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Abstract

We investigate the social choice problem in which the range of a rule consists

of only two alternatives. We introduce the “positional relationship over the set of

preferences”, which partially describes the positions of two preferences. We show

that a rule is “strategy-proof”iff it is “monotonic with respect to the positional

relationship”. In addition, we show that any strategy-proof rule is defined by an

“upper set with respect to the positional relationship”.
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1 Introduction

We study the social choice problem in which the range of a rule consists of only two

alternatives. The range of a rule can be binary in some environments (Example 1):

problems involving choosing one alternative on the set of all single-peaked preferences

in which the range of a rule has some disconnected jumps (Barberà and Jackson [5],
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Hagiwara et al. [8]) and problems of locating a public facility on the set of all single-dipped

preferences (Manjunath [13]).1 In the former problem, if the “minmax rule”selects an

alternative in a disconnected jump, then an alternative is chosen by a “strategy-proof”rule

whose range consists of the two extreme points in the jump.2 In the latter problem, if a

rule is strategy-proof, it can choose only the two extreme points in the range of the rule.3

In the social choice problem in which the range of a rule is {x, y}, Barberà et al. [3]

capture the feature of strategy-proof rules by focusing on the “monotonicity condition

with respect to the set of agents who prefer x to y”. A rule is essentially xy-monotonic

whenever, if x is chosen by the rule at a preference profile and some agents change their

preferences so that the set of agents who prefer x to y is increasing, x is chosen by the

rule at the new preference profile. Their characterization of strategy-proof rules with

binary ranges is based on this monotonicity condition.4 However, this characterization is

“open”, because rules do not describe how to select alternatives explicitly.5

We newly introduce an incomplete binary relationship over the set of preferences which

1Our results also apply to the pure exchange economy (Barberà and Jackson [6]) in which the range
of a rule has some disconnected jumps, the social choice problem in which there are only two alternatives
(Harless [9], Lahiri and Pramanik [10], Larsson and Svensson [11], Marchant and Mishra [14], Manjunath
[12]), and the problem of locating a public facility on the set of preference profiles such that each agent in
a subset M of the set N of agents has single-peaked preferences and each agent in N\M has single-dipped
preferences (Alcalde-Unzu and Vorsatz [1]).

2For the definition of the minmax rule, see, for example, Massò and Moreno de Barreda [15].
3For more detailed discussions concerning the range of a rule on the set of all single-dipped preferences,

see Barberà et al. [4].
4In the problem of choosing a subset of a finite set of indivisible objects with strict preferences,

Barberà et al. [7] define “voting by committees”based on a similar monotonicity condition to essential
xy-monotonicity. In the social choice problem in which there are only two alternatives when agents may
be indifferent between them, a similar monotonicity condition is also considered in “voting by extended
committees”by Larsson and Svensson [11] and Manjunath [12].

5For the discussion concerning open and “closed”characterizations, see Massò and Moreno de Barreda
[15]. They provide a closed characterization of strategy-proof rules in which they describe how to select
alternatives explicitly in the problem involving choosing one alternative on the set of “symmetric”single-
peaked preferences in which the range of a rule has some disconnected jumps. Applying our results,
Hagiwara et al. [8] proposes a closed characterization of strategy-proof rules in this problem not only on
the set of symmetric single-peaked preferences, but also “asymmetric”single-peaked preferences. In the
same problem as ours, Barberà et al. [3] provide a closed characterization of “strongly”strategy-proof
rules with binary ranges. For the definition of strong strategy-proofness, see Barberà et al. [3].
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partially describes the positions of two preferences. We refer to this as the “positional

relationship over the set of preferences”. We consider the “monotonicity condition with

respect to this positional relationship”, instead of the monotonicity condition with respect

to the set of agents who prefer x to y. A rule is (x, y)-monotonic whenever, if x is chosen

by the rule at a preference profile and some agents change their preferences so that the

ranking of x in {x, y} is increasing, x is chosen by the rule at the new preference profile.

