initial solution p0 = (1, 4), then
the trajectory of p is given as (1, 4) → (1, 3) → (2, 3) → (2, 2) → (2, 1), which reaches the
minimal minimizer (2, 1) after passing through the minimizers (2, 3) and (2, 2).

We then consider the computation of the maximal minimizer. For a general function
g : Zn → R ∪ {+∞}, a vector p is a maximal minimizer of g if and only if −p is a
minimal minimizer of the function h : Zn → R ∪ {+∞} defined by h(q) = g(−q) (q ∈ Zn).
Moreover, function g is L♮-convex if and only if function h is L♮-convex. Hence, an algorithm
for computing the maximal minimizer of an L♮-convex function can be easily obtained by
modification of an algorithm for the minimal minimizer of an L♮-convex function. For
example, we can obtain the following algorithm for the unique maximal minimizer of L♮-
convex function g by rewriting the algorithm GreedyUpMinimal applied to L♮-convex
function h in terms of the function g; the resulting algorithm can be seen as a variant of
the algorithm GreedyDown.
Algorithm 6 (GreedyDownMaximal).
Step 0: Select an initial solution p0 ∈ dom g that is an upper bound of the maximal minimizer

of g, and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,−1}n, then output p and stop.
Step 2: Find a (unique) maximal minimizer d = d∗ ∈ {0,−1}n of g′(p; d).

Set p := p+ d∗ and go to Step 1.
Proposition 3.6. For an L♮-convex function g : Zn → R ∪ {+∞} with bounded dom g, the
algorithm GreedyDownMaximal outputs the unique maximal minimizer.

By using similar ideas, we can obtain the algorithmsGreedyMaximal andGreedyUp-
Maximal for the maximal minimizer as variants of Greedy and GreedyUp.

3.5. Use of long step length

In all the algorithms explained in Sections 3.1 and 3.4, the current vector p repeats moving
along a certain direction by unit step length. We consider a modification of the algorithms
where the vector p moves along the same steepest descent direction d∗ as far as the value of
the slope g′(p; d∗) in the steepest descent direction does not change.

For example, if this modification is applied to the algorithm GreedyUp, the following
algorithm is obtained. For a vector p ∈ dom g and a direction d ∈ {0,+1}n ∪ {0,−1}n, we
define the value c̄(p; d) ∈ Z ∪ {+∞} by

c̄(p; d) = sup{λ ∈ Z+ | g(p+ λd)− g(p) = λ g′(p; d)}.

Algorithm 7 (GreedyUp-LS).
Step 0: Select an initial solution p0 ∈ dom g that is a lower bound of some minimizer of g,

and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then output p and stop.
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Step 2: Find d = d∗ ∈ {0,+1}n minimizing g′(p; d). Set λ := c̄(p; d∗), p := p+ λd∗, and
go to Step 1.

As shown in Section 4.2, this algorithm can be seen as a special implementation of
GreedyUp. In particular, the output of GreedyUp-LS is a minimizer of g.

Computation of a steepest descent direction is essentially equivalent to the minimization
of a submodular set function (see Section 3.1), for which we require quite large running time
to obtain a minimizer (see, e.g., [22, 45]). Therefore, the use of long step length helps to
reduce the total running time. Note that the computation of the step length c̄(p; d∗) can
be done by binary search; for the special cases of L♮-convex functions shown in Sections 2.2
and 3.3, step length can be computed more easily.

Long step length can be used to other steepest descent algorithms in a similar way; we
omit the details in this paper.

4. Analysis of Number of Iterations in Steepest Descent Algorithms

We analyze the number of iterations required by the algorithms in Section 3. In Section 4.1,
the exact bounds for the steepest descent algorithms and its variants are provided in terms
of the distance to minimizers. In Section 4.2, we consider an increasing-type steepest descent
algorithm using long step length, and obtain an upper bound of the number of iterations
by using the slope of steepest descent directions. While other minimization algorithms can
be analyzed in a similar way, we omit the details in this paper.

In the following, let g : Zn → R∪ {+∞} be an L♮-convex function with bounded dom g.

4.1. Analysis by using the distance to minimizers

We analyze the number of iterations of algorithms by using the distance from the current
vector p ∈ Zn to minimizers. In the analysis we use two kinds of distance. We define a
function µ̂ : Zn → Z+ ∪ {+∞} by

µ̂(p) =

{
min{∥p∗ − p∥∞ | p∗ ∈ argmin g, p∗ ≥ p} (if {p∗ ∈ argmin g | p∗ ≥ p} ̸= ∅),
+∞ (otherwise).

(4.1)
That is, µ̂(p) is the ℓ∞-distance between a vector p and a nearest minimizer p∗ under the
condition p∗ ≥ p. We also define a function µ : Zn → Z+ by

µ(p) = min{∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ | p∗ ∈ argmin g} (p ∈ Zn), (4.2)

where

∥p∗ − p∥+∞ = max
i∈N

max(0, p∗(i)− p(i)),

∥p∗ − p∥−∞ = max
i∈N

max(0,−p∗(i) + p(i)).

Function µ(p) gives a distance between p and a nearest minimizer p∗.
Due to the L♮-convexity of g, the functions µ(p) and µ̂(p) have the following relationship;

the proof is given in Appendix.
Proposition 4.1 (K. Murota). µ̂(p) = µ(p) holds for a vector p ∈ Zn such that {q ∈
argmin g | q ≥ p} ̸= ∅.
Example 4.2. Consider the example of an L♮-convex function in Section 3.2 (see Figure 2).
We have µ̂(p) = µ(p) = 2 for p = (1, 4). The value µ̂(p) = 2 is attained by the minimizer
(3, 4), while µ(p) = 2 is attained by both of the two minimizers (3, 4) and (2, 3).
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We first analyze the two increasing-type steepest descent algorithms, GreedyUp and
GreedyUpMinimal. Suppose that a vector p ∈ dom g is a lower bound of some minimizer
of function g. We consider the unique minimal minimizer p∗ of g under the condition
p∗ ≥ p, which we denote by p̂. Recall that in an increasing-type algorithm each component
of vector p increases monotonically. The following conditions are desirable properties of
increasing-type algorithms (for an unknown p̂):

(a) for each i ∈ argmaxj∈N{p̂(j) − p(j)}, the value of p(i) is increased if
maxj∈N{p̂(j)− p(j)} > 0.
(b) for each i ∈ N with p̂(i)− p(i) = 0, the value of p(i) is unchanged.

