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1 Introduction

We consider an economy with a public good in which agents are facing a decision of

whether to undertake a project that produces a fixed level of the public good. The

public project should be undertaken if the sum of agents’ true values of the project

is larger than or equal to the cost of undertaking the project, but not otherwise.

However, this condition of decision efficiency is difficult to satisfy since each agent’s

true value of the public project is the agent’s private information, and the agent

may have an incentive to “free-ride” payments from other agents and undertake the

project while lying about their own values.

There are two well-known mechanisms to solve this free-rider problem theoret-

ically: the pivotal mechanism and the voluntary contribution (or provision point)

mechanism. In the pivotal mechanism due to Clark (1977), reporting their true value

of the project is a dominant strategy for each agent. Therefore, this mechanism sat-

isfies the decision efficiency condition even under incomplete information in which

each agent knows their own payoff but not the other agents’ payoffs. However, the

rule of the mechanism is complicated and dominant strategy equilibrium allocations

of the mechanism may be neither Pareto efficient nor individually rational.

On the other hand, the rule of the voluntary contribution mechanism is simple,

and the mechanism implements the core when the equilibrium concept is undomi-

nated perfect equilibrium, which is a refinement of Nash equilibrium (Bagnoli and

Lipman, 1989). Then, all equilibrium allocations of the mechanism are Pareto ef-

ficient and individually rational. The mechanism also satisfies decision efficiency.

However, this equilibrium concept requires complete information among agents: each

agent knows the payoffs of all other agents. This suggests that the mechanism works

well only under complete information.

To summarize, we cannot conclude theoretically which of these two mechanisms

is better because each has advantages and disadvantages in different theoretical and

normative aspects. Therefore, it would be worth investigating the performance of

these mechanisms through empirical research such as economic experiments. In fact,

several papers have examined how one of the two mechanisms works in laboratory

experiments.1 However, each of these experimental studies focused either on the

pivotal mechanism or on the voluntary contribution mechanism. To our best knowl-

edge, no paper experimentally compares the two mechanisms in the same economic

1See Chen (2008) and Chen and Ledyard (2010) for excellent surveys on these experimental
results.
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environment with a public project.

The purpose of this paper is to investigate which mechanism, the pivotal mech-

anism or the voluntary contribution mechanism, should be used in the provision of

a binary public project by conducting an experimental comparison. In designing

an experiment to compare the two mechanisms, we pay close attention to the fol-

lowing two points. First, the comparison should be made under the same economic

environmental conditions on the number of subjects, the true values that subjects

receive from the project, the cost of undertaking the project, and the informational

condition. For each subject’s information on payoffs of other subjects’ payoffs, we

prepare the two different treatment conditions: the complete information treatment

condition under which each subject knows the true values of all subjects, which is

required in the concept of Nash equilibrium, and the incomplete information treat-

ment condition under which each subject knows their own true value, but not the

values to others, which is implicitly assumed in the concept of dominant strategy

equilibrium. We compare the two mechanisms under complete information and

under incomplete information. The theoretical predictions suggest that the volun-

tary contribution mechanism would perform better (resp. worse) than the pivotal

mechanism under complete (resp. incomplete) information. We test whether these

predictions are correct in a laboratory experiment.

The second point we are concerned with in comparing the two mechanisms is to

hold the complexity constant. Clearly, the rule of the pivotal mechanism is more

complicated than that of the voluntary contribution mechanism. Attiyeh et al. (2000)

and Kawagoe and Mori (2001) argued that subjects suffered from confusion due to

the complexity of the pivotal mechanism and the non-transparency of the dominant

strategy. To eliminate such confusion, following Cason et al. (2006), we focused on

the two-agent case and simply presented to each subject a payoff table describing the

relationship between outcomes and choices by the subject and the others without

explaining the rule of the pivotal mechanism. Similarly, for the voluntary contribu-

tion mechanism experiment, we used payoff tables only and gave no explanation on

the rule of the mechanism. The use of payoff tables allows for a comparison of the

pivotal mechanism with the voluntary contribution mechanism holding the degree

of transparency constant.

We compare the two mechanisms from four different normative standards: Pareto

efficiency, individual rationality, decision efficiency, and surplus indices. Here, the

Pareto efficiency index is the ratio of Pareto efficient outcomes. The individual

rationality index is the ratio of individually rational outcomes in which each subject
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receives a payoff at least as large as their own before participating in the mechanism,

that is, the payoff the subject gets from the initial endowment of a private good

without any public project. The decision efficiency index is the ratio of decision-

efficient outcomes in which the public project is undertaken because the sum of the

subjects’ true values of the project exceeds the cost of undertaking the project in our

experimental setting. The surplus index is a measure of the gains subjects obtain by

participating in a mechanism, which is a percentage of the highest possible payoff

that could be achieved in the mechanism.

We observed in the complete information treatments that the Pareto efficiency,

individual rationality, and surplus indices for the voluntary contribution mechanism

were significantly higher than those for the pivotal mechanism. Additionally, there

was no significant difference in the decision efficiency index between the two mech-

anisms. These results suggest that the voluntary contribution mechanism would

work better than the pivotal mechanism under complete information.

Under incomplete information, we found that neither the Pareto efficiency index

nor the surplus index for the voluntary contribution mechanism were significantly

different from those for the pivotal mechanism. The individual rationality index for

the voluntary contribution mechanism was significantly higher than the individual

rationality index for the pivotal mechanism, whereas the decision efficiency index

for the voluntary contribution mechanism was significantly lower than the decision

efficiency index for the pivotal mechanism. Therefore, the voluntary contribution

(resp. pivotal) mechanism would be superior to the pivotal (resp. voluntary con-

tribution) mechanism if individual rationality is more (resp. less) important than

decision efficiency, although we cannot conclude which mechanism is better under

incomplete information when these two normative standards have equal weights.

How often subjects played the theoretically predicted outcome differed depending

on the mechanisms and the informational conditions. In the voluntary contribution

mechanism, the ratio of equilibrium strategies that subjects chose under complete

information was significantly higher than the ratio chosen under incomplete informa-

tion, although the ratio under incomplete information increased as periods advanced.

Meanwhile, in the pivotal mechanism, the frequency that subjects played dominant

strategy equilibria under complete information was not significantly different from

the frequency under incomplete information. These observations are consistent with

our findings on the comparison of the performances of the two mechanisms: the per-

formance of the voluntary contribution mechanism was higher than the performance

of the pivotal mechanism under complete information, but we did not observe the
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same advantage of the voluntary contribution mechanism over the pivotal mecha-

nism under incomplete information.

The remainder of the paper is organized as follows. Section 2 presents a brief

review of the laboratory evidence on the pivotal and voluntary contribution mech-

anisms. In Section 3, we describe the model of a public project and the definitions

of mechanisms. We also propose a new equilibrium concept and provide theoret-

ical prediction results that are useful in examining our experimental observations.

Section 4 describes our experimental design. We explain the experimental results

in Section 5. Section 6 provides concluding remarks. The appendix contains the

proofs of our theoretical results and our experimental instructions.

2 Previous experimental results on the pivotal

and voluntary contribution mechanisms

Attiyeh et al. (2000) conducted laboratory experiments on the pivotal mechanism

and found that few subjects reported their true values for the public project when

only the rule of the pivotal mechanism was explained to groups of 5 or 10 subjects.

Less than 10% of the bids were truth-telling in incomplete information settings

where each subject knew their own true value but not the others’ values in the

same group. Kawagoe and Mori (2001) also found that the ratio of the truth-

telling bids significantly increased from 16% to 47% when payoff tables were given

to subjects in addition to an explanation of the rule of the pivotal mechanism.

Moreover, Cason et al. (2006) experimentally compared the Groves mechanism,

which is “secure” in the sense that the set of dominant strategy equilibrium outcomes

coincides with the set of Nash equilibrium outcomes, with the pivotal mechanism

that is not secure. They observed that the ratio of dominant strategies that subjects

chose was significantly higher in the secure Groves mechanism than in the non-secure

pivotal mechanism.

For the voluntary contribution mechanism with a single unit of public good,

laboratory experimental studies found limited support for the theoretical prediction

that efficient outcomes are achieved. For example, Marks and Croson (1999) ob-

served that the ratio that decision efficiency was satisfied was 48% under complete

information and 54% under incomplete information, and that the ratio of Pareto

efficient equilibrium strategies subjects played was 4% under complete information

and 6% under incomplete information, even though group contributions converged
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toward the equilibrium level over time both under complete information and under

incomplete information. There are other laboratory experimental studies examin-

ing the effects of changing details of the voluntary contribution mechanism such

as refund rules, rebate rules, incomplete information on the number of players or

the cost of the public project, and simultaneous versus sequential contributions (see

Chen (2008)).

Healy (2006) conducted an experimental comparison of five public good mecha-

nisms, the voluntary contribution, proportional taxation, Groves-Ledyard, Walker,

and Vickrey-Clarke-Groves (VCG) mechanisms, in the same economic environment

with five-person groups under incomplete information. He found that the VCG

mechanism was the most efficient among the five mechanisms. In his experimental

setting, the level of the public good is chosen from a continuum, and each subject

knows their own preference parameters but not the preference parameters of oth-

ers. On the other hand, the public project choice is binary in our experiment, and

we investigate both the incomplete and complete information cases. Moreover, we

compare the voluntary contribution mechanism with the pivotal mechanism which

is the VCG mechanism with a binary public project from the viewpoints of decision

efficiency and individual rationality as well as Pareto efficiency.

