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Abstract

We consider the allocation problem of infinitely divisible resources with at least

three agents. For this problem, Thomson (Games and Economic Behavior 52:

186-200, 2005) and Doğan (Games and Economic Behavior, 98: 165-171, 2016)

propose “simple”but not “procedurally fair”game forms which implement the “no-

envy”solution in Nash equilibria. By contrast, Galbiati (Economics Letters, 100:

72-75, 2008) constructs a procedurally fair but not simple game form which im-

plements the no-envy solution in Nash equilibria. In this paper, we design a both

simple and procedurally fair game form which implements the no-envy solution in

Nash equilibria.

JEL Classification: C72, D71, D78

Keywords: Simple game form; Procedural fairness; Nash implementation; No-envy

solution

1 Introduction

We consider the allocation problem of infinitely divisible resources with at least three

agents. For this problem, Thomson [19] and Doğan [5] propose “simple”but not “pro-

cedurally fair”game forms which implement the “no-envy”solution in Nash equilibria.
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By contrast, Galbiati [7] constructs a procedurally fair but not simple game form which

implements the no-envy solution in Nash equilibria. In this paper, we investigate the

possibility of Nash implementation of the no-envy solution by a game form that is both

simple and procedurally fair. Note that in Doğan [5] and this study, there is no mono-

tonicity assumption on preferences, although Thomson [19] and Galbiati [7] make the

assumption of “strict monotonicity”on preferences.1 For detailed discussions concerning

simplicity and procedural fairness of game forms, see Section 3.

In studying the implementation problem, the objective of a social planner is embodied

by a “solution”. Mathematically, a solution is a set-valued mapping which, for each

possible preference profile, specifies a non-empty set of outcomes.2 Each agent knows

the other agents’ preferences, but the planner does not. Then, the planner specifies a

message space for each agent and a mapping which, for each possible message profile,

chooses an outcome. The pair consisting of the list of message spaces and the mapping

is a “game form”.

In the allocation problem of infinitely divisible resources, the planner selects an alloca-

tion in which the summation of assignments for all agents is equal to a social endowment,

i.e., the balance for the social endowment is satisfied, and she assigns a bundle of the

allocation to each agent. We want this allocation to be “envy-free”: no agent prefers the

bundle of a different agent over his own bundle (Foley [6]). The “no-envy”solution selects

the envy-free allocations for each preference profile.

We construct a game form for Nash implementation of the no-envy solution. We call

it “Choose-Two-Bundles-and-Transpose”. In Choose-Two-Bundles-and-Transpose, each

1In the same model as Galbiati [7], Saijo et al. [16] also constructs procedurally fair game forms to
implement the no-envy solution in Nash equilibria. However, the game form of Galbiati [7] is simpler
than game forms of Saijo et al. [16].

2A solution is also called a “social choice correspondence”.
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agent announces two bundles each of which is possible consumption bundle for the social

endowment as well as the name of an agent. The two bundles are interpreted as the first

bundle is for his own assignment, and the second bundle is for his neighbor’s assignment.3

Reporting a name by an agent can be interpreted as this agent wants to exchange with

the bundle of the named agent. Therefore, the message can be natural. The outcome

mapping is as follows: If the second bundle reported by each agent is the same as the

first bundle reported by his neighbor and the list of bundles based on the announcements

of agents is balanced for the social endowment, then each agent gets one bundle of the

transposed allocation. If there is only one agent that reports a different bundle from the

message reported by his neighbor and the list of bundles based on announcements of the

other agents is balanced for the social endowment, then each agent gets one bundle of the

transposed allocation. Therefore, a message concerning bundles reported by a deviator

will be ignored. Otherwise, each agent gets one bundle of the equal-division allocation.

Note that this game form depends on the existence of the equal-division allocation.4 By

contrast, for the game forms of Thomson [19] and Galbiati [7], it is important that there

exists a least preferred bundle by the assumption of strict monotonicity on preferences.