The next proposition shows that if vector p is updated by using a steepest descent direction
d ∈ {0,+1}n, then the condition (a) is satisfied; moreover, the condition (b) is also satisfied
if d is a minimal steepest descent direction, in particular. We denote supp+(d) = {i ∈ N |
d(i) > 0} for a vector d ∈ Zn.
Proposition 4.3 ([40]). Let p ∈ dom g be a vector that is a lower bound of some minimizer
of g, and p̂ ∈ argmin g be a (unique) minimal minimizer of g under the condition p̂ ≥ p.
(i) For every steepest descent direction d ∈ {0,+1}n at p, we have argmaxj∈N{p̂(j)−p(j)} ⊆
supp+(d). In addition, p∗ = p̂∨(p+d) is a (unique) minimal minimizer under the condition
p∗ ≥ p+ d and satisfies ∥p∗ − (p+ d)∥∞ = ∥p̂− p∥∞ − 1.
(ii) For a (unique) minimal steepest descent direction d ∈ {0,+1}n at p, we have

supp+(d) ∩ {i ∈ N | p̂(i) = p(i)} = ∅, p̂ ≥ p+ d, ∥p̂− (p+ d)∥∞ = ∥p̂− p∥∞ − 1.

From the proposition above, the exact number of iterations inGreedyUp andGreedyUp-
Minimal can be obtained. In general, if we update vector p by increasing each component
at most one, then the value µ̂(p) decreases by at most one. Hence, µ̂(p0) gives a lower bound
for the number of iterations required by any increasing-type algorithm with the initial so-
lution p0. In fact, the number of iterations of GreedyUp is exactly equal to µ̂(p0). We
define

Φg = max{∥p− q∥∞ | p, q ∈ dom g},
which gives the “size” of the effective domain of g.
Theorem 4.4 (cf. [40]).
(i) If vector p is updated in an iteration of the algorithm GreedyUp, then the value µ̂(p)
decreases by one.
(ii) The number of update of vector p in GreedyUp is equal to µ̂(p0) and at most Φg.
(iii) The minimizer p∗ ∈ argmin g found by GreedyUp satisfies ∥p∗ − p0∥∞ = µ̂(p0).

This theorem implies that the trajectory of vector p generated by GreedyUp is a
shortest path (with respect to ℓ∞-distance) from the initial solution p0 to a nearest minimizer
p∗ under the condition p∗ ≥ p0.
Corollary 4.5 ([40, 42]). The algorithm GreedyUpMinimal outputs the unique minimal
minimizer p∗ after vector p is updated ∥p∗ − p0∥∞ times.
Example 4.6. We consider the example for the behavior of the algorithm in Section 3.2.
If we apply the algorithm GreedyUp with the initial solution p0 = (0, 0), then the output
of the algorithm is either p∗ = (2, 1) or p∗ = (2, 2), each of which is a nearest minimizer to
p0 (i.e., a minimizer with the minimum value of ∥p∗ − p0∥∞) under the condition p∗ ≥ p0.
The number of iterations required by the algorithm is equal to µ̂(p0) = 3, the distance from
p0 to a nearest minimizer. Three possible trajectories of p in the algorithm GreedyUp
are drawn by dashed arrows in Figure 2, each of which is a shortest path from the initial
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solution p0 = (0, 0) to a nearest minimizer. Also, if we apply GreedyUpMinimal, then
the trajectory of p is given as (0, 0) → (1, 0) → (2, 1), and its output p∗ = (2, 1) is the
minimal minimizer.

A similar result can be obtained for the decreasing-type steepest descent algorithms
GreedyDown and GreedyDownMaximal. For a vector p ∈ dom g that is an upper
bound of some minimizer of L♮-convex function g, we define the value µ̌(p) ∈ Z+ by

µ̌(p) =

{
min{∥p∗ − p∥∞ | p∗ ∈ argmin g, p∗ ≤ p} (if {p∗ ∈ argmin g | p∗ ≤ p} ̸= ∅),
+∞ (otherwise).

Proposition 4.7 (K. Murota). µ̌(p) = µ(p) holds for a vector p ∈ Zn such that {q ∈
argmin g | q ≤ p} ̸= ∅.
Theorem 4.8 (cf. [40]).
(i) If vector p is updated in an iteration of the algorithm GreedyDown, then the value
µ̌(p) decreases by one.
(ii) The number of update of vector p in GreedyDown is equal to µ̌(p0) and at most Φg.
(iii) The minimizer p∗ ∈ argmin g found by GreedyDown satisfies ∥p∗−p0∥∞ = µ̌(p0).
Corollary 4.9 ([40, 42]). The algorithm GreedyDownMaximal outputs the unique max-
imal minimizer p∗ after vector p is updated ∥p∗ − p0∥∞ times.
Remark 4.10. We consider the special case where g : Zn → R ∪ {+∞} is an L-convex
function. If g has a minimizer, then for every vector p0, there exists a minimizer p∗ satisfying
p∗ ≥ p0 and mini∈N{p∗(i)− p0(i)} = 0 (see the discussion just before Theorem 2.8). Hence,
µ̂(p0) ≤ Ψg holds with

Ψg = max{∥p− q∥∞ | p, q ∈ dom g, min
i∈N

{p(i)− q(i)} = 0}.

If the value Ψg is finite, then the increasing-type steepest descent algorithms GreedyUp
and GreedyUpMinimal terminate in at most Ψg iterations. Similarly, the decreasing-type
steepest descent algorithms GreedyDown and GreedyDownMaximal terminate in at
most Ψg iterations.

By generalizing the analysis used in Theorem 4.4, we can obtain the exact bound for the
number of iterations required by the algorithms Greedy and GreedyMinimal.
Theorem 4.11 ([40]).
(i) If vector p is updated in an iteration of the algorithm Greedy, then the value µ(p)
decreases by one.
(ii) The number of update of vector p in Greedy is equal to µ(p0) and at most 2Φg.
(iii) The minimizer p∗ ∈ argmin g found by Greedy satisfies ∥p∗ − p0∥+∞ + ∥p∗ − p0∥−∞ =
µ(p0).