3 Preliminaries

3.1 The model

We consider a two-agent economy with a binary public project. Two agents face a

decision whether to undertake a public project. Let y ∈ {0, 1} be a public project.

In our model, y = 1 if the public project is undertaken, and y = 0 otherwise. The

cost of undertaking a public project is c > 0. Let t = (t1, t2) ∈ R2 be a transfer

vector, where ti denotes the payment for agent i. We denote the set of feasible

allocations by

A =
{
(y, t) ∈ {0, 1} × R2 : − (t1 + t2) ≥ c · y

}
.

For each i ∈ {1, 2}, let

Ai = {(y, ti) ∈ {0, 1} × R : − ti ≥ c · y}

be the set of i-feasible allocations.
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Each agent i ∈ {1, 2} has a quasi-linear preference over {0, 1} × R, which is

described by the value of the public project vi ≥ 0. Denote the set of such values

of agent i by Vi. That is, given any i ∈ {1, 2} and any vi ∈ Vi, i’s preference is

represented by the function ui( · , · ; vi) : {0, 1} × R → R defined for each (y, ti) ∈
{0, 1} × R by

ui(y, ti; vi) = vi · y + ωi + ti,

where ωi > 0 denotes agent i’s initial endowment. Let v = (v1, v2) ∈ V ≡ V1 × V2

be a value profile.

3.2 Properties of allocations

We introduce some standard properties of allocations. An allocation (y, t) ∈ A

is Pareto efficient for v ∈ V if there exists no allocation (y′, t′) ∈ A such that

ui(y
′, t′i; vi) ≥ ui(y, ti; vi) for each i ∈ {1, 2} with a strict inequality for some j ∈

{1, 2}. We denote the set of Pareto efficient allocations for v by P (v). The following

fact characterizes the set of Pareto efficient allocations.

Fact 1. Let v ∈ V . An allocation (y, t) ∈ A is Pareto efficient for v if and only if

u1(y, t1; v1) + u2(y, t2; v2) =

v1 + v2 − c + ω1 + ω2 if v1 + v2 ≥ c

ω1 + ω2 otherwise.

An allocation (y, t) ∈ A is decision efficient for v ∈ V if y ∈ arg maxy′∈{0,1}(v1 +

v2) ·y′−c ·y′. The following fact states that decision efficiency is weaker than Pareto

efficiency.

Fact 2. Let v ∈ V . If an allocation (y, t) ∈ A is Pareto efficient for v, then it is

decision efficient for v.

An allocation (y, t) ∈ A is individually rational for v ∈ V if ui(y, ti; vi) ≥
ui(y

′, t′i; vi) for each i ∈ {1, 2} and each (y′, t′i) ∈ Ai. We denote the set of indi-

vidually rational allocations for v by I(v). The following fact characterizes the set

of individually rational allocations.

Fact 3. Let v ∈ V . An allocation (y, t) ∈ A is individually rational for v if and only
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if for each i ∈ {1, 2},

ui(y, ti; vi) ≥

ωi if c > vi

vi − c + ωi otherwise.
(1)

The core for v ∈ V is the set of allocations that are Pareto efficient and individ-

ually rational for v.2 We denote the core for v by C(v). That is, C(v) = P (v)∩ I(v)

for each v ∈ V .

3.3 Mechanisms

A mechanism is a pair Γ = (S1 × S2, g), where S1 and S2 are message spaces and

g : S1 × S2 → A is an outcome function. Given v ∈ V , a pair (Γ, v) constitutes a

(normal form) game.

We now introduce several equilibrium concepts.

• Dominant strategy equilibrium. A strategy profile (s1, s2) ∈ S1 × S2 is

called a dominant strategy equilibrium of the game (Γ, v) if

(i) for each s′1 ∈ S1 and each s′2 ∈ S2, u1(g1(s1, s
′
2); v1) ≥ u1(g1(s

′
1, s

′
2); v1);

and

(ii) for each s′1 ∈ S1 and each s′2 ∈ S2, u2(g2(s
′
1, s2); v2) ≥ u2(g2(s

′
1, s

′
2); v2).

• Nash equilibrium. A strategy profile (s1, s2) ∈ S1 × S2 is called a Nash

equilibrium of the game (Γ, v) if

(i) for each s′1 ∈ S1, u1(g1(s1, s2); v1) ≥ u1(g1(s
′
1, s2); v1); and

(ii) for each s′2 ∈ S2, u2(g2(s1, s2); v2) ≥ u2(g2(s1, s
′
2); v2).

• Undominated Nash equilibrium. Given any i ∈ {1, 2}, we say that an

agent i’s strategy si ∈ Si is weakly dominated in the game (Γ, v) if there

exists s′i ∈ Si such that for each sj ∈ Sj, ui(gi(s
′
i, sj); vi) ≥ ui(gi(s); vi) with

a strict inequality for some s′j ∈ Sj. Denote the set of i’s strategies that are

not weakly dominated in the game (Γ, v) by U(Si; (Γ, v)). A strategy profile

(s1, s2) ∈ S1 × S2 is called an undominated Nash equilibrium of the game

2This definition depends on the number of agents. When there are three or more agents, the
core is generally smaller than the set of allocations satisfying Pareto efficiency and individual
rationality.
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(Γ, v) if (i) it is a Nash equilibrium of (Γ, v) and (ii) si ∈ U(Si; (Γ, v)) for each

i ∈ {1, 2}.

• Twice iteratively undominated Nash equilibrium. Let U(S; (Γ, v)) ≡
U(S1; (Γ, v)) × U(S2; (Γ, v)) and Γ(U) ≡ (U(S; (Γ, v)), g). A strategy profile

(s1, s2) ∈ S1 ×S2 is called a twice iteratively undominated Nash equilibrium of

the game (Γ, v) if it is an undominated Nash equilibrium of the game (Γ(U), v).

Let E(Γ, v) and A(Γ, v) be the set of twice iteratively undominated Nash equi-

libria for (Γ, v) and the set of twice iteratively undominated Nash equilibrium

allocations for (Γ, v), respectively.

3.3.1 The voluntary contribution mechanism

We consider two mechanisms that play central roles in the literature. Our first

mechanism is the following simple mechanism that is widely used in practice: each

agent offers a voluntary contribution. If the sum of the contributions covers the cost

of the public project, it is undertaken; otherwise, the contributions are returned.

Formally:

The voluntary contribution mechanism, ΓVC = (SVC
1 ×SVC

2 , gVC). For each

i ∈ {1, 2}, SVC
i = [0, ωi]; and for each s ∈ SVC

1 × SVC
2 ,

gVC(s) = (yVC(s), (tVC
1 (s), tVC

2 (s))) =

(0, (0, 0)) if s1 + s2 < c

(1, (−s1,−s2)) otherwise.

This subsection now makes the following assumption:

A1. For each v ∈ V and each i ∈ {1, 2}, ωi ≥ c > vi.

A1 says that each agent’s initial endowment exceeds the cost of undertaking a

public project, and each agent’s value is less than the cost of undertaking a public

project. A1 also says that no agent would like to contribute more than their initial

endowment.3 We conduct laboratory experiments in the environments that satisfy

A1.

3Instead of A1, Bagnoli and Lipman (1989) used the following weaker assumption: ω1 + ω2 > c
and for each v ∈ V and each i ∈ {1, 2}, ωi > vi.
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Under A1, Facts 1 and 3 together imply that for each v ∈ V ,

C(v) =



(1, t) ∈ A :
0 ≤ −t1 ≤ v1, 0 ≤ −t2 ≤ v2, and

−(t1 + t2) = c

 if v1 + v2 > c

{(0, (0, 0)), (1, (−v1,−v2))} if v1 + v2 = c

{(0, (0, 0))} if v1 + v2 < c.

The next proposition states that the twice iteratively undominated Nash equi-

librium allocations of the voluntary contribution mechanism are in the core for true

preferences.4

Proposition 1. Assume A1. Let v ∈ V . Then,

A(ΓVC, v) ⊆ C(v).

The voluntary contribution mechanism is simple and, thus, it can be easily im-

plemented in practice. However, to obtain allocations that are in the core via the

voluntary contribution mechanism, agents are required to have a higher degree of

rationality, and the mechanism designer must understand that a value profile is

common knowledge between agents.

Remark 1. Our notion of the twice iteratively undominated Nash equilibrium is

different from the notion of iteratively undominated strategies. The reason we do

not employ the notion of iteratively undominated strategies is that the voluntary

contribution mechanism cannot implement the core (and any sub-correspondence of

the core) in iteratively undominated strategies. See Appendix B for a more detailed

discussion. ♦

Remark 2. To show that the voluntary contribution mechanism implements the

core, Bagnoli and Lipman (1989) used another refinement of Nash equilibrium called

“undominated perfect equilibrium” that applies the notion of (trembling-hand) per-

fection to the game after eliminating dominated strategies of the original game.