We show that in the allocation problem of infinitely divisible resources, if there are at

least three agents, Choose-Two-Bundles-and-Transpose implements the no-envy solution

in Nash equilibria (Theorem 1). Our result is applicable in, for example, the cake division

3This interpretation is related to Saijo [15] and Saijo et al. [16]. In the game form of Saijo [15],
each agent reports his own preference and his neighbor’s. Although the idea of ordering the agents in a
circular fashion and letting each of them report a message for the next agent in the circle is the same
as in our game form, the message spaces applied to this idea in the game form of Saijo [15] are different
from those in our game form, and our game form is simpler than that of Saijo [15]. In the game form
of Saijo et al. [16], each agent reports only two bundles each of which is possible consumption bundle
for the social endowment. Although they apply the above same idea as in Saijo [15] and this study, our
game form is simpler than that of Saijo et al. [16].

4Since Choose-Two-Bundles-and-Transpose depends on the existence of the equal-division allocation,
this game form is not applicable to a model in which there is an indivisible good.
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problem (Thomson [20]) and the allocation problem of infinitely divisible resources with

single-peaked preferences (Adachi [1], Morimoto et al. [14]).5

This paper is organized as follows. Section 2 provides a game form for Nash implemen-

tation of the no-envy solution in the allocation problem of infinitely divisible resources.

Section 3 reports related literature. Section 4 proposes concluding remarks.

2 Allocation Problems of Infinitely Divisible Resources

Let N = {1, ..., n} be a set of agents among whom a social endowment Ω ∈ Rℓ
++

of ℓ infinitely divisible resources has to be allocated. We assume that the resources

cannot be disposed of. An allocation for Ω ∈ Rℓ
++ is a list a = (a1, · · · , an) ∈ Rℓn

+

such that Σi∈Nai = Ω. Let AΩ = {a ∈ Rℓn
+ : Σi∈Nai = Ω} be the set of allocations

for Ω ∈ Rℓ
++. Let XΩ = {x ∈ Rℓ

+ : x ≤ Ω} be the set of possible consumption

bundles for Ω ∈ Rℓ
++.

6 Let ã ≡ Ω
|N | ∈ AΩ be the equal-division allocation for

Ω ∈ Rℓ
++. Let Ri ∈ Ri be a preference for agent i ∈ N over XΩ, where Ri is the set

of preferences admissible for agent i. Let R = (R1, ..., Rn) ∈ R be a preference

profile, where R = ×i∈NRi. Note that for each i ∈ N , each Ri ∈ Ri, and each pair

a, b ∈ AΩ such that a = (a1, · · · , an) and b = (b1, · · · , bn), ai Ri bi iff a Ri b. Then, each

agent’s preferences over XΩ are extended to over AΩ. Let (N,Ω, R) be the allocation

problem of infinitely divisible resources. We fix N and Ω, so that the problem is

represented by R.

5In the allocation problem of an infinitely divisible resource with single-peaked preferences (Sprumont
[17]), Thomson [21] addresses Nash implementability of several solutions which do not satisfy “no veto
power”in this model, in particular the no-envy solution. Since no veto power is one of sufficient conditions
for Nash implementability of solutions (Saijo [16]), the game form of Saijo [16] is not applicable in this
model. Then, Thomson [21] shows that the no-envy solution is Nash implementable by the result of
Yamato [22]. However, he does not propose any simple game form.

6Given x, y ∈ Rℓ
+, x ≤ y means that for each j ∈ {1, · · · , ℓ}, xj ≤ yj .
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An allocation a ∈ AΩ is envy-free for R ∈ R if for each {i, j} ⊆ N , ai Ri aj. The

no-envy solution F : R ! AΩ is a correspondence which, for each R ∈ R, F (R) is the

set of envy-free allocations for R.

In order to design our game form to implement the no-envy solution in Nash equilibria,

let us introduce a definition. Let T i
j : AΩ → AΩ be a transposition mapping which,

for each a ∈ AΩ, selects the allocation by transposing the bundles of agent i and agent j

in a.

“Choose-Two-Bundles-and-Transpose”is a game form constructed for Nash implemen-

tation of the no-envy solution. In Choose-Two-Bundles-and-Transpose, each agent i ∈ N

announces two bundles, xi, yi ∈ XΩ, and the name of an agent, ki ∈ N . The outcome

mapping is as follows: If the second bundle yi reported by an agent, i ∈ N , is the same

as the first bundle xi+1 reported by his neighbor, i + 1, i.e., yi = xi+1 ≡ ai+1, and the

list of bundles based on announcements of agents is balanced for the social endowment,

i.e., (a1, · · · , an) ∈ AΩ, then each agent gets one bundle of the transposed allocation,

i.e., T kn
n ◦ · · ·T k1

1 ◦ (a1, · · · , an). If there is only one agent i ∈ N reports a different

bundle from the message reported by his neighbor, i− 1 or i+ 1, and the list of bundles

based on announcements of the other agents is balanced for the social endowment, i.e.,