It follows from this theorem that the trajectory of vector p generated by the algorithm
Greedy is a shortest path (with respect to a certain distance) from the initial solution p0
to a nearest minimizer p∗.
Corollary 4.12 ([40]). The algorithm GreedyMinimal outputs the unique minimal min-
imizer p∗ after vector p is updated ∥p∗ − p0∥+∞ + ∥p∗ − p0∥−∞ times.
Example 4.13. We reconsider Example 3.2. When we apply the algorithm Greedy with
the initial solution p0 = (1, 4), the output of the algorithm is either of p∗ = (3, 4) and
p∗ = (2, 3), both of which are nearest minimizers to p0 (with respect to the distance ∥p∗ −
p∥+∞ + ∥p∗ − p∥−∞), and the number of iterations is equal to µ(p0) = 2, the distance to a
nearest minimizer. Three possible trajectories of p in the algorithm Greedy are drawn
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by dotted arrows in Figure 2, each of which is a shortest path from the initial solution
p0 = (1, 4) to a nearest minimizer.
Remark 4.14. As upper bounds for the number of iterations required by the algorithm
Greedy, 2nΦg is shown by Murota [30] and 2Φg by Kolmogorov–Shioura [25]. The result
presented in this section (Theorem 4.11) is a refinement of these previous results.
Remark 4.15. Recently, Hirai [15, 16] introduced the concept of L-convex function on
oriented modular graphs, as a generalization of L♮-convex function on integer lattice points.
In this concept, a function is defined on the set of vertices, and the neighborhood of each
vertex is defined by using oriented edges. In this framework, an L♮-convex function on integer
lattice points can be regarded as an L-convex function on a grid graph with appropriate
edge orientation. Hirai [15, 16] proposed a steepest descent algorithm for minimization of an
L-convex function on an oriented modular graph, and showed that the number of iterations
is equal to a certain distance between the initial solution and the minimizer output by the
algorithm. This result generalizes Theorems 4.4 and 4.11 presented in this section.

4.2. Analysis by the slope of steepest descent direction

We consider a variant of the increasing-type steepest descent algorithm GreedyUpMin-
imal using long step length, which we denote GreedyUpMinimal-LS. In this section,
we analyze the number of iterations required by GreedyUpMinimal-LS by using slopes
of steepest descent directions. For this, we first show a property concerning the slope of
a steepest descent direction in each iteration of GreedyUpMinimal (i.e., the algorithm
using the unit step length) and clarify the relationship between GreedyUpMinimal and
GreedyUpMinimal-LS.

We show that in GreedyUpMinimal, the absolute value |g′(p; d)| of the slope of a
steepest descent direction d is non-increasing; moreover, if the unique minimal steepest
descent direction is used, then the absolute value |g′(p; d)| of the slope decreases strictly or
the set supp+(d) of non-zero components in a steepest descent direction d monotonically
increases (in the sense of set inclusion). Note that g′(p; d) ≤ 0 holds for every p ∈ dom g
and every steepest descent direction d at p.
Proposition 4.16 (cf. [13]). Let p ∈ dom g, and d ∈ {0,+1}n be a steepest descent direction

at p, and d̃ ∈ {0,+1}n be a steepest descent direction at p+ d.

(i) 0 ≥ g′(p+ d; d̃) ≥ g′(p; d) holds.
(ii) Suppose that d and d̃ are minimal steepest descent directions at p and p+d, respectively.
Then, at least one of the following two conditions holds:

(a) g′(p+d; d̃) > g′(p; d), (b) g′(p+d; d̃) = g′(p; d) and supp+(d̃) ⊇ supp+(d).

For p ∈ dom g, let d ∈ {0,+1}n be a steepest descent direction at p. Proposition 4.16 (i)
implies that d is also a steepest descent direction at p+ λd for every λ ∈ Z+ with 0 ≤ λ <
c̄(p; d). Hence, the algorithm GreedyUpMinimal-LS using long step lengths can be re-
garded as a variant of the algorithm GreedyUpMinimal, where the same steepest descent
direction as in the previous iteration is used whenever possible. From this observation follows
that the trajectory of vector p of the algorithm GreedyUpMinimal-LS is the same as the
trajectory of vector p of GreedyUpMinimal, and the output of GreedyUpMinimal-LS
is a minimizer of function g.

An upper bound for the number of iterations of GreedyUpMinimal-LS can be ob-
tained by using Proposition 4.16 (ii). When vector p is updated to p̃ = p + λd with
λ = c̄(p; d), the slopes g′(p; d) and g′(p̃; d) satisfy 0 ≥ g′(p̃; d) > g′(p; d) by the definition
of λ. Therefore, Proposition 4.16 (ii) implies that for the unique minimal steepest descent
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direction d̃ ∈ {0,+1}n at p̃, at least one of g′(p̃; d̃) > g′(p; d) and supp+(d̃) ⊋ supp+(d)
holds. Since the slope of a steepest descent direction is equal to zero at the termination of
the algorithm, the next theorem follows.
Theorem 4.17. For an integer-valued L♮-convex function g, the number of iterations of the
algorithm GreedyUpMinimal-LS is at most n ·max{−g′(p0; d) | d ∈ {0,+1}n}.
Remark 4.18. Consider the example of the minimum cost flow problem in Section 3.3.1.
Function gH is integer-valued if cost c(u, v) and capacity γ(u, v) are integer-valued for every
edge (u, v) ∈ E. Hence, from Theorem 4.17 the following upper bound for the number of
iterations of Hassin’s algorithm can be obtained:

n ·max{−g′H(p0; d) | d ∈ {0,+1}n}.

This bound coincides with the one shown in Hassin [20, Corollary 3]. Since the slope g′H(p; d)
at a vector p ∈ dom gH can be represented as

g′H(p; d) =
∑

(u,v)∈E′

c(u, v)−
∑

(u,v)∈E′′

c(u, v)

for some subsets E ′, E ′′ ⊆ E of edges, we have

g′H(p0; d) ≥ −
∑

(u,v)∈E

|c(u, v)|.

From this we obtain an upper bound n ·
∑

(u,v)∈E |c(u, v)| for the number of iterations of
Hassin’s algorithm, which is independent of the choice of the initial solution p0.