However, they did not directly apply the notion of perfection to the infinite game

4This is equivalent to stating that the voluntary contribution mechanism implements a sub-
correspondence of the core in twice iteratively undominated Nash equilibria. Moreover, we could
argue that the voluntary contribution mechanism “almost” fully implements the core in twice
iteratively undominated Nash equilibria because the following facts hold: for each v ∈ V , (i) if
v1 + v2 > c, then C(v) \ A(ΓVC, v) = {(1, (−v1, v1 − c)), (1, (v2 − c,−v2))}; (ii) if v1 + v2 = c, then
C(v) \ A(ΓVC, v) = {(1, (−v1,−v2))}; and (iii) if v1 + v2 < c, then C(v) = A(ΓVC, v).
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associated with the voluntary contribution mechanism.5 Instead, they defined an

undominated perfect equilibrium in the infinite game associated with the volun-

tary contribution mechanism as the limit of some sequence of undominated perfect

equilibria of approximating finite versions of the voluntary contribution mechanism.

Thus, it is an interesting open question whether a similar implementation result can

be obtained when perfection is directly defined on the infinite game associated with

the voluntary contribution mechanism. ♦

3.3.2 The pivotal mechanism

Our second mechanism determines the allocation as follows: each agent i ∈ {1, 2}
reports their value vi of the public project simultaneously. If v1 + v2 ≥ c, then

the public project is undertaken, and it is not undertaken otherwise. If the public

project is undertaken, then both agents pay for an equal share of the project’s cost.

Moreover, whether the public project is undertaken or not, each agent i ∈ {1, 2}
must pay the pivotal tax pi defined as follows:

pi =


−

(
vj −

c

2

)
if v1 + v2 ≥ c and vj −

c

2
< 0

vj −
c

2
if v1 + v2 < c and vj −

c

2
> 0

0 otherwise.

The pivotal tax is the actual net benefit the other agent enjoys minus the maximal

net benefit the agent can enjoy under the equal share cost. Thus, the pivotal tax is

the social cost of considering agent i’s preference. Formally:

The pivotal mechanism, ΓP = (SP
1 × SP

2 , gP). For each i ∈ {1, 2}, SP
i = Vi;

and for each v ∈ V = SP
1 × SP

2 , we denote gP(v) = (yP(v), (tP1 (v), tP2 (v))), where

yP(v) ∈ arg max
y∈{0,1}

(v1 + v2) · y + c · y,

tP1 (v) = −c · yP(v)

2
+

(
v2 · yP(v) − c · yP(v)

2

)
− max

y∈{0,1}

(c · y
2

+ v2 · y
)

,

tP2 (v) = −c · yP(v)

2
+

(
v1 · yP(v) − c · yP(v)

2

)
− max

y∈{0,1}

(c · y
2

+ v1 · y
)

.

5Recently, Carbonell-Nicolau (2011) provided a notion of perfection in infinite games. By
invoking his notion of perfection, he examined the existence of undominated perfect equilibrium
in the infinite game associated with the voluntary contribution mechanism. However, it is an open
question whether a similar implementation result holds for his notion of perfection.
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The pivotal mechanism might appear less simple than the voluntary contribution

mechanism. However, it is well known that under the pivotal mechanism, truth-

telling is a dominant strategy for everyone. Therefore, in contrast to the voluntary

contribution mechanism, in the pivotal mechanism, agents need not care about

the exact value of the other agent when considering their own action. Moreover,

although the dominant strategy equilibrium allocations of this mechanism may not

be Pareto efficient or individually rational, they are always decision efficient.

4 Experimental design

4.1 Design

Our experiment studies the voluntary contribution mechanism and the pivotal mech-

anism both under complete information and under incomplete information. It con-

sists of four treatments:

(i) Treatment VC: the voluntary contribution mechanism under complete in-

formation

(ii) Treatment VI: the voluntary contribution mechanism under incomplete in-

formation

(iii) Treatment PC: the pivotal mechanism under complete information

(iv) Treatment PI: the pivotal mechanism under incomplete information

The public project problem to be solved is the same for all four treatments. There

are two types of agents, 1 and 2. The initial endowment vector of the private good

is given by (ω1, ω2) = (20, 20). The true value profile (v1, v2) is equal to (9, 13). The

cost of undertaking the public project is c = 20. By decision efficiency introduced in

Section 3, the public project should be undertaken since v1 + v2 − c = 2 > 0. Note

that this environment satisfies A1 introduced in Section 3.

4.1.1 Treatment VC

Treatment VC implements the voluntary contribution mechanism for a two-agent

group under complete information. Let the strategy space of each type be the

set of integers from 0 to 20. According to the rules of the voluntary contribution

mechanism explained in Section 3, we can construct the payoff matrices of Types
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1 and 2. The payoff tables that we employ in Treatment VC are Tables 1 and 2

whose structures are the same as the original payoff tables with the exception that

a linear transformation of the valuation functions is employed: 10ui − 40 for each

type i ∈ {1, 2}.
Table 1 (resp. Table 2) is a payoff matrix of Type 1 (resp. Type 2) with both

types’ payoffs displayed: the lower left-hand number is Type 1’s (resp. Type 2’s)

payoff, and the upper right-hand number is Type 2’s (resp. Type 1’s) payoff in each

cell. Table 1 also specifies the Nash equilibria and the unique twice iteratively un-

dominated Nash equilibrium.6 In Table 1, there are three “good” Nash equilibria,

(s1, s2) ∈ {(7, 13), (8, 12), (9, 11)}, in the sense that the public project is undertaken

and, hence, decision efficiency is met, whereas there are 96 “bad” Nash equilib-

ria, (s1, s2) ∈ {(0, 0), . . . , (0, 11), . . . , (7, 0), . . . , (7, 11)}, in the sense that the public

project is not undertaken and, thus, decision efficiency is not satisfied. Among

these Nash equilibria, only the pair (s1, s2) = (8, 12) is a twice iteratively undom-

inated Nash equilibrium. Note that Type 1’s strategies s1 ∈ {9, 10, . . . , 20} are

weakly dominated by s1 = 8, whereas s1 ∈ {0, 1, . . . , 7} are undominated strate-

gies that are not weakly dominated by any strategy. Similarly, Type 2’s strategies

s2 ∈ {13, . . . , 20} are weakly dominated by s2 = 12, whereas s2 ∈ {0, 1, . . . , 11}
are undominated strategies. Eliminating these weakly dominated strategies of two

players from Table 1 of the original 21 × 21 payoff table, we have Table 3 that is

the 8 × 12 payoff matrix consisting of eight strategies of Type 1, s1 ∈ {0, 1, . . . , 7}
and 12 strategies of Type 2, s2 ∈ {0, 1, . . . , 11}. In Table 3, there is one “good”

Nash equilibria, (s1, s2) = (8, 12), whereas there are 96 “bad” Nash equilibria,

(s1, s2) ∈ {(0, 0), . . . , (0, 11), . . . , (7, 0), . . . , (7, 11)}. Notice that Type 1’s strate-

gies s1 ∈ {0, 1, . . . , 7} are weakly dominated by s1 = 8, and Type 2’s strategies

s2 ∈ {0, 1, . . . , 11} are weakly dominated by s2 = 12 in Table 3. Thus, (8, 12) is

a unique undominated Nash equilibrium in Table 3 and a unique twice iteratively

undominated Nash equilibrium in Table 1.7

Moreover, this equilibrium payoff vector (170, 170) at (8, 12) is Pareto efficient

6In the payoff table that we distributed to subjects, there was no tag and highlighting indicating
the equilibria as in Table 1.

7Additionally, (8, 12) is a unique pair of strategies surviving after a twice iterated elimination
of weakly dominated strategies in Table 1. In other words, the unique undominated Nash equi-
librium coincides with the unique pair of strategies surviving after twice iterated elimination of
weakly dominated strategies under our experimental setting. In general, however, the set of twice
iteratively undominated Nash equilibria may differ from the set of pairs of strategies surviving
after twice iterated elimination of weakly dominated strategies. We need the concept of twice
iteratively undominated Nash equilibria to obtain the core implementation result in Proposition
1. See Appendix B for more details.

13



Table 1: Payoff table of Type 1 in Treatment VC.
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Table 2: Payoff table of Type 2 in Treatment VC.
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Table 3: Payoff table obtained by eliminating the weakly dominated strategies of two
players from Table 1.

and individually rational and, hence, it is a core payoff vector (Proposition 1). The

other good Nash equilibrium payoff vectors in Table 1, (180, 160) and (160, 180), are

also Pareto efficient and individually rational, and they are core payoff vectors. All

bad Nash equilibrium payoff vectors in Table 1 are the same, (160, 160), and they

are individually rational but not Pareto efficient.

4.1.2 Treatment VI

Treatment VI implementing the voluntary contribution mechanism under incom-

plete information is the same as Treatment VC except for the payoff tables. In

Treatment VI, we used the payoff tables deleting the payoffs of others from Tables 1

and 2 so that the payoff table of each type indicates their own payoffs only.

4.1.3 Treatment PC

Treatment PC implements the pivotal mechanism for a two-agent group under com-

plete information. Let the strategy space of each type be the set of integers from

0 to 20. According to the rules of the pivotal mechanism described in Section 3,

we can construct the payoff tables of Types 1 and 2. The payoff tables that we use

in Treatment PC are Tables 4 and 5 whose structures are the same as the original
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payoff tables except that a linear transformation of the utility functions is employed:

10ui − 40 for each type i ∈ {1, 2}.
Table 4 (resp. Table 5) is a payoff table of Type 1 (resp. Type 2) with both

types’ payoffs displayed. Table 4 also specifies the dominant strategy equilibria and

the other Nash equilibria.8 Type 1’s dominant strategies are 8 and 9, and Type 2’s

dominant strategies are 12 and 13. The two dominant strategies are equivalent for

each type in that their own payoffs are identical for every possible strategy played

by the other type. In this sense, there is an essentially unique dominant strategy

for each type. However, the payoffs of Type 2 are different depending on Type 1’s

choices: Type 2’s payoff is 170 when Type 1 selects 8 and Type 2 chooses 12 or 13,

whereas Type 2’s payoff is 180 when Type 1 selects 9 and Type 2 chooses 12 or 13.