We show that a rule whose range is {x, y} is strategy-proof iff it is (x, y)-monotonic

(Theorem 1). This is an open characterization.6 We propose a “closed”characterization

in which rules describe how to select alternatives explicitly. We show that any strategy-

proof rule whose range consists of only two alternatives is defined by an “upper set with

respect to the positional relationship”(Theorem 2).7

This paper is organized as follows. Section 2 introduces the model and axioms of a rule.

Section 3 provides definitions for the positional relationship over the set of preferences and

monotonicity with respect to the positional relationship, and proposes a characterization

of strategy-proof rules with binary ranges by monotonicity. Section 4 presents definitions

for an upper set with respect to the positional relationship and an upper set rule as well

as our main result.

6In the same model as ours, Vannucci [17] provides an open characterization of strategy-proof rules
with binary ranges. In the problem involving choosing one alternative on the set of single-peaked prefer-
ences in which the range of a rule has some disconnected jumps, Barberà and Jackson [5] also proposes
an open characterization of strategy-proof rules with binary ranges.

7In a social choice problem with a binary range of a rule and strict preferences, strategy-proof rules
are characterized (Rao et al. [16]). There are two differences between Rao et al. [16] and this paper.
First, in their model, indifferences are not allowed, but we allow them. Second, in their characterization,
a nonempty collection of agent coalitions is considered. In our characterization, however, we consider an
upper set of a set of preferences with respect to the positional relationship.
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2 The model and axioms

Let N = {1, ..., n} be the set of agents and A be the set of alternatives such that

|A| ≥ 2. Let R be the set of admissible preferences. An element of R is denoted by

R, whose asymmetric and symmetric components are denoted by P and I, respectively.

If we consider a specific agent, i ∈ N , then we denote Ri ∈ R, Pi, and Ii. Let Rn =

(R1, ..., Rn) be a preference profile and Rn = ×i∈NR. For each i ∈ N , let Rn
−i =

(R1, ..., Ri−1, Ri+1, ..., Rn) ∈ ×j ̸=iR. For each S ⊂ N , let RS ∈ ×i∈SR and RN\S ∈

×i∈N\SR.

A rule is a single-valued mapping f : Rn → A which, for each Rn ∈ Rn, specifies

f(Rn) ∈ A. We assume that the range of a rule consists of only two alternatives. Formally,

|{f(Rn) ∈ A : Rn ∈ Rn}| = 2. Hereafter, let {f(Rn) ∈ A : Rn ∈ Rn} = {x, y}. We

define the positional relationship ≤(x,y) over {x, y} as follows:

a ≤(x,y) b ⇐⇒



a = x, b = y

a = x, b = x

a = y, b = y

Then, ≤(x,y) determines the position between x and y. Without a loss of generality, we

consider that “x is located on the left side of y”.

There are some economic environments in which the range of a rule consists of only

two alternatives with at least two alternatives.

Example 1. We consider two economic environments: (1) problems involving choosing

one alternative on the set of all single-peaked preferences when the range of a rule may

have disconnected jumps, and (2) problems of locating a public facility on the set of all
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Figure 1. Single-peaked preferences when the range of a rule has disconnected jumps.

single-dipped preferences. Let A = [0, 1].

(1) Single-peaked preferences when the range of a rule has disconnected

jumps:

Barberà and Jackson [5] and Hagiwara et al. [8] study strategy-proof rules on the set

of all “single-peaked”preferences when the range of a rule may have disconnected jumps.

A preference R is single-peaked on [0, 1] if there is the peak p(R) ∈ [0, 1] such that for

each pair a, b ∈ [0, 1], if b < a ≤ p(R) or p(R) ≤ a < b, then a P b.

If the “minmax rule”selects an alternative in a disconnected jump, then an alternative

is chosen by a strategy-proof rule whose range consists of the two extremes of the jump

(Figure 1).

(2) Single-dipped preferences:

Manjunath [13] studies strategy-proof rules when agents have “single-dipped”preferences.

A preference R is single-dipped on [0, 1] if there is the dip d(R) ∈ [0, 1] such that for

each pair a, b ∈ [0, 1], if a < b ≤ d(R) or d(R) ≤ b < a, then a P b.

If a rule is strategy-proof, then it can choose only the two extreme points in the range

of the rule (Figure 2).♢
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Figure 2. Single-dipped preferences.