5. Minimization of L-convex Function in Continuous Variables

The concepts of L-convexity and L♮-convexity naturally extend to functions in continu-
ous variables. Moreover, the minimization algorithms shown in Section 3 as well as their
properties can also be naturally extend to L-convex and L♮-convex functions in continuous
variables.

5.1. Definition of L-convex function in continuous variables

A convex function g : Rn → R∪{+∞} in continuous variables is called an L-convex function
[35, 36] if it satisfies the following two properties, where domR g = {p ∈ Rn | g(p) < +∞}:

[Submodularity] g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (∀p, q ∈ domR g),

[Linearity in the Direction of 1] ∃r ∈ R : g(p+ α1) = g(p) + αr (∀p ∈ Rn, ∀α ∈ R).

For an L-convex function g : Rn → R∪ {+∞}, the function ǧ : Rn−1 → R∪ {+∞} with
n− 1 variables given as

ǧ(q(1), . . . , q(n− 1)) = g(q(1), . . . , q(n− 1), 0)

is called an L♮-convex function [35, 36]. In other words, a function g : Rn → R ∪ {+∞} is
said to be L♮-convex if the function g̃ : Rn+1 → R ∪ {+∞} with n+ 1 variables given by

g̃(q(1), . . . , q(n), q(n+ 1)) = g(q(1)− q(n+ 1), . . . , q(n)− q(n+ 1)) (q ∈ Rn+1)

is an L-convex function. As in the case of functions in discrete variables, the function g̃
defined above satisfies the linearity in the direction of 1. Hence, L-convexity of function g̃
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is equivalent to submodularity of function g̃. This means that L♮-convexity of function g is
equivalent to submodularity of function g̃.

As in the case of functions in discrete variables, L♮-convexity of function g : Rn →
R ∪ {+∞} can be characterized by the translation submodularity:

[Translation Submodularity]

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p ∧ (q + α1)) (∀p, q ∈ domR g, ∀α ∈ R+).

Remark 5.1. It should be noted that L♮-convexity does not follow from the mid-point
convexity

g(p) + g(q) ≥ 2g

(
p+ q

2

)
(∀p, q ∈ domR g).

Under the continuity of a function, the mid-point convexity is equivalent to convexity in the
ordinary sense, which is more general than L♮-convexity.

It is clear from their definitions that L-convex and L♮-convex functions in continuous
variables have close relationship with L-convex and L♮-convex functions in discrete variables.
If a function g : Rn → R ∪ {+∞} is an L-convex (resp., L♮-convex) function in continuous
variables, then its restriction gZ : Zn → R ∪ {+∞} on integer lattice points is an L-
convex (resp., L♮-convex) function in discrete variables, On the other hand, in the examples
of L-convex (resp., L♮-convex) functions in discrete variables shown in Section 2.2, if we
replace the domain Zn with Rn, then we can obtain L-convex (resp., L♮-convex) functions
in continuous variables. In this way, when we are given L-convex and L♮-convex functions
in discrete variables, it is often possible to obtain L-convex and L♮-convex functions in
continuous variables by replacing the domain Zn with Rn. Furthermore, it is known that
every L-convex (resp., L♮-convex) function in discrete variables can be extended to an L-
convex (resp., L♮-convex) functions in continuous variables (see, e.g., [28, 29, 32, 38]).

5.2. Minimization algorithms and their properties

Minimization algorithms for L♮-convex functions in discrete variables can be naturally extend
to polyhedral L♮-convex functions. A convex function g : Rn → R ∪ {+∞} is said to be
polyhedral if its epigraph {(p, β) | p ∈ Rn, β ∈ R, g(p) ≤ β} is a polyhedron. In this section,
we assume that g : Rn → R ∪ {+∞} is a polyhedral L♮-convex function.

For p ∈ domR g and d ∈ Rn, the directional derivative g′(p; d) of function g at p in the
direction d is given as

g′(p; d) = lim
λ↓0

g(p+ λd)− g(p)

λ
.

Since g is a polyhedral convex function, the limit in the right-hand side exists if we allow to
have g′(p; d) = +∞.

By its definition, an L♮-convex function g in continuous variables is a convex function
in the ordinary sense. Hence, a vector p ∈ domR g is a minimizer if and only if g′(p; d) ≥ 0
holds for every direction d ∈ Rn. In fact, by L♮-convexity we may restrict our attention only
to a finite number of directions to check the minimality of a vector.
Theorem 5.2 ([28, 29, 35]). Let g : Rn → R ∪ {+∞} be a polyhedral L♮-convex function.
Then, a vector p ∈ domR g is a minimizer of g if and only if g′(p; d) ≥ 0 holds for every
d ∈ {0,+1}n ∪ {0,−1}n.

This is a natural extension of Theorem 2.5 for L♮-convex functions in discrete variables.
By this theorem, the steepest descent algorithmGreedy-LS in Section 3 can be extended to
polyhedral L♮-convex functions. Note that it is natural to use step length in each iteration
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when we apply a steepest descent algorithm to polyhedral L♮-convex functions. For p ∈
domR g and d ∈ Rn with g′(p; d) < +∞, we define the value c̄(p; d) ∈ R ∪ {+∞} by

c̄(p; d) = sup{λ ∈ R+ | g(p+ λd)− g(p) = λ g′(p; d)}. (5.1)

Since g is a polyhedral convex function, the value c̄(p; d) is always positive, and g(p+λd)−
g(p) = λ g′(p; d) holds with λ = c̄(p; d).
Algorithm 8 (Greedy-LS[R]).
Step 0: Select an initial solution p0 ∈ domR g arbitrarily and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n ∪ {0,−1}n, then output p and stop.
Step 2: Find d = d∗ ∈ {0,+1}n ∪ {0,−1}n minimizing g′(p; d). Set p := p+ λd∗ with

λ := c̄(p; d∗) and go to Step 1.
Theorem 4.11 for the case of discrete variables can be extended to this algorithm. In a

similar way as in Section 4.1, we define a function µ : Rn → R+ by

µ(p) = min{∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ | p∗ ∈ argminR g},

where
argminR g = {p ∈ Rn | g(p) ≤ g(q) (∀q ∈ Rn)}.