There is a huge set of Nash equilibria in Table 4.9 The lower-right region of Nash

equilibria is “good” in the sense that the public project is undertaken and, hence,

decision efficiency is satisfied. The upper-left region of Nash equilibria is “bad” in

the sense that the public project is not undertaken and, thus, decision efficiency is

not satisfied. The number of good Nash equilibria is 137, whereas the number of

bad Nash equilibria is 96. Implementation is clearly not secure in the sense of Cason

et al. (2006).

Notice that the payoff vector (u1, u2) is Pareto efficient if u1 + u2 = 340, and

it is individually rational if u1 ≥ 160 and u2 ≥ 160 in the current environment.

The dominant strategy equilibrium payoffs, (150, 170) and (150, 180), are neither

Pareto efficient nor individually rational. This is because the pivotal mechanism

generates a wasteful budget surplus, that is, the tax revenue exceeds the cost of

undertaking the public project. It is easy to check that the ratio of Pareto efficient

payoffs among the good Nash equilibrium payoffs is 80.3% (= 110/137), but no good

Nash equilibrium payoff is individually rational. The ratio of individually rational

payoffs among the bad Nash equilibrium payoffs is 91.7% (= 88/96), but no bad

Nash equilibrium payoff is Pareto efficient.

Although no Nash equilibrium payoff vector belongs to the core, the pivotal

8Again, in the payoff table that we actually distributed to subjects, there was no tag and
highlighting indicating the equilibria, as in Table 4 .

9This is because the best response function of each type has a “flat” structure. For instance, (i)
when Type 2 selects 7, the payoffs of Type 1 are “high” (160) if Type 1 chooses less than or equal
to 12, and those are “low” (120) otherwise; (ii) when Type 2 chooses 11, the payoffs of Type 1 are
the same (150) for all Type 1’s strategies; and (iii) when Type 2 selects 16, the payoffs of Type 1
are “low” (100) if Type 1 chooses less than or equal to 3, and Type 1’s payoffs are “high” (150)
otherwise. In other words, given each strategy of the other type, either a) the payoffs of each type
are divided into just two “tiers”: a “high” payoff obtained by choosing “good” strategies and a
“low” payoff by “bad” strategies, or b) the payoffs are the same for all strategies.
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Table 4: Payoff table of Type 1 in Treatment PC.
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Table 5: Payoff table of Type 2 in Treatment PC.
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mechanism is designed specifically to achieve decision efficiency rather than Pareto

efficiency or individual rationality. Since decision efficiency has played a central role

in the literature, we check whether the outcome is consistent with decision efficiency

in our experiment.

4.1.4 Treatment PI

Treatment PI implementing the pivotal mechanism under incomplete information,

is the same as Treatment PC except for the payoff tables. In Treatment PI, we use

the payoff tables deleting the payoffs of others from Tables 4 and 5 so that the payoff

table of each type indicates their own payoffs only.

4.2 Procedures

We conducted two sessions in each of the four treatments at Tokyo Institute of

Technology during January and June of 2013 and July of 2014. Twenty subjects

participated in each session (160 separate subjects in total). We recruited the stu-

dent subjects by campus-wide advertisement. These students were told that there

would be an opportunity to earn money in a research experiment. None of them had

prior experience in a public project experiment. No subject attended more than one

session. Each session took approximately two hours to complete. The mean payoff

per subject was $32.57 ($1 = 100 yen) in Treatment PC, $32.54 in Treatment PI,

$33.56 in Treatment VC, and $32.31 in Treatment VI.

In each session, 20 subjects were seated at computer stations that were separated

with visual partitions in the Experimental Economics Laboratory at Tokyo Institute

of Technology. We made 10 pairs out of 20 subjects and conducted 20 periods. In

every period, each of Type 1 subjects was paired with one of Type 2 subjects. The

pairings were anonymous and were determined in advance by experimenters to pair

the same two subjects just two times. Each subject was informed that the person

the subject was paired with was randomly chosen by the experimenters and that

the person the subject was paired with changed over the 20 periods. Each subject

could not know which person the subject was paired with at each period.

Each subject received written instructions, a record sheet, and a payoff table.

Each subject chose an integer number between 0 and 20 by looking at their own

payoff table only. No subject knew the payoff table of the other type in Treatments

PI and VI under incomplete information. In contrast, in each subject’s payoff table,

both their own payoffs and the payoffs of the other type were shown in Treatments
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PC and VC under complete information.

After deciding which number to choose, each subject typed in that number into

the computer. We used the z-Tree program (Urs Fischbacher, 2007). After the

calculation of payoffs, the following information was displayed on each subject’s

computer screen:

• Treatments PC and VC (complete information): the subject’s chosen

number, the other’s chosen number, the subject’s own payoff, and the other’s

payoff.

• Treatments PI and VI (incomplete information): the subject’s chosen

number, the other’s chosen number, and the subject’s own payoff (but not the

other’s payoff).

Each subject was asked to fill out these values as well as the reasons why they

had chosen a particular number. These steps were repeated for 20 periods. No

information or decisions regarding the other pairs were shown on the computer

screen. No communication among the subjects was allowed, and we declared that

the experiment would be stopped if we observed any communication among the

subjects. This did not happen.

Before the real 20 periods, the subjects had an opportunity to practice in two

periods using a payoff table that differed from the table employed in the actual

experiment. In these non-monetary periods, the numbers to be chosen were decided

in advance by the experimenters. We allowed the subjects 10 minutes to examine

the payoff table before the real periods started.

5 Results

Since each period had 20 pairs of players and each session had 20 periods, there were

400 pairs of data. We denote each pair by (s1, s2), where si is a strategy chosen by

a subject of Type i ∈ {1, 2}.

5.1 Complete information

5.1.1 Treatment VC

Figure 1 shows the frequency of distribution of all data in Treatment VC. The maxi-

mum frequency pair was the unique twice iteratively undominated Nash equilibrium
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Figure 1: All pairs choices in Treatment VC.

(8, 12) with 313 pairs out of 400, the second frequency pair was (8, 10) with 31 pairs,

the third frequency pair was (8, 11) with 11 pairs, and the fourth frequency pair was

(7, 12) with 6 pairs. The total frequency of Nash equilibria other than (8, 12) was 8.

All of them were bad Nash equilibria that failed to achieve decision efficiency. The

total frequency of strategy profiles that achieved decision efficiency was 316.

The maximum frequency strategy chosen by Type 1 subjects was s1 = 8 with

377 choices out of 400, the second maximum frequency strategy was s1 = 7 with

8 choices, and the third maximum frequency strategy was s1 = 4 with 6 choices.

The maximum frequency strategy chosen by Type 2 subjects was s2 = 12 with 328

choices out of 400, the second was s2 = 10 with 32 choices, and the third was s1 = 11

with 14 choices.

Figure 2 displays the rates that Type 1 and Type 2 subjects chose s1 = 8 and

s2 = 12, respectively. After period 3, the ratios of Type 1 subjects who chose s1 = 8

were at least 90%. The ratios of Type 2 subjects who chose s2 = 12 were at least

80% after period 4. Figure 2 also demonstrates the rates that pairs of subjects

played the unique twice iteratively undominated Nash equilibrium (8, 12) for all

periods. These equilibrium rates were at least 70% after period 4. By conducting
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the Wilcoxon signed rank tests period by period, we found that Type 1 subjects’

median choice was not significantly different from 8 in 18 out of 20 periods (periods

3–20 at the 5% significance level) and that Type 2 subjects’ median choice was not

significantly different from 12 in 18 periods (periods 2 and 4–20 at the 5% significance

level).

Figure 2: Rates that Types 1 and 2 subjects, respectively, chose s1 = 8 and s2 = 12 in
Treatment VC.

These results are summarized by the following observations.

Observation 1.

(i) The frequency of the unique twice iteratively undominated Nash equilibrium

was 78% (= 313/400) across all periods in Treatment VC.

(ii) The frequency that Type 1 subjects chose s1 = 8 was 94%(= 377/400) across

all periods in Treatment VC.

(iii) The frequency that Type 2 subjects chose s2 = 12 was 82%(= 328/400) across

all periods in Treatment VC.
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5.1.2 Treatment PC

Figure 3 shows the frequency of distribution of all data in Treatment PC. The

maximum frequency pair was (8, 13) with 95 pairs out of 400, the second was (8, 12)

with 91 pairs, the third was (9, 12) with 30 pairs, the fourth was (10, 12) with 29

pairs, and the fifth was (9, 13) with 26 pairs. The total frequency of dominant

strategy equilibria was 242. The total frequency of Nash equilibria was 370. All

Nash equilibria were good.

Figure 3: All pairs choices in Treatment PC.

The maximum frequency strategy chosen by Type 1 subjects was s1 = 8 with

224 choices out of 400, the second was s1 = 9 with 72 choices, and the third was

s1 = 10 with 70 choices. The total frequency of dominant strategies selected by

Type 1 subjects was 296. The maximum frequency strategy chosen by Type 2 was

s2 = 12 with 167 choices out of 400, the second was s2 = 13 with 160 choices, and

the third was s1 = 20 with 15 choices. Hence, the total frequency of dominant

strategies selected by Type 2 subjects was 327.