The following are two strategic axioms of rule f . Strategy-proofness states that in the

direct revelation game, for each agent, truth-telling is a dominant strategy.

Strategy-proofness: For each Rn ∈ Rn, each i ∈ N , and each R′
i ∈ R,

f(
truth

Ri , R
n
−i)

truth

Ri f(
lie

R′
i, R

n
−i).

“Group strategy-proofness”requires that no group of agents should ever be able to

make its members better off by jointly misrepresenting their preferences.

Group strategy-proofness: For each Rn ∈ Rn, each S ⊆ N , and each R′
S ∈ ×i∈SR,

there is i ∈ S such that

f(
truth

RS , RN\S)
truth

Ri f(
lie

R′
S, RN\S).

The following is applied in our result.

Proposition 1. (Barbera et al. [2]) Let f be a rule whose range consists of only two

alternatives. Then, f is strategy-proof iff it is group strategy-proof.

3 Monotonicity and strategy-proofness

In order to capture the feature of strategy-proof rules whose ranges consist of only two

alternatives, imposing the following positional structure over R is useful.
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Let Rx = {R ∈ R : x P y}, Ry = {R ∈ R : y P x}, and Rxy = {R ∈ R : x I y}.

That is, Rx is the set of preferences in which x is preferred to y, Ry is the set

of preferences in which y is preferred to x, and Rxy is the set of preferences in

which x and y are indifferent.

We define the positional relationship ≾(x,y) over R, whose symmetric and asymmetric

parts are denoted by ≺(x,y) and ∼(x,y), respectively, as follows.

Positional relationship ≾(x,y) over R: For each pair R,R′ ∈ R,

R ≺(x,y) R
′ ⇐⇒



R ∈ Rx and R′ ∈ Rxy

R ∈ Rx and R′ ∈ Ry

R ∈ Rxy and R′ ∈ Ry

R ∼(x,y) R
′ ⇐⇒



R,R′ ∈ Rx

R,R′ ∈ Ry

R,R′ ∈ Rxy and R = R′.

Note that ≾(x,y) satisfies reflexivity and transitivity, but not completeness. For incom-

pleteness, we can easily check that for each pair R,R′ ∈ Rxy such that R ̸= R′, ≾(x,y)

imposes no relationship between R and R′ (Figure 3).

We introduce an important property of rule f , (x, y)-monotonicity, to characterize

the class of strategy-proof rules with binary ranges.

(x, y)-monotonicity: For each pair Rn, R′n ∈ Rn, if for each i ∈ N , Ri ≾(x,y) R
′
i, then

f(Rn) ≤(x,y) f(R
′n).

We interpret (x, y)-monotonicity as follows: if an agent, i ∈ N , only changes his
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Figure 3. Incompleteness.

preference Ri to R′
i such that Ri ≾(x,y) R

′
i and the outcome of a rule at (Ri, R

n
−i) is not

same as the outcome of the rule at (R′
i, R

n
−i), the outcome can move only in the direction

from x to y. Formally, if Ri ≾(x,y) R
′
i and f(Ri, R

n
−i) ̸= f(R′

i, R
n
−i), then f(Ri, R

n
−i) = x

and f(R′
i, R

n
−i) = y.

The following is an open characterization of strategy-proof rules with binary ranges.

Theorem 1. Let f be a rule whose range is {x, y}. Then, f is strategy-proof iff it is

(x, y)-monotonic.

Proof.

Necessity: Let f be a strategy-proof rule. We prove it by contradiction. Suppose

that f is not (x, y)-monotonic. Then, there are Rn ∈ Rn, i ∈ N , and R′
i ∈ R such

that Ri ≾(x,y) R
′
i, f(Ri, R

n
−i) = y, and f(R′

i, R
n
−i) = x. There are six cases concerning

Ri ≾(x,y) R
′
i.

Case 1. Ri ∈ Rx and R′
i ∈ Rxy.

If the true preference profile is Rn, then f(R′
i, R

n
−i) = x Pi y = f(Ri, R

n
−i), so that f

violates strategy-proofness, which is a contradiction.