Theorem 5.3 ([13]). In each iteration of the algorithm Greedy-LS[R], the value µ(p)
decreases by the step length c̄(p; d). In addition, the algorithm outputs a minimizer p∗ of g
satisfying ∥p∗ − p0∥+∞ + ∥p∗ − p0∥−∞ = µ(p0) when it terminates.

This theorem implies that when the algorithm Greedy-LS[R] is applied to a polyhedral
L♮-convex function, its output is a minimizer p∗ nearest to the initial solution, and the
trajectory of vector p is a shortest path from the initial solution to p∗. It should be noted
that this theorem does not guarantee the termination of the algorithm.

Theorem 2.6 (ii) for the case of discrete variables can also be extended to polyhedral
L♮-convex functions as follows.
Theorem 5.4 (cf. [40]). Let g : Rn → R ∪ {+∞} be a polyhedral L♮-convex function such
that a minimizer exists, and p ∈ domR g be a vector that is a lower bound of some minimizer
of g. Then, p is a minimizer of g if and only if g′(p; d) ≥ 0 for every d ∈ {0,+1}n.

By this theorem the increasing-type steepest descent algorithm GreedyUp-LS can be
also extended to polyhedral L♮-convex functions.
Algorithm 9 (GreedyUp-LS[R]).
Step 0: Select an initial solution p0 ∈ domR g that is a lower bound of some minimizer of g,

and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then output p and stop.
Step 2: Find d = d∗ ∈ {0,+1}n minimizing g′(p; d). Set p := p+ λd∗ with λ := c̄(p; d∗) and

go to Step 1.
Theorem 4.4 for the case of discrete variables can be extended to this algorithm. As in

Section 4.1, for a vector p ∈ domR g that is a lower bound of some minimizer of g, we define
the value µ̂(p) ∈ R+ by

µ̂(p) =

{
min{∥p∗ − p∥∞ | p∗ ∈ argminR g, p∗ ≥ p} (if {p∗ ∈ argminR g | p∗ ≥ p} ̸= ∅),
+∞ (otherwise).

Theorem 5.5 (cf. [13]).
(i) If vector p is updated in an iteration of the algorithm GreedyUp-LS[R], then the value
µ̂(p) decreases by the step length c̄(p; d).
(iii) The minimizer p∗ ∈ argmin g found by GreedyUp-LS[R] satisfies ∥p∗ − p0∥∞ =
µ̂(p0).
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Theorems 5.2 and 5.4 imply that the algorithms Greedy-LS[R] and GreedyUp-LS[R]
output minimizers when they terminate. These algorithms, however, have no guarantee
to terminate in a finite number of iterations; furthermore, there is no guarantee that the
sequence of vector p generated by each of the algorithm converges to some minimizer. Indeed,
it is shown in [13] that for some concrete example of the function −gH in Section 3.3.1 neither
GreedyUp-LS[R] terminates nor the sequence of vector p in the algorithm converges to a
minimizer; recall that −gH is a polyhedral L-convex function.

On the other hand, we can show that the algorithm terminates in a finite number of
iterations if we use a special choice of a steepest descent direction in each iteration. For
example, use of minimal steepest descent directions in GreedyUp-LS[R] guarantees the
finite termination.
Algorithm 10 (GreedyUpMinimal-LS[R]).
Step 0: Select an initial solution p0 ∈ dom g that is a lower bound of the minimal minimizer

of g, and set p := p0.
Step 1: If g′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then output p and stop.
Step 2: Find a (unique) minimal minimizer d = d∗ ∈ {0,+1}n of g′(p; d). Set p := p+ λd∗

with λ := c̄(p; d∗) and go to Step 1.
For this algorithm a property similar to Proposition 4.16 (ii) for L♮-convex function in

discrete variables holds.
Proposition 5.6. Let p ∈ domR g, and d ∈ {0,+1}n be the unique minimal steepest descent
direction at p. Also, let p̃ = p + c̄(p; d)d, and d̃ be the unique minimal steepest descent
direction at p̃. Then, at least one of the following two conditions holds:

(a) g′(p̃; d̃) > g′(p; d), (b) g′(p̃; d̃) = g′(p; d) and supp+(d̃) ⊋ supp+(d).

For a polyhedral convex function g, the set of possible values of the directional derivatives
g′(p; d) for p ∈ domR g and d ∈ {0,+1}n is finite. This fact, together with the proposition
above, implies the finite termination of GreedyUpMinimal-LS[R].
Theorem 5.7. For a polyhedral L♮-convex function g : Rn → R ∪ {+∞}, the algorithm
GreedyUpMinimal-LS[R] terminates in a finite number of iterations and outputs a min-
imizer of g. Moreover, the algorithm outputs the unique minimal minimizer of g if the initial
solution p0 is a lower bound of the minimal minimizer.

6. Application to Auction Theory

In this section, we show that results on L-convex function minimization algorithms explained
so far can be applied to iterative auctions in auction theory. Iterative auctions are used to
compute equilibrium prices of goods. For a certain general model discussed in Section 6.1,
iterative auctions can be seen as minimization algorithms applied to a special L♮-convex
function, as shown in Section 6.2.1.

6.1. Model of auction and fundamental concepts

Our auction model and fundamental concepts used in the following discussion are explained
below. Let us consider an auction with n types of indivisible goods. We denote the set of
goods by N = {1, 2, . . . , n}. We suppose that m bidders attend the auction, and denote
the set of bidders by M = {1, 2, . . . ,m}. Each bidder j ∈ M has his/her own valuation
function fj : 2N → R, where the value fj(X) represents the degree of satisfactory for the
set of goods X ⊆ N . Given a price vector p ∈ Rn

+, each bidder j ∈ M wants to buy a set
of goods Xj that maximizers the utility fj(Xj)− p(Xj). For each bidder j ∈M , we denote
by Vj(p) ∈ R the maximum utility of the bidder j and by Dj(p) ⊆ 2N a family of sets of
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goods maximizing utility. That is,

Vj(p) = max{fj(X)−
∑
i∈X

p(i) | X ⊆ N} (p ∈ Rn
+), (6.1)

Dj(p) = argmax{fj(X)−
∑
i∈X

p(i) | X ⊆ N} (p ∈ Rn
+). (6.2)