Figure 4 displays the rates that each type of subjects chose dominant strate-

gies separately as well as the rates that pairs of subjects played dominant strategy

24



equilibria for all periods.

Figure 4: Rates that subjects chose dominant strategies in Treatment PC.

These results are summarized by the following observations.

Observation 2.

(i) The frequency of dominant strategy equilibria was 61% (= 242/400) across all

periods in Treatment PC.

(ii) The frequency of good Nash equilibria was 3% (= 370/400) across all periods

in Treatment PC.

(iii) The frequency that Type 1 subjects chose dominant strategies was 74%(=

296/400) across all periods in Treatment PC.

(iv) The frequency that Type 2 subjects chose dominant strategies was 82%(=

327/400) across all periods in Treatment PC.

5.1.3 Comparing the two mechanisms

We compare the performances of the voluntary contribution mechanism and those of

the pivotal mechanism based on the following four indices: (i) the Pareto efficiency

25



index ; (ii) the individual rationality index ; (iii) the surplus index ; and (iv) the

decision efficiency index.

Pareto efficiency index We define the Pareto efficiency index at each period

as the ratio of Pareto efficient outcomes at that period. The sum of two subjects’

payoffs in one pair is equal to 340 at any Pareto efficient outcome. Figure 5 displays

the Pareto efficiency indices at each period in Treatments VC and PC. By conducting

Fisher’s exact tests period by period, we observed that the Pareto efficiency indices

for Treatment VC were significantly higher than the Pareto efficiency indices for

Treatment PC in 18 out of 20 periods (periods 3–20 at the 1% significance level).

Figure 5: Pareto efficiency index.

Individual rationality index We define the individual rationality index at each

period as the ratio of individually rational outcomes at that period such that each

subject receives a payoff at least as large as their own payoff before participating

in the mechanism (160), that is, the payoff the subject receives from their initial

endowment of the private good with no public project. Figure 6 displays the indi-

vidual rationality indices at each period in Treatments VC and PC. According to

Fisher’s exact tests conducted period by period, the individual rationality indices
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for Treatment VC were significantly higher than the individual rationality indices

for Treatment PC at all periods (at the 1% significance level).

Figure 6: Individual rationality index.

Surplus index We define the surplus index by

Surplus Index =
average of sums of two subjects’ payoffs − reference payoff

Pareto efficient payoff − reference payoff
,

where the Pareto efficient payoff is the sum of two subjects’ payoffs at any Pareto

efficient outcome, which equals 340, and the reference payoff is the sum of two

subjects’ payoffs that they receive before participating in the mechanism, which

equals 320. This index measures how much gain subjects obtain by participating in

a mechanism. Figure 7 displays the surplus indices at each period in Treatments VC

and PC. By conducting the Mann-Whitney tests period by period, we found that the

surplus indices for Treatment VC were significantly higher than the surplus indices

for Treatment PC in 18 out of 20 periods (periods 3–20 at the 1% significance level).

Decision efficiency index We define the decision efficiency index at each period

as the ratio of outcomes at which the public project is undertaken at that period.
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Figure 7: Surplus index.

Figure 8 displays the decision efficiency indices at each period in Treatments VC

and PC. According to Fisher’s exact test conducted period by period, there was

no significant difference in the decision efficiency index between Treatment PC and

Treatment VC in 19 out of 20 periods (periods 2–20 at the 5% significance level).

These results are summarized by the following observations.

Observation 3.

(i) The Pareto efficiency index for Treatment VC was significantly higher than

the Pareto efficiency index for Treatment PC.

(ii) The individual rationality index for Treatment VC was significantly higher than

the individual rationality index for Treatment PC.

(iii) The surplus index for Treatment VC was significantly higher than the surplus

index for Treatment PC.

(iv) There was no significant difference in the decision efficiency index between

Treatment VC and Treatment PC.
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Figure 8: Decision efficiency index.

5.2 Incomplete information

5.2.1 Treatment VI

Figure 9 shows the frequency of distribution of all data in Treatment VI. The max-

imum frequency pair was (8, 12) with 93 pairs out of 400 outcomes, the second

was (8, 10) with 46 pairs, the third was (4, 12) with 27 pairs, and the fourth was

(8, 6) with 24 pairs. The total frequency of strategy profiles that achieved decision

efficiency was 103.

The maximum frequency strategy chosen by Type 1 subjects was s1 = 8 with

206 choices out of 400, the second was s1 = 4 with 67 choices, and the third was

s1 = 5 with 48 choices. The maximum frequency strategy chosen by Type 2 was

s2 = 12 with 166 choices out of 400, the second was s1 = 10 with 93 choices, and

the third was s1 = 6 with 63 choices.

Figure 10 demonstrates the rates that Type 1 and Type 2 subjects chose s1 = 8

and s2 = 12, respectively. In the first 3 periods, no more than 20% of subjects chose

s1 = 8 or s2 = 12. As the periods advanced, the rate of Type 1 subjects who chose

s1 = 8 and the rate of Type 2 subjects who chose s2 = 12 increased, but they never

exceeded 80%. By conducting the Wilcoxon signed rank tests period by period,
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Figure 9: All pairs choices in Treatment VI.

we found that Type 1 subjects’ median choice was significantly different from 8 in

14 out of 20 periods (periods 1–3, 5–6, and 8–10 at the 1% significance level; and

periods 4, 7, 11, and 13–15 at the 5% significant level) while in the final 5 periods,

there were no significant differences. Additionally, we found that Type 2 subjects’

median choice was not significantly different from 12 in all periods (periods 1–14

and 18–20 at the 1% significance level; and periods 15–17 at the 5% significance

level).

These results are summarized by the following observations.

Observation 4.

(i) The frequency of the strategy profile (8,12) was 23%(= 93/400) across all

periods in Treatment VI.

(ii) The frequency that Type 1 subjects chose s1 = 8 was 52%(= 206/400) across

all periods in Treatment VI.

(iii) The frequency that Type 2 subjects chose s2 = 12 was 42%(= 166/400) across

all periods in Treatment VI.
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Figure 10: Rates that Types 1 and 2, respectively, subjects chose 8 and 12 in Treatment
VI.

5.2.2 Treatment PI

Figure 11 shows the frequency of distribution of all data in Treatment PI. The

maximum frequency pair was (8, 12) with 97 pairs out of 400, the second was (8, 13)

with 85 pairs, the third was (9, 12) with 57 pairs, and the fourth was (9, 13) with

56 pairs. The total frequency of dominant strategy equilibria was 295. The total

frequency of strategy profiles corresponding to Nash equilibria was 371. The total

frequency of strategy profiles corresponding to bad Nash equilibria was 0.

The maximum frequency strategy chosen by Type 1 was s1 = 8 with 213 choices

out of 400, the second was s1 = 9 with 128 choices, and the third was s1 = 20

with 9 choices. The total frequency of dominant strategies was 341. The maximum

frequency strategy chosen by Type 2 was s2 = 12 with 180 choices out of 400, the

second was s2 = 13 with 166 choices, and the third was s1 = 11 with 18 choices.

Hence, the total frequency of dominant strategies was 346.

Figure 12 displays the rates that subjects chose dominant strategies separately

as well as the rates that pairs of subjects played dominant strategy equilibria for all

periods. The rates that subjects chose dominant strategies were between 75% and

95% during all periods.
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Figure 11: All pairs choices in Treatment PI.

These results are summarized by the following observations.

Observation 5.

(i) The frequency of dominant strategy equilibria was 74% (= 295/400) across all

periods in Treatment PI.

(ii) The frequency of strategy profiles corresponding to good Nash equilibria in

Treatment PC was 93%(= 371/400) across all periods in Treatment PI.

(iii) The frequency that Type 1 subjects chose dominant strategies was 85%(=

341/400) across all periods in Treatment PI.

(iv) The frequency that Type 2 subjects chose dominant strategies was 87%(=

346/400) across all periods in Treatment PI.

5.2.3 Comparing the two mechanisms

As is the case in the setting of complete information, we compare the performances

of the voluntary contribution mechanism and those of the pivotal mechanism based
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Figure 12: Rates that subjects chose dominant strategies in Treatment PI.

on the above four indices.

Pareto efficiency index Figure 13 displays the Pareto efficiency indices at each

period in Treatments VI and PI. By conducting Fisher’s exact tests period by period,

we found that the Pareto efficiency indices for Treatment VI were not significantly

different from the Pareto efficiency indices for Treatment PI in 18 out of 20 periods

(periods 1–14 and 17–20 at the 5% significance level).

Individual rationality index Figure 14 displays the individual rationality index

at each period in Treatments VI an PI. By conducting Fisher’s exact tests period

by period, we found that the individual rationality indices for Treatment VI were

significantly higher than the individual rationality indices for Treatment PI in all

periods (at the 1% significance level).

Surplus index Figure 15 displays the surplus indices at all periods in Treat-

ments VI and PI. By conducting the Mann-Whitney tests period by period, we

found that no significant difference in the surplus index between Treatment VI and

Treatment PI in 15 out of 20 periods (periods 2, 6–8, and 10–20 at the 5% signifi-
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Figure 13: Pareto efficiency index.

Figure 14: Individual rationality index.
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cance level).

Figure 15: Surplus index.