(a1, · · · , yi−1, xi+1, · · · , an) ∈ AΩ, then each agent gets one bundle of the transposed al-

location, i.e., T kn
n ◦ · · ·T k1

1 ◦ (a1, · · · , yi−1, xi+1, · · · , an). Therefore, a message concerning

bundles reported by a deviator will be ignored. Otherwise, each agent gets one bundle of

the equal-division allocation.

Choose-Two-Bundles-and-Transpose, ΓC2T = (M, g): For each i ∈ N , Mi =

XΩ × XΩ × N . Given m = (xi, yi, ki)i∈N ∈ ×i∈NMi ≡ M , the outcome mapping
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g : M → AΩ is as follows:7

g(m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rule 1: T kn
n ◦ · · ·T k1

1 ◦ (a1, · · · , an) if

⎧
⎪⎨

⎪⎩

for each i ∈ N, yi = xi+1 ≡ ai+1, and

(a1, · · · , an) ∈ AΩ

Rule 2: T kn
n ◦ · · ·T k1

1 ◦ (a1, · · · , yi−1, xi+1, · · · , an) if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there is i ∈ N such that for each j ̸= i,

yj = xj+1 ≡ aj+1 and yi−1 ̸= xi

or yi ̸= xi+1, and

(a1, · · · , yi−1, xi+1, · · · , an) ∈ AΩ

Rule 3: ã otherwise

Let (ΓC2T , R) be the game induced by ΓC2T and R ∈ R. A message profile m ∈ M

is a Nash equilibrium of (ΓC2T , R) if for each i ∈ N and each m′
i ∈ Mi, g(mi,m−i) Ri

g(m′
i,m−i). Let NE(ΓC2T , R) be the set of Nash equilibria of (ΓC2T , R).

The game form ΓC2T implements the no-envy solution F in Nash equilibria if

for each R ∈ R, F (R) = g(NE(ΓC2T , R)).

The following is our main result.

Theorem 1. Let n ≥ 3. Choose-Two-Bundles-and-Transpose ΓC2T implements the no-

envy solution F in Nash equilibria.

Proof. Let R ∈ R. We prove it by two steps.

Step 1. F (R) ⊆ g(NE(ΓC2T , R)).

Let a = (a1, · · · , an) ∈ F (R) and m = (ai, ai+1, i)i∈N . By Rule 1, g(m) = a. For

each i ∈ N , let m′
i ̸= mi. By Rule 1 or 2, gi(m′

i,m−i) ∈ {a1, · · · , an}. Since a ∈

F (R), gi(mi,m−i) = ai Ri gi(m′
i,m−i). Therefore, for each i ∈ N and each m′

i ∈ Mi,

gi(mi,m−i) Ri gi(m′
i,m−i). Hence, m ∈ NE(ΓC2T , R).

7Suppose that a1−1 = an and an+1 = a1.
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Step 2. g(NE(ΓC2T , R)) ⊆ F (R).

We show that if g(m) /∈ F (R), then m /∈ NE(ΓC2T , R). Let g(m) = a and m =

(xi, yi, ki)i∈N . Since a /∈ F (R) and ã ∈ F (R), Rule 1 or 2 is applied. Since a /∈ F (R),

there is a pair {i, j} ⊂ N such that aj Pi ai. By selecting m′
i = (xi, yi, k′i) appro-

priately, gi(m′
i,m−i) = aj. Hence, gi(m′

i,m−i) = aj Pi ai = gi(mi,m−i). Therefore,

m /∈ NE(ΓC2T , R)."

3 Related Literature

We first consider the allocation problem of infinitely divisible resources with “strictly

monotonic”preferences. For each i ∈ N , a preference Ri is strictly monotonic if for

each pair x, y ∈ XΩ, x ≥ y and x ̸= y imply x Pi y. For the problem with only two agents,

a well-known game form for Nash implementation of the no-envy solution is “Divide-and-

Choose”. One agent divides the resource into two parts, and the other agent chooses one

of them. Although Divide-and-Choose is simple, this game form works well only in the

case of two agents.