Case 2. Ri ∈ Rx and R′
i ∈ Ry.
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If the true preference profile is Rn, then f(R′
i, R

n
−i) = x Pi y = f(Ri, R

n
−i), so that f

violates strategy-proofness, which is a contradiction.

Case 3. Ri ∈ Rxy and R′
i ∈ Ry.

If the true preference profile is (R′
i, R

n
−i), then f(Ri, R

n
−i) = y P ′

i x = f(R′
i, R

n
−i), so

that f violates strategy-proofness, which is a contradiction.

Case 4. Ri, R
′
i ∈ Rx.

If the true preference profile is Rn, then f(R′
i, R

n
−i) = x Pi y = f(Ri, R

n
−i), so that f

violates strategy-proofness, which is a contradiction.

Case 5. Ri, R
′
i ∈ Ry.

If the true preference profile is (R′
i, R

n
−i), then f(Ri, R

n
−i) = y P ′

i x = f(R′
i, R

n
−i), so

that f violates strategy-proofness, which is a contradiction.

Case 6. Ri, R
′
i ∈ Rxy.

In this case, Ri = R′
i. Hence, there is no pair Ri, R

′
i ∈ Rxy such that Ri ≾(x,y) R

′
i and

f(Ri, R
n
−i) ̸= f(R′

i, R
n
−i).

Sufficiency: Let f be a (x, y)-monotonic rule. We prove it by contradiction. Suppose

that f is not strategy-proof. By Proposition 1, f is not group strategy-proof. Then, there

are Rn ∈ Rn, S ⊆ N , and R′
S ∈ ×i∈SR such that for each i ∈ S, f(R′

S, RN\S) Pi

f(RS, RN\S). There are two cases concerning f(RS, RN\S) and f(R′
S, RN\S).

Case 1. f(RS, RN\S) = x and f(R′
S, RN\S) = y.

Since for each i ∈ S, y Pi x, we have S ⊆ {i ∈ N : Ri ∈ Ry}. Then, by the definition

of ≾(x,y), for each i ∈ S and each R′
i ∈ R, we have R′

i ≾(x,y) Ri regardless of R′
i. Since

f(R′
S, RN\S) = y, (x, y)-monotonicity implies f(RS, RN\S) = y, which is a contradiction.
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Case 2. f(RS, RN\S) = y and f(R′
S, RN\S) = x.

Since for each i ∈ S, x Pi y, we have S ⊆ {i ∈ N : Ri ∈ Rx}. Then, by the definition

of ≾(x,y), for each i ∈ S and each R′
i ∈ R, we have Ri ≾(x,y) R

′
i regardless of R′

i. Since

f(RS, RN\S) = y, (x, y)-monotonicity implies f(R′
S, RN\S) = y, which is a contradiction.

■

4 Upper set rules

We provide a “closed”characterization of strategy-proof rules with binary ranges in which

they describe how to select alternatives explicitly. For each X ⊆ Rn, let

U(X) ≡ {Rn ∈ Rn : there is R′n ∈ X such that for each i ∈ N, R′
i ≾(x,y) Ri}.

A subset D of Rn is an upper set with respect to ≾(x,y) if D = U(D). Let D̃ be the

family of upper sets.

We define an upper set rule as follows:

Upper set rule: There is D ∈ D̃ such that for each Rn ∈ Rn,

gD(Rn) =


x if Rn /∈ D

y if Rn ∈ D.

Similar to Massò and Moreno de Barreda [15] and Rao et al. [16], there are several

such mappings because there are several upper sets. The following example illustrates

the point.

Example 2. There are two agents, N = {1, 2}. For each i ∈ N , let Ri ∈ Rxy and
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R′
i ∈ Ry. Let Rn = {(R1, R2), (R1, R

′
2), (R

′
1, R2)}.

In this setting, if D = {(R1, R2)}, then U(D) = {(R1, R2), (R1, R
′
2), (R

′
1, R2)}. Hence,

D ̸= U(D). If D = {(R1, R
′
2)}, then U(D) = {(R1, R

′
2)}. Hence, D = U(D). If

D = {(R′
1, R2)}, then U(D) = {(R′

1, R2)}. Hence, D = U(D).