Function Vj is called the indirect utility function of bidder j, and the set family Dj(p) for
p ∈ Rn

+ is called the demand set (or demand correspondence) of bidder j.
The goal of an auction is to find a partition {X∗

1 , X
∗
2 , . . . , X

∗
m} (i.e., an allocation of

goods to bidders) of goods in N and a price vector p∗ satisfying the condition X∗
j ∈ Dj(p∗)

(j ∈ M). That is, we want to find an allocation of goods and a price vector such that
each bidder is fully satisfied and all goods are sold out. Such a pair of a partition of goods
{X∗

1 , X
∗
2 , . . . , X

∗
m} and a price vector p∗ is called a Walrasian equilibrium (or competitive

equilibrium); p∗ is called a Walrasian equilibrium price vector.
Although Walrasian equilibrium may not exist in general, it exists if each valuation

function fj satisfies a certain natural condition called the gross substitutes condition [18, 23].
The gross substitutes condition for a valuation function fj is described as follows by using
a demand set Dj(p):

(GS) ∀p, q ∈ Rn
+ with p ≤ q, ∀X ∈ Dj(p), ∃Y ∈ Dj(q) such that

Y ⊇ {i ∈ X | p(i) = q(i)}.
The gross substitutes condition means that when prices of some goods increase, the only
goods that may drop from the optimal set of goods are those with increased prices. The
gross substitutes condition is first introduced by Kelso–Crawford [23] in the setting of a fairly
general two-sided job matching model. Since then, this condition has been widely used in
various models such as matching, housing, and labor markets (see, e.g., [2, 4, 7, 18, 19]).

An iterative auction is an algorithm (more precisely, a protocol) to compute an equilib-
rium by repeatedly updating a price vector [4, 7]. An iterative auction with prices mono-
tonically increasing in each iteration is called an ascending auction. An ascending auction
for multiple goods is a generalization of the well-known English auction for a single good
(see, e.g., [4, 7]). In addition, an ascending auction is natural from the economic viewpoint,
and easy to understand and to be implemented.

For an auction model with gross substitutes valuation functions, an ascending auction
is proposed by Gul–Stacchetti [19]. Then, Ausubel [2] featured the concept of Lyapunov
function, which is a function in a price vector given by

L(p) =
m∑
j=1

Vj(p) +
n∑

i=1

p(i) (p ∈ Rn
+). (6.3)

Ausubel [2] showed that the Lyapunov function enjoys various nice properties.
Theorem 6.1 ([2]). Suppose that each valuation function fj satisfies the gross substitutes
condition.
(i) A vector p ∈ Rn

+ is a minimizer of the Lyapunov function if and only if it is an equilibrium
price vector vector.
(ii) Suppose that each fj is integer-valued. Then, the Lyapunov function has an integral
minimizer. In particular, a minimal and maximal minimizer of the Lyapunov function are
integral vectors.
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Based on these facts, Ausubel [2] proposed an ascending auction and a descending auc-
tion that find an equilibrium price vector through the minimization of the Lyapunov func-
tion. Note that the ascending auction of Ausubel [2] can be seen as a reformulation of the
one by Gul–Stacchetti [19].

6.2. Analysis of iterative auctions

6.2.1. Connection between auction theory and discrete convex analysis

We discuss the connection between auction theory and discrete convex analysis in this
section. Discrete convex analysis is a theory on discrete convexity, where another class of
discrete convex functions called M♮-convex functions [34] in addition to L♮-convex functions
plays a primary role. Similar to L♮-convexity, M♮-convexity is defined for functions on integer
lattice points. The definition of M♮-convexity, when specialized to a set function f : 2N → R,
is described as follows:

a function f : 2N → R is called an M♮-convex function if for every X,Y ⊆ N
and every i ∈ X \ Y , at least one of (a) and (b) holds:
(a) f(X) + f(Y ) ≥ f(X − u) + f(Y + u),
(b) ∃v ∈ Y \X such that f(X) + f(Y ) ≥ f(X − u+ v) + f(Y + u− v),

where X−u+v = (X \{u})∪{v}. A function f : 2N → R is called an M♮-concave function
if −f is M♮-convex.

The connection between auction theory and discrete convex analysis is initiated by the
following theorem due to Fujishige–Yang [14]:
Theorem 6.2 ([14]). A functionf : 2N → R satisfies the gross substitutes condition if and
only if it is an M♮-concave function.

Based on this theorem, known results in discrete convex analysis are used in various fields
in mathematical economics such as auction theory and game theory, while mathematical
economics provides discrete convex analysis with interesting application.

The following conjugacy relation holds between M♮-concavity and L♮-convexity. We say
that a polyhedral L♮-convex function g is domain-integral if the set argmin{g(p) − p⊤x |
p ∈ Rn} is an empty set or an integral polyhedron for every x ∈ Rn.
Theorem 6.3 ([27, 29, 35]). For a set functionf : 2N → R, define a function g : Rn → R
by

g(p) = max{f(X)−
∑
i∈X

p(i) | X ⊆ N}.

(i) f is an M♮-concave function if and only if g is a polyhedral L♮-convex function.
(ii) Suppose that f is an integer-valued M♮-concave function. Then, g is a domain-integral
polyhedral L♮-convex function.

L♮-convexity of the indirect utility function and the Lyapunov function can be obtained
from Theorems 6.2 and 6.3.
Theorem 6.4 ([41, 42]). Suppose that the valuation function fj : 2N → R of each bidder
j ∈ M satisfies the gross substitutes condition. Then, for each j ∈ M , the indirect utility
function Vj : Rn

+ → R and the Lyapunov function L : Rn
+ → R are polyhedral L♮-convex

functions. Moreover, if each fj is an integer-valued function, then the Lyapunov function L
is a domain-integral polyhedral L♮-convex function.

Thus, an iterative auction using the Lyapunov function can be seen as a minimization
algorithm for a special L♮-convex function.
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6.2.2. Ascending auction and descending auction

We analyze the ascending and descending auctions of Ausubel [2] from the viewpoint of
discrete convex analysis. The ascending auction, which finds the unique minimal (integral)
equilibrium price vector p∗, can be described as follows:
Algorithm 11 (AscendingAuction).
Step 0: Select an initial price vector p0 ∈ Zn

+ with p0 ≤ p∗, and set p := p0.
Step 1: If L′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then output p and stop.
Step 2: Let d = d∗ ∈ {0,+1}n be a (unique) minimal vector among all minimizers of L′(p; d).