Decision efficiency index Figure 16 displays the decision efficiency indices at all

periods in Treatments VI and PI. According to Fisher’s exact tests conducted period

by period, the decision efficiency indices for Treatment PI were significantly higher

than the decision efficiency indices for Treatment VI in all 20 periods (periods 1–14

and 16–20 at the 1% significance level; and period 15 at the 5% significance level).

These results are summarized by the following observations.

Observation 6.

(i) There was no significant difference in the Pareto efficiency index between

Treatment VI and Treatment PI.

(ii) The individual rationality index for Treatment VI was significantly higher than

the individual rationality index for Treatment PI.

(iii) There was no significant difference in the surplus index between Treatment VI

and Treatment PI.
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Figure 16: Decision efficiency index.

(iv) The decision efficiency index for Treatment VI was significantly lower than the

decision efficiency index for Treatment PI.

5.3 Informational effects

5.3.1 The voluntary contribution mechanism

We investigate whether a setting where each subject knows the other subject’s pay-

off affects the performance of the voluntary contribution mechanism by comparing

Treatment VC with Treatment VI.

By conducting Fisher’s exact tests period by period, we found that the frequency

of pairs who chose (8, 12) in Treatment VI was significantly lower than the frequency

of pairs who chose (8, 12) in Treatment VC in 19 out of 20 periods (periods 1 and

16 at the 5% significance level; and periods 2–14 and 17–20 at the 1% significance

level).

We also compare Treatment VC with Treatment VI based on the above four in-

dices. Figure 17(a) is the box plot that displays the distribution of Pareto efficiency

indices for Treatments VC and VI. By conducting Fisher’s exact tests period by pe-

riod, we found that the Pareto efficiency indices for Treatment VI were significantly
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(a) (b)

(c) (d)

Figure 17: Box plot for each index. (a) Pareto efficiency index. (b) Individual rationality
index. (c) Surplus index. (d) Decision efficiency index.
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lower than the Pareto efficiency indices for Treatment VC in all 20 periods (at the

1% significance level).

Figure 17(b) is the box plot that displays the distribution of individual ratio-

nality indices for Treatments VC and VI. By conducting Fisher’s exact tests period

by period, we found that there was no significant difference in the individual ratio-

nality index between Treatment VC and Treatment VI in all 20 periods (at the 5%

significance level).

Figure 17(c) is the box plot that displays the distribution of surplus indices for

Treatments VC and VI. By conducting the Mann-Whitney tests period by period,

we found that the surplus indices for Treatment VI were significantly lower than

the surplus indices for Treatment VC in 19 out of 20 periods (periods 16 at the 5%

significance level; and periods 1–14 and 17–20 at the 1% significance level).

Figure 17(d) is the box plot that displays the distribution of decision efficiency

indices for Treatments VC and VI. By conducting Fisher’s exact tests period by

period, we found that the decision efficiency indices for Treatment VI were signifi-

cantly lower than the decision efficiency indices for Treatment VC in 17 out of 20

periods (periods 2, 17, and 20 at the 5% significance level; and periods 3–14, 18,

and 19 at the 1% significance level).

These results are summarized by the following observations.

Observation 7.

(i) The frequency of the strategy profile (8, 12) corresponding the unique twice

iteratively undominated Nash equilibrium in Treatment VC was significantly

higher than that in Treatment VI.

(ii) The Pareto efficiency index for Treatment VC was significantly higher than

the Pareto efficiency index for Treatment VI.

(iii) There was no significant difference in the individual rationality index between

Treatment VC and Treatment VI.

(iv) The surplus index for Treatment VC was significantly higher than the surplus

index for Treatment VI.

(v) The decision efficiency index for Treatment VC was significantly higher than

the decision efficiency index for Treatment VI.
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5.3.2 The pivotal mechanism

We also investigate whether a setting where each subject knows the other subject’s

payoff affects the performance of the pivotal mechanism by comparing Treatment PC

with Treatment PI.

According to Fisher’s exact tests conducted period by period, there was no sig-

nificant difference in the frequency of dominant strategy equilibria between Treat-

ment PC and Treatment PI in 18 out of 20 periods (periods 1–7 and 9–19 at the 5%

significance level).

We also compare Treatment PC with Treatment PI based on the above four

indices. Figure 17(a) is the box plot that displays the distribution of Pareto efficiency

indices for Treatments PC and PI. By conducting Fisher’s exact tests period by

period, we found that there was no significant difference in the Pareto efficiency

index between Treatment PC and Treatment PI in 19 out of 20 periods (periods

1–16 and 18–20 at the 5% significance level).

Figure 17(b) is the box plot that displays the distribution of individual ratio-

nality indices for Treatments PC and PI. By conducting Fisher’s exact tests period

by period, we found that there was no significant difference in the individual ratio-

nality index between Treatment PC and Treatment PI in all 20 periods (at the 5%

significance level).

Figure 17(c) is the box plot that displays the distribution of surplus indices for

Treatments PC and PI. By conducting the Mann-Whitney tests period by period,

we found that the there was no significant difference in the surplus index between

Treatment PC and Treatment PI in all 20 periods (at the 5% significance level).

Figure 17(d) is the box plot that displays the distribution of decision efficiency

indices for Treatments PC and PI. By conducting Fisher’s exact tests period by

period, we found that there was no significant difference in decision efficiency index

between Treatment PC and Treatment PI in all 20 periods (at the 5% significance

level).

These results are summarized by the following observations.

Observation 8.

(i) There was no significant difference in the frequency of dominant strategy equi-

libria between Treatment PC and Treatment PI.

(ii) There was no significant difference in the Pareto efficiency index between

Treatment PC and Treatment PI.
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(iii) There was no significant difference in the individual rationality index between

Treatment PC and Treatment PI.

(iv) There was no significant difference in the surplus index between Treatment PC

and Treatment PI.

(v) There was no significant difference in the decision efficiency index between

Treatment PC and Treatment PI.

6 Concluding remarks

In our experiment, we used the payoff tables to simplify the presentation of the

two mechanisms for subjects. We provided no explanation regarding the rules of

the mechanisms or how the payoff tables were constructed. The rule of the pivotal

mechanism is more complicated than that of the voluntary contribution mechanism.

Using payoff tables only allows for a comparison of the two mechanisms holding their

degree of transparency constant. Although payoff tables are somewhat unrealistic

for potential applications of these mechanisms in the field, we selected maximally-

transparent conditions as a first step in this initial experiment.

We observed that the voluntary contribution mechanism worked better than

the pivotal mechanism under complete information in which each subject knew

all subjects’ payoffs. Since the rule of the pivotal mechanism is more difficult to

understand, it is natural to expect that the voluntary contribution mechanism would

perform better than the pivotal mechanism even when the rules of the mechanisms

are explained under complete information.

On the other hand, under incomplete information in which each subject knew

their own payoff but not the payoffs of the other subjects, we cannot conclude which

mechanism was better: the pivotal mechanism worked better than the voluntary

contribution mechanism from the viewpoint of the decision efficiency index, but the

converse was true for the individual rationality index, and there was no significant

difference between the two mechanisms in the Pareto efficiency and the surplus in-

dices. Hence, we need to conduct another experiment under incomplete information

to check whether the pivotal mechanism performs better than the voluntary contri-

bution mechanism when the rules of the two mechanisms are explained. This is left

for future experiments.

Regarding the voluntary contribution mechanism, Marks and Croson (1999) ob-

served little difference on the experimental results between the complete information
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treatment and the incomplete information treatment. Neither the decision efficiency

nor the proportion of Nash equilibrium strategies subjects played was significantly

different for the two treatments.10 This observation is different from ours. There

are two main differences in the experimental settings of the Marks-Croson experi-

ment and our experiment, which may cause different observations. First, each group

consisted of five subjects in the Marks-Croson experiment, whereas there were two

subjects in each group in our experiment. Second, only the rule of the mechanism

was explained to the subjects in the Marks-Croson experiment, while only the payoff

tables were used in ours. An open question remains when conducting an experiment

by providing payoff tables and/or an explanation of the rule to subjects when there

are more than two subjects in each group. We leave this issue for the future.

10Marks and Croson (1999) examined another incomplete information treatment in which each
subject knew the sum of the public project valuations of the other subjects but not their distribu-
tion. There were no significant differences in the experimental results among the three treatments
with the exception of the convergence of group contributions toward the equilibrium level over
time. In the incomplete information-known sum treatment, no convergence was observed.
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A Appendix: Proofs

A.1 Proof of Fact 1

A.1.1 The “if” part

Suppose, by contradiction, that (y, t) /∈ P (v). Then, there is (y′, t′) ∈ A such

that ui(y
′, t′i; vi) ≥ ui(y, ti; vi) for each i ∈ {1, 2} with a strict inequality for some

i ∈ {1, 2}. There are two cases.

• Case 1: v1 + v2 ≥ c. Then,

u1(y
′, t′1; v1) + u2(y

′, t′2; v2) > u1(y, t1; v1) + u2(y, t2; v2) = v1 + v2 − c + ω1 + ω2.

If y′ = 1, then

v1 + v2 + ω1 + ω2 + t′1 + t′2 = u1(y
′, t′1; v1) + u2(y

′, t′2; v2)

> u1(y, t1; v1) + u2(y, t2; v2)

= v1 + v2 − c + ω1 + ω2,

which implies −(t′1 + t′2) < c, a contradiction. If y′ = 0, then

ω1 + ω2 + t′1 + t′2 = u1(y
′, t′1; v1) + u2(y

′, t′2; v2)

> u1(y, t1; v1) + u2(y, t2; v2)

= v1 + v2 − c + ω1 + ω2,

which implies −(t′1 + t′2) < c − (v1 + v2) ≤ 0, a contradiction.