For the allocation problem with strictly monotonic preferences and at least two

agents, “Divide-and-Permute”implements the no-envy solution in Nash equilibria (Thom-

son [19]). This game form resembles Divide-and-Choose. Although Divide-and-Permute

is simple and works well with at least two agents, this game form is only applicable to

models where the first and second agents always prefer any bundle to the bundle receiving

nothing.

For the allocation problem in which such least-preferred bundles do not necessary

exist, if there are at least three agents, “Divide-and-Transpose”implements the no-envy
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solution in Nash equilibria (Doğan [5]).8,9 This game form is a modification of Divide-and-

Permute. Although Divide-and-Transpose is simple and applicable to models without a

monotonic condition on preferences, this game form does not treat all agents equally.

More formally, this game form is not “ex ante fair”(Korpela [12])10: a game form Γ =

(S, h), where h : S → AΩ, is ex ante fair if for each message profile s ∈ S and each one-to-

one function π : N → N , there is another message profile s′ ∈ S such that h(s′) = π(h(s))

and for each i ∈ N , h(Si, s′−i) = π(h(Sπ(i), s−π(i))).11

For the allocation problems with strictly monotonic preferences and at least two

agents, “Galbiati’s game form”implements the no-envy solution in Nash equilibria (Gal-

biati [7]). This game form is another modification of Divide-and-Permutate. In Galbiati’s

game form, each agent proposes an allocation, a one-to-one function from N to N , and

the names of two agents. Although Galbiati’s game form treats all agents equally so

that it is ex ante fair, the message space is large. For example, suppose that there are

ten agents and three types of resources. Each agent reports at least twenty-seven real-

numbers for the other agents’ assignments in addition to three real-numbers for his own

assignments.

We designed a simple and ex ante fair game form, Choose-Two-Bundles-and-Transpose,

to implement the no-envy solution in Nash equilibria.

8In Divide-and-Transpose, each of the first, second, and third agents reports an allocation and the
names of two agents, and each of the other agents only reports the names of two agents. However, it is
enough for each agent to report the name of an agent.

9Even if there is an indivisible good, Divide-and-Transpose works well. For example, the result
concerning Nash implementation by this game form can be applied to the allocation problem of indivisible
objects with monetary transfers (e.g., Svensson [18]).

10As Korpela [12] states that Divide-and-Permute is not ex ante fair, we also easily check for Divide-
and-Transpose not being ex ante fair.

11For each a ∈ AΩ, let π(a) = (aπ(1), · · · , aπ(n)). Given s′−i ∈ S−i, let h(Si, s′−i) = {h(si, s′−i) : si ∈
Si}. For each A′ ⊆ AΩ, let π(A′) = {π(a) : a ∈ A′}.
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4 Concluding Remarks

For implementation theory, simple game forms are important. If a game form is compli-

cated, and an agent does not understand how to select outcomes, then even if he wants

to achieve the best outcome, he may not choose a message that induces the best outcome

for his preference over the set of attainable.

“Strategy-proofness”requires that in the direct game form associated with the single-

valued solution, for each agent, truth-telling is a dominant strategy. Since the objective

of the planner is achieved at a dominant strategy equilibrium, strategy-proofness is desir-

able. However, laboratory experiments concerning strategy-proof single-valued solutions

reported that in some games, some subjects did not select dominant strategies.12 For

example, in second-price-auction experiments, most bidders did not reveal true values

(Harstad [9], Kagel and Levin [11], and Kagel et al.[10]). In an ascending auction and a

second-price auction, subjects were substantially more likely to play truth-telling under

the former than under the latter (Kagel et al. [10]). Inspired from these observations,

“obvious” strategy-proofness is defined and characterized as a cognitively limited agent

can recognize that truth-telling is a dominant strategy (Li [13]). While second-price

auctions are not obviously strategy-proof, ascending auctions are obviously strategy-proof.

Therefore, even if a single-valued solution is strategy-proof, simpler game forms associated

with the solution work better.

Ex ante fairness should be also considered. A layman would say that he must have the

same opportunities in the game form as others do. This suggests that procedural fairness

can sometimes play out before the game form is actually executed as a participation

12For a summary of laboratory experiments on strategy-proof single-valued solutions, see Cason et al.
[3].
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constraint. Ex ante fairness guarantees that this cannot happen.13
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