Set p := p+ d∗ and go to Step 1.
The algorithm AscendingAuction can be interpreted in auction terms as follows:

Step 0: The auctioneer sets the initial price vector p := p◦, where p◦ ∈ Zn satisfies p◦ ≤ p∗.
Step 1: The auctioneer asks the bidders to report their demand sets Dj(p) (j ∈M),

and using the information of demand sets, checks if L′(p; d) ≥ 0 holds for every
d ∈ {0,+1}n. If it holds, the auctioneer reports p as the final price vector and stop.

Step 2: The auctioneer finds a (unique) minimal minimizer d = d∗ ∈ {0,+1}n of L(p+ d),
sets p := p+ d∗, and returns to Step 1.

Remark 6.5. As mentioned above, if the number of goods n is equal to one, then this as-
cending auction coincides with the classical English auction. That is, the ascending auction
of Ausubel [2] is a natural generalization of English auction.
Remark 6.6. We discuss an implementation issue of iterative auctions. In iterative auc-
tions, it is often the case that values of valuation functions fj are not explicitly given since
they are bidders’ private information. In such a case, the value of the Lyapunov function
cannot be computed. Instead, in the ascending auction of Ausubel [2] we can obtain the
information of demand sets Dj(p) for a given price vector p ∈ Zn

+, by which we can compute
the slope L′(p; d) of the Lyapunov function for any given direction d ∈ {0,+1}n ∪ {0,−1}n
(see [2, Appendix B] or the technical report version of [41]). Therefore, in the ascending
auction it is possible to check the local optimality of the Lyapunov function in Step 1 and
to compute a steepest descent direction in Step 2.

Ausubel [2] showed that the algorithm AscendingAuction terminates in a finite num-
ber of iterations, and at the termination the algorithm outputs the unique minimal equilib-
rium price vector p∗. By the results in Section 4.1, we can obtain the exact bound for the
number of iterations.

By Theorem 6.4, the Lyapunov function is a polyhedral L♮-convex function. Since the
unique minimal equilibrium price vector is an integral vector, we can restrict the Lyapunov
function on the integer lattice points; the resulting function can be seen as an L♮-convex
function in discrete variables. Therefore, the algorithm AscendingAuction can be seen
a minimization algorithm for a special L♮-convex function (i.e., Lyapunov function) and
coincides with the algorithm GreedyUpMinimal applied to the Lyapunov function. This
observation makes it possible to apply Corollary 4.5 to AscendingAuction to obtain the
exact bound for the number of iterations.
Theorem 6.7 ([41, 42]). The algorithm AscendingAuction updates a price vector exactly
∥p∗ − p◦∥∞ times and then terminates by outputting the unique minimal equilibrium price
vector p∗.

Any ascending auction algorithm requires at least ∥p∗ − p◦∥∞ iterations if the algorithm
increases the price of each good by at most one. This means that Ausubel’s ascending
auction finds the minimal equilibrium price vector using the smallest number of iterations,
i.e., it is the “fastest” auction algorithm among all ascending auction algorithms.
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We then explain the descending auction of Ausubel [2], which is quite similar to the
ascending auction. The algorithm iteratively decreases prices and finds the unique maximal
equilibrium price vector p∗.
Algorithm 12 (DescendingAuction).
Step 0: Select an initial price vector p0 ∈ Zn

+ with p0 ≤ p∗, and set p := p0.
Step 1: If L′(p; d) ≥ 0 holds for every d ∈ {0,−1}n, then output p and stop.
Step 2: Let d = d∗ ∈ {0,−1}n be a (unique) maximal vector among all minimizers

of L′(p; d). Set p := p+ d∗ and go to Step 1.
Remark 6.8. If the number of goods n is equal to one, then this descending auction
coincides with the classical Dutch auction. That is, the descending auction of Ausubel [2]
is a natural generalization of Dutch auction.

The algorithm DescendingAuction coincides with the algorithm GreedyDown-
Maximal applied to the Lyapunov function. Hence, we can analyzeDescendingAuction
in a similar way as AscendingAuction to obtain the following theorem.
Theorem 6.9 ([41, 42]). The algorithm DescendingAuction updates a price vector ex-
actly ∥p◦ − p∗∥∞ times and then terminates by outputting the unique maximal equilibrium
price vector p∗.
Remark 6.10. A variant of auction algorithm in Gul–Stacchetti [19] uses line search to
compute an equilibrium price vector (see [19, p. 77]). It can be shown that the behavior of
the auction algorithm coincides with that of the increasing-type steepest descent algorithm
GreedyUpMinimal-LS using long step length applied to the Lyapunov function. Hence,
we can apply Theorem 4.17 to obtain the number of iterations of the auction algorithm of
Gul–Stacchetti [19].

Recall that the Lyapunov function is an integer-valued function under the assumption
that each fj are integer-valued functions. By the definition of the Lyapunov function (6.3),
the slope of the Lyapunov function can be represented as

L′(p; d) = −
m∑
j=1

d(Xj) + d(N) (d ∈ {0,+1}n)

with some subsets X1, X2, . . . , Xm of N . Therefore we have L′(p; d) ≥ −(m − 1)n. Hence,
the auction algorithm of Gul–Stacchetti [19] terminates at most (m − 1)n2 iterations; this
bound is also shown in Saito [44].

6.2.3. Greedy auction and two-phase auction

An important advantage of ascending and descending auctions is that the change of a
price vector is monotone. On the other hand, the initial price vector of ascending (resp.,
descending) auctions should be a lower (resp., upper) bound of an equilibrium price vector,
which should be sufficiently small (resp., large) since an equilibrium price vector is not
known in advance. This is a disadvantage of ascending and descending auctions since it
makes the number of iterations of the algorithm fairly large.

To eliminate the disadvantage, Murota–Shioura–Yang [41, 42] proposed two kinds of
auction algorithms which are based on the understanding of L-convex function minimization.
We explain below the details of the algorithms.