• Case 2: v1 + v2 < c. Then,

u1(y
′, t′1; v1) + u2(y

′, t′2; v2) > u1(y, t1; v1) + u2(y, t2; v2) = ω1 + ω2.

If y′ = 1, then

v1 + v2 + ω1 + ω2 + t′1 + t′2 = u1(y
′, t′1; v1) + u2(y

′, t′2; v2)

> u1(y, t1; v1) + u2(y, t2; v2)

= ω1 + ω2,
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which implies −(t′1 + t′2) < v1 + v2 < c, a contradiction. If y′ = 0, then

ω1 + ω2 + t′1 + t′2 = u1(y
′, t′1; v1) + u2(y

′, t′2; v2)

> u1(y, t1; v1) + u2(y, t2; v2)

= ω1 + ω2,

which implies −(t′1 + t′2) < 0, a contradiction. □

A.1.2 The “only if” part

Let (y, t) ∈ P (v). There are three cases.

• Case 1: v1 + v2 > c. In this case, it suffices to show that y = 1, because this

together with (y, t) ∈ P (v) implies that u1(y, t1; v1)+u2(y, t2; v2) = v1 +v2−c+ω1 +

ω2. To show this, suppose by contradiction that y = 0. Then, u1(y, t1; v1) = ω1 + t1,

u2(y, t2; v2) = ω2 + t2, and −(t1 + t2) ≥ 0. Without loss of generality, assume t1 ≥ t2.

Let (y′, t′) ∈ A be such that y′ = 1, −(t′1+t′2) = c, and t′1 = t1−v1. Since v1+v2 > c,

v1 + v2 − c = v1 + v2 + (t′1 + t′2) > 0 ≥ t1 + t2, which implies that v2 + t′2 > t2. It

then follows that

u1(y
′, t′1; v1) = v1 + t′1 + ω1 = t1 + ω1 = u1(y, t1; v1),

u2(y
′, t′2; v2) = v2 + t′2 + ω1 > t2 + ω2 = u2(y, t2; v2),

which contradict (y, t) ∈ P (v).

• Case 2: v1 + v2 < c. In this case, it suffices to show that y = 0, because this

together with (y, t) ∈ P (v) implies that u1(y, t1; v1) + u2(y, t2; v2) = ω1 + ω2. To

show this, suppose by contradiction that y = 1. Then, u1(y, t1; v1) = v1 + ω1 + t1,

u2(y, t2; v2) = v2+ω2+t2, and −(t1+t2) ≥ c > 0. Without loss of generality, assume

v1 + t1 ≥ v2 + t2. Let (y′, t′) ∈ A be such that y′ = 0, t′1 + t′2 = 0, and t′1 = v1 + t1.

Since v1 + v2 < c, t′1 + t′2 = 0 > v1 + v2 − c ≥ v1 + v2 + (t1 + t2), which implies that

t′2 > v2 + t2. It then follows that

u1(y
′, t′1; v1) = ω1 + t′1 = v1 + t1 + ω1 = u1(y, t1; v1),

u2(y
′, t′2; v2) = ω1 + t′2 > v2 + t2 + ω2 = u2(y, t2; v2),

which contradict (y, t) ∈ P (v).

• Case 3: v1 + v2 = c. Then, either y = 1 or y = 0. If y = 1, then it follows

43



from (y, t) ∈ P (v) that u1(y, t1; v1) + u2(y, t2; v2) = v1 + v2 − c + ω1 + ω2. If y = 0,

then it follows from (y, t) ∈ P (v) that v1 + v2 = c, that u1(y, t1; v1) + u2(y, t2; v2) =

ω1 + ω2 = v1 + v2 − c + ω1 + ω2. □

A.2 Proof of Fact 2

We prove this fact by contraposition. Suppose that an allocation (y, t) ∈ A is not

decision efficient for v. Then, y /∈ arg maxy′∈{0,1}(v1 + v2) · y′ − c · y′. There are two

cases.

• Case 1: y = 1. Then,

0 > v1 + v2 − c. (2)

Let (y′, t′) ∈ A be such that y′ = 0 and for each i ∈ {1, 2},

t′i ≡ ti + vi +
c − (v1 + v2)

2
.

Note that by −(t1 + t2) ≥ c,

t′1 + t′2 = t1 + t2 + v1 + v2 + c − (v1 + v2)

= t1 + t2 + c

≤ 0.

By (2), we have

u1(y
′, t′1; v1) = ω1 + t′1 = ω1 + t1 + v1 +

c − (v1 + v2)

2
> ω1 + t1 + v1 = u1(y, t1; v1),

u2(y
′, t′2; v2) = ω2 + t′2 = ω2 + t2 + v2 +

c − (v1 + v2)

2
> ω2 + t2 + v2 = u2(y, t2; v2).

These imply that (y, t) /∈ P (v).

• Case 2: y = 0. Then,

v1 + v2 − c > 0. (3)

Let (y′, t′) ∈ A be such that y′ = 1 and for each i ∈ {1, 2},

t′i ≡ ti − vi +
v1 + v2 − c

2
.
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Note that by −(t1 + t2) ≥ 0,

t′1 + t′2 = t1 + t2 − v1 − v2 + v1 + v2 − c

= t1 + t2 − c

≤ −c.

By (3), we have

u1(y
′, t′1; v1) = v1 + ω1 + t′1 = ω1 + t1 +

v1 + v2 − c

2
> ω1 + t1 = u1(y, t1; v1),

u2(y
′, t′2; v2) = v2 + ω2 + t′2 = ω2 + t2 +

v1 + v2 − c

2
> ω2 + t2 = u2(y, t2; v2).

These imply that (y, t) /∈ P (v). □

A.3 Proof of Fact 3

A.3.1 The “if” part

Suppose, by contradiction, that (y, t) ∈ A is not individually rational for v. Then,

there exist i ∈ {1, 2} and (y′, t′i) ∈ Ai such that ui(y
′, t′i; vi) > ui(y, ti; vi). There are

two cases.

• Case 1: vi ≥ c. Then, ui(y
′, t′i; vi) > ui(y, ti; vi) ≥ vi − c + ωi. If y′ = 1, then

vi + ωi + t′i > vi − c + ωi, which implies −t′i < c, a contradiction. If y′ = 0, then

ωi + t′i > vi − c + ωi, which implies −t′i < c − vi < 0, a contradiction.

• Case 2: vi < c. Then, ui(y
′, t′i; vi) > ui(y, ti; vi) ≥ ωi. If y′ = 1, then vi+ωi+t′i >

ωi, which implies −t′i < vi < c, a contradiction. If y′ = 0, then ωi + t′i > ωi, which

implies −t′i < 0, a contradiction. □

A.3.2 The “only if” part

We prove this by contraposition. Suppose that there are (y, t) ∈ A and i ∈ {1, 2}
such that (1) does not hold. If vi ≥ c, then ui(y, ti; vi) < vi − c+ωi. Let (y′, t′i) ∈ Ai

be such that y′ = 1 and t′i = −c. Then, ui(y, ti; vi) < ui(y
′, t′i; vi), which implies

(y, t) /∈ I(v). If vi < c, then ui(y, ti; vi) < ωi. Let (y′, t′i) ∈ Ai be such that y′ = 0

and t′i = 0. Then, ui(y, ti; vi) < ui(y
′, t′i; vi), which implies (y, t) /∈ I(v). □
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A.4 Proof of Proposition 1

Let v ∈ V . We proceed in two steps.11

Step 1: For each i ∈ {1, 2}, U(SVC
i ; (ΓVC, v)) = [0, vi[. Let i ∈ {1, 2}.

Without loss of generality, assume i = 1.

◦ Substep 1-1: Any s1 ∈ [v1, ω1] is weakly dominated. Let s1 ∈ [0, v1[. Since

ω2 ≥ c by A1, there exists s∗2 ∈ SVC
2 such that s1 + s∗2 = c. Let s∗∗2 ∈ SVC

2 be such

that s′1 + s∗∗2 = c. Note that s∗∗2 < s∗2. Let s′2 ∈ SVC
2 . There are three cases.

• Case 1: s′
2 ∈ [0, s∗∗

2 [. Then, gVC(s1, s
′
2) = gVC(s′1, s

′
2) = (0, (0, 0)), which implies

u1(g
VC
1 (s2, s

′
2); v1) = ω1 = u1(g

VC
1 (s′2, s

′
2); v1).

• Case 2: s′
2 ∈ [s∗∗

2 , s∗
2[. Then, gVC(s1, s

′
2) = (0, (0, 0)) and gVC(s′1, s

′
2) =

(1, (−s′1,−s′2)). Since s′1 ≥ v1,

u1(g
VC
1 (s1, s

′
2); v1) = ω1 ≥ v1 + ω1 − s′1 = u1(g

VC
1 (s′1, s

′
2); v1).

• Case 3: s′
2 ∈ [s∗

2, ω2]. Then, gVC(s1, s
′
2) = (1, (−s1,−s′2)) and gVC(s′1, s

′
2) =

(1, (−s′1,−s′2)). Since s′1 > s1,

u1(g
VC
1 (s1, s

′
2); v1) = v1 + ω1 − s1 > v1 + ω1 − s′1 = u1(g

VC
1 (s′1, s

′
2); v1).