If D = {(R1, R2), (R1, R
′
2)}, then U(D) = {(R1, R2), (R1, R

′
2), (R

′
1, R2)}. Hence, D ̸=

U(D). If D = {(R1, R2), (R
′
1, R2)}, then U(D) = {(R1, R2), (R1, R

′
2), (R

′
1, R2)}. Hence,

D ̸= U(D). If D = {(R1, R
′
2), (R

′
1, R2)}, then U(D) = {(R1, R

′
2), (R

′
1, R2)}. Hence,

D = U(D).

If D = {(R1, R2), (R1, R
′
2), (R

′
1, R2)}, then U(D) = {(R1, R2), (R1, R

′
2), (R

′
1, R2)}.

Hence, D = U(D).

Therefore, D̃ = {{(R1, R
′
2)}, {(R′

1, R2)},{(R1, R
′
2), (R

′
1, R2)}, {(R1, R2), (R1, R

′
2), (R

′
1, R2)}}.♢

The following is our main result.

Theorem 2. Let f be a rule whose range is {x, y}. Then, f is strategy-proof iff it is an

upper set rule.

Proof.

Necessity: Let f be a strategy-proof rule. By Theorem 1, f is (x, y)-monotonic. Let

Df = {Rn ∈ Rn : f(Rn) = y}.

We prove Df ∈ D̃ by contradiction. Suppose that Df /∈ D̃. Since U(Df ) ⊇ Df by the

definition, U(Df ) ⊋ Df . Therefore, there is R
n ∈ U(Df )\Df . Since R

n /∈ Df , f(R
n) = x.

Furthermore, since Rn ∈ U(Df ), there is R
′n ∈ Df such that for each i ∈ N , R′

i ≾(x,y) Ri.

By (x, y)-monotonicity, since f(Rn) = x, we have f(R′n) = x. Then, R′n /∈ Df , which is

a contradiction.

If f(Rn) = x, then Rn /∈ Df so that gDf (Rn) = x. If f(Rn) = y, then Rn ∈ Df so
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that gDf (Rn) = y. That is, f(Rn) = gDf (Rn).

Sufficiency: Let D ∈ D̃ be such that for each Rn ∈ Rn, f(Rn) = gD(Rn). We prove it

by contradiction. Suppose that f is not strategy-proof. Then, there are Rn ∈ Rn, i ∈ N ,

and R′
i ∈ R such that f(R′

i, R
n
−i) Pi f(Ri, R

n
−i). By the definition of gD, f(Ri, R

n
−i) is

equal to either x or y.

Case 1: f(Ri, R
n
−i) = x.

Since f(Ri, R
n
−i) = x and f(R′

i, R
n
−i) Pi f(Ri, R

n
−i), we have Rn /∈ D, f(R′

i, R
n
−i) = y,

and (R′
i, R

n
−i) ∈ D. On the other hand, since y Pi x, we have R

′
i ≾(x,y) Ri so that Rn ∈ D,

which is a contradiction.

Case 2: f(Ri, R
n
−i) = y.

Since f(Ri, R
n
−i) = y and f(R′

i, R
n
−i) Pi f(Ri, R

n
−i), we have Rn ∈ D, f(R′

i, R
n
−i) = x,

and (R′
i, R

n
−i) /∈ D. On the other hand, since x Pi y, we have Ri ≾(x,y) R

′
i so that Rn /∈ D,

which is a contradiction.■

5 Conclusion

We investigated the social choice problem in which the range of a rule is {x, y}. We

first specified the feature of strategy-proof rules: a rule is strategy-proof iff it is (x, y)-

monotonic (Theorem 1). In this result, rules do not describe how to select alternatives

explicitly. We then identified the class of strategy-proof rules explicitly: any strategy-proof

rule is defined by an upper set with respect to the positional relationship (Theorem 2).

Our results can be applied to some environments as strategy-proof “tie-breaking rules”.

For example, in the problem involving choosing one alternative on the set of all single-

peaked preferences in which the range of a rule has some disconnected jumps, Hagiwara

12



et al. [8] provide a full characterization of the class of strategy-proof rules without any

other axioms by applying our result.
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[6] Barberà S, Jackson M (1995), “Strategy-proof Exchange”, Econometrica 63:51-87.
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