The first algorithm, which we call the greedy auction, is an iterative auction obtained
by applying GreedyMinimal in Section 3.4 to the Lyapunov function.
Algorithm 13 (GreedyAuction).
Step 0: Select an initial price vector p0 ∈ Zn

+ arbitrarily, and set p := p0.
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Step 1: Let d = d∗ ∈ {0,+1}n ∪ {0,−1}n be a minimal minimizer of L′(p; d).
Step 2: If d∗ = 0 then output p and stop. Otherwise, set p := p+ d∗ and go to Step 1.
Remark 6.11. The greedy auction is a slight modification of the one in Murota–Shioura–
Yang [41] so that a minimal equilibrium price vector can be found.

The greedy auction has an advantage that any price vector can be used initially. There-
fore, if a good estimate of an equilibrium price vector is available from the output of auctions
in the past, we can use it as the initial price vector, resulting in the reduction of the number
of iterations. Corollary 4.12 for the algorithm GreedyMinimal shows that the number of
iterations of GreedyAuction is equal to a distance between the initial price vector p0 and
the minimal equilibrium price vector p∗.
Theorem 6.12 ([41, 42]). The algorithm GreedyAuction updates a price vector exactly
∥p∗ − p0∥+∞ + ∥p∗ − p0∥−∞ times and then terminates by outputting the unique minimal equi-
librium price vector vector p∗.

The algorithm GreedyAuction, however, has a disadvantage that the change of a
price vector is not monotone. On the other hand, the two-phase auction described below
has advantages that any initial vector can be used and that changes of prices are almost
monotone. As is clear from its name, the two-phase auction consists of two phases, the
ascending phase and the descending phase.
Algorithm 14 (TwoPhaseAuction).
Step 0: Select an initial price vector p0 ∈ Zn

+ arbitrarily, set p := p0, and go to Ascending
Phase.

[Ascending Phase]
Step A1: If L′(p; d) ≥ 0 holds for every d ∈ {0,+1}n, then go to Descending Phase.
Step A2: Let d = d∗ ∈ {0,+1}n be a (unique) minimal minimizer of L′(p; d).

Set p := p+ d∗ and go to Step A1.
[Descending Phase]
Step D1: If L′(p; d) ≥ 0 holds for every d ∈ {0,−1}n, then output p and stop.
Step D2: Let d = d∗ ∈ {0,−1}n be a (unique) minimal minimizer of L′(p; d).

Set p := p+ d∗ and go to Step D1.
While the two-phase auction has advantages as mentioned above, the number of iter-

ations can be larger than that of the greedy auction. We can show that the number of
iterations of the two-phase auction is at most three times of that of greedy auction.
Theorem 6.13 ([41, 42]). The algorithm TwoPhaseAuction terminates with outputting
the unique minimal equilibrium price vector p∗. The number of updates of a price vector is at
most ∥p∗−p0∥

+
∞+∥p∗−p0∥

−
∞ in the ascending phase and at most 2(∥p∗−p0∥

+
∞+∥p∗−p0∥

−
∞)

in the descending phase.
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A. Appendix: Proof of Proposition 4.1

Let p∗ ∈ argmin g be the minimal minimizer under the condition p∗ ≥ p; such p∗ is uniquely
determined and satisfies ∥p∗ − p∥∞ = µ̂(p). By the definitions of µ̂(p) and µ(p), we have

µ̂(p) = ∥p∗ − p∥∞ = ∥p∗ − p∥+∞ = ∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ ≥ µ(p). (A.1)
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To show that the inequality (A.1) holds with equality, we assume, to the contrary, that
∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ > µ(p) and derive a contradiction.

Let q∗ ∈ argmin g be a minimizer with ∥q∗ − p∥+∞ + ∥q∗ − p∥−∞ = µ(p); we assume that
q∗ minimizes the value ∥q∗ − p∥−∞ among all such vectors. Since

∥q∗ − p∥+∞ + ∥q∗ − p∥−∞ = µ(p) < ∥p∗ − p∥+∞ + ∥p∗ − p∥−∞ = ∥p∗ − p∥∞,

we have p∗ ̸= q∗ and ∥q∗ − p∥−∞ > 0. Hence, q∗(j) < p(j) holds for some j ∈ N .
By the translation submodularity (2.4) with α = maxi∈N{p∗(i)− q∗(i)} − 1, we have

g(p∗) + g(q∗) ≥ g(p∗ ∧ (q∗ + α1)) + g((p∗ − α1) ∨ q∗) = g(p∗ − χY ) + g(q∗ + χY ), (A.2)

where Y = argmaxi∈N{p∗(i) − q∗(i)}. Note that α ≥ 0 holds since p∗(j) ≥ p(j) > q∗(j).
Since p∗, q∗ ∈ argmin g, the inequality (A.2) implies p∗ − χY , q∗ + χY ∈ argmin g. We have

∥(q∗ + χY )− p∥+∞ ≤ ∥q∗ − p∥+∞ + ∥χY ∥+∞ = ∥q∗ − p∥+∞ + 1.

As shown below, we have X ⊆ Y for X = argmaxi∈N{p(i)− q∗(i)}, implying that

∥(q∗ + χY )− p∥−∞ = ∥q∗ − p∥−∞ − 1. (A.3)

Hence, we have

∥(q∗ + χY )− p∥+∞ + ∥(q∗ + χY )− p∥−∞ ≤ ∥q∗ − p∥+∞ + ∥q∗ − p∥−∞ = µ(p),

which, together with the definition of µ(p), implies ∥(q∗+χY )−p∥+∞+∥(q∗+χY )−p∥−∞ = µ(p).
This, however, contradicts the choice of q∗ since (A.3) holds. Therefore, the inequality in
(A.1) holds with equality.

To conclude the proof, we show X ⊆ Y . Since p∗ − χY ∈ argmin g, the choice of p∗
implies that p∗ − χY ̸≥ p. Therefore, it holds that p∗(h) = p(h) for some h ∈ Y . For each
i ∈ X, we have

p∗(i)− q∗(i) ≥ p(i)− q∗(i) ≥ p(h)− q∗(h) = p∗(h)− q∗(h),

where the first inequality is by p∗ ≥ p and the second by the definition of X. The inclusion
X ⊆ Y follows from the inequality above, h ∈ Y , and the definition of Y .
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