By Cases 1–3, we can conclude that s′1 is weakly dominated.

◦ Substep 1-2: Any s1 ∈ [0, v1[ is not weakly dominated. Note that there

exists s∗2 ∈ SVC
2 be such that s1 + s∗2 = c. Let s′1 ∈ SVC

1 \ {s1}. There are two cases.

• Case 1: s1 > s′
1. Then gVC(s1, s

∗
2) = (1, (−s1,−s∗2)) and gVC(s′1, s

∗
2) = (0, (0, 0)).

Since v1 > s1,

u1(g
VC
1 (s1, s

∗
2); v1) = v1 + ω1 − s1 > ω1 = u1(g

VC
1 (s′1, s

∗
2); v1).

• Case 2: s1 < s′
1. Then, gVC(s1, s

∗
2) = (1, (−s1,−s∗2)) and gVC(s′1, s

∗
2) =

11Let a, b ∈ R be such that a ≤ b. Then, we denote by [a, b] and ]a, b[ the closed interval from a
to b and the open interval from a to b, respectively. We also denote by [a, b[ and ]a, b] the half-open
intervals from a to b.
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(1, (−s′1,−s∗2)). Since s′1 > s1,

u1(g
VC
1 (s1, s

∗
2); v1) = v1 + ω1 − s1 > v1 + ω1 − s′1 = u1(g

VC
1 (s′1, s

∗
2); v1).

By Cases 1–2, s1 is not weakly dominated.

Step 2: A(ΓVC, v) ⊆ C(v). There are two cases.

• Case 1: v1 + v2 > c. For each i ∈ {1, 2}, let

si ≡ inf {si ∈ [0, vi[ : si + sj = c for some sj ∈ [0, vj[} .

Note that under A1, for each si ∈ [0, si] and each sj ∈ [0, vj[, gVC(si, sj) = (0, (0, 0)).

◦ Substep 2-1: For each i ∈ {1, 2} and each s′
i ∈ [0, si], s′

i is weakly

dominated in the game (ΓVC(U), v). Let i ∈ {1, 2}. Without loss of generality,

assume i = 1. Let s1, s
′
1 ∈ [0, v1[ be such that s′1 ≤ s1 < s1. Then, there exists

s∗2 ∈ [0, v2[ such that s1 + s∗2 = c. It follows that gVC(s1, s2) = (0, (0, 0)) if s2 < s∗2

and gVC(s1, s2) = (1, (−s1,−s2)) otherwise. Let s2 ∈ [0, v2[. We also distinguish

two subcases.

1. If s2 < s∗2, then gVC
1 (s1, s2) = gVC

1 (s′1, s2) = (0, (0, 0)), which implies

u1(g
VC
1 (s1, s2); v1) = ω1 = u1(g

VC
1 (s′1, s2); v1).

2. If s2 ≥ s∗2, then gVC
1 (s1, s2) = (1, (−s1,−s2)) and gVC

1 (s′1, s2) = (0, (0, 0)).

Since v1 > s1,

u1(g
VC
1 (s1, s2); v1) = v1 + ω1 − s1 > ω1 = u1(g

VC
1 (s′1, s2); v1).

Hence s′1 is weakly dominated.

◦ Substep 2-2: For each i ∈ {1, 2} and each si ∈ ]si, vi[, si is not weakly

dominated in the game (ΓVC(U), v). Let i ∈ {1, 2}. Without loss of generality,

assume i = 1. Let s1 ∈ ]s1, v1[. Note that there exists s∗2 ∈ [0, v2[ such that

s1 + s∗2 = c. Let s′1 ∈ [0, v1[ \{s1}. We also distinguish two subcases.

1. If s1 > s′1, then gVC
1 (s1, s

∗
2) = (1, (−s1,−s∗2)) and gVC

1 (s′1, s
∗
2) = (0, (0, 0)).

Since v1 > s1,

u1(g
VC
1 (s1, s

∗
2); v1) = v1 + ω1 − s1 > ω1 = u1(g

VC
1 (s′1, s

∗
2); v1).
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2. If s1 < s′1, then gVC
1 (s1, s

∗
2) = (1, (−s1,−s∗2)) and gVC

1 (s′1, s
∗
2) = (1, (−s′1,−s∗2)).

Since s1 < s′1,

u1(g
VC
1 (s1, s

∗
2); v1) = v1 + ω1 − s1 > v1 + ω1 − s′1 = u1(g

VC
1 (s′1, s

∗
2); v1).

Hence s1 is not weakly dominated.

◦ Substep 2-3: E(ΓVC, v) = {(s1, s2) ∈ [0, v1[ × [0, v2[ : s1 + s2 = c}.

We first show that E(ΓVC, v) ⊆ {(s1, s2) ∈ [0, v1[ × [0, v2[ : s1 + s2 = c}. Let

s ∈ E(ΓVC, v). Suppose, by contradiction, that s1 + s2 6= c. If s1 + s2 > c, there

exists i ∈ {1, 2} with si > 0. Let ε > 0 be such that si + sj > c + ε. Let s′i = si − ε.

Then,

ui(g
VC
i (s′i, sj); vi) = vi + ωi − si + ε > vi + ωi − si = ui(g

VC
i (si, sj); vi),

a contradiction. If s1 + s2 < c, by Substeps 2.1 and 2.2, then s1 > s1 and s2 > s2.

Let i ∈ {1, 2}. Then, there exists s′i such that s′i + sj = c. Since vi > si,

ui(g
VC
i (s′i, sj); vi) = vi + ωi − si > ωi = ui(g

VC
i (si, sj); vi),

a contradiction.

We next show that {(s1, s2) ∈ [0, v1[ × [0, v2[ : s1 + s2 = c} ⊆ E(ΓVC, v). Let

s′ = (s′1, s
′
2) ∈ {(s1, s2) ∈ [0, v1[ × [0, v2[ : s1 + s2 = c}. Then, for each i, j ∈ {1, 2}

and each s′′i (> si),

ui(g
VC
i (s′i, s

′
j); vi) = vi + ωi − si ≥ ui(g

VC
i (s′′i , s

′
j); vi).

Moreover, since s′1 + s′2 = c, both s′1 and s′2 are not weakly dominated. Thus,

s′ ∈ E(ΓVC, v).

◦ Substep 2-4: Concluding. It follows from Substep 2-3 that A(ΓVC, v) ⊆ C(v).

• Case 2: v1 +v2 ≤ c. To show A(ΓVC, v) ⊆ C(v), we first show that E(ΓVC, v) =

[0, v1[ × [0, v2[. It is obvious that E(ΓVC, v) ⊆ [0, v1[ × [0, v2[. Therefore, it suffices

to show that [0, v1[ × [0, v2[ ⊆ E(ΓVC, v). Let (s1, s2) ∈ [0, v1[ × [0, v2[. Since

s1 + s2 < c, gVC(s) = (0, (0, 0)). It follows that for each i ∈ {1, 2}, si is not weakly

dominated in the game (ΓVC(U), v) and, moreover, (s1, s2) is a Nash equilibrium of

the game (ΓVC(U), v). Hence (s1, s2) ∈ E(ΓVC, v). It then follows that A(ΓVC, v) =

{(0, (0, 0))} ⊆ C(v). □
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B Appendix: Implementation in iterated elimi-

nation of weakly dominated strategies

This section shows that the voluntary contribution mechanism cannot implement

any sub-correspondence of the core in iterated elimination of weakly dominated

strategies. To see this, suppose that ω1 = ω2 = 8 and c = 8.

We now consider the case where v = (7, 7). Let U1
i ≡ U(SVC

i ; (ΓVC, v)) and

U1 ≡ U1
1 × U1

2 . From the proof of Proposition 1 (Step 2), we obtain the following

facts:

• For each i ∈ {1, 2}, U1
i = [0, 7[;

• For each i ∈ {1, 2} and each si ∈ [0, 1[, si is weakly dominated in the game

(ΓVC(U1), v); and

• For each i ∈ {1, 2} and each si ∈ U1
i \ [0, 1[ = ]1, 7[, si is not weakly dominated

in the game (ΓVC(U1), v).

Therefore, for each i ∈ {1, 2}, U2
1 ≡ U(U1

i ; (ΓVC(U1), v)) = ]1, 7[. We now show

that for each i ∈ {1, 2} and each si ∈ U2
i , si is not weakly dominated in the game

(ΓVC(U2), v). Let i ∈ {1, 2}. Without loss of generality, assume i = 1. Let s1 ∈ U2
1 .

Note that there exists s∗2 ∈ U2
2 such that s1 + s∗2 = c = 8. Let s′1 ∈ U2

1 \ {s1}. There

are two cases.

• Case 1: s1 > s′
1. Then, gVC

1 (s1, s
∗
2) = (1, (−s1,−s∗2)) and gVC

1 (s′1, s
∗
2) = (0, (0, 0)).

Since v1 = 7 > s1,

u1(g
VC
1 (s1, s

∗
2); v1) = v1 + ω1 − s1 = 8 + (7 − s1) > 8 = ω1 = u1(g

VC
1 (s′1, s

∗
2); v1).

• Case 2: s1 < s′
1. Then, gVC

1 (s1, s
∗
2) = (1, (−s1,−s∗2)) and gVC

1 (s′1, s
∗
2) =

(1, (−s′1,−s∗2)). Since s1 < s′1,

u1(g
VC
1 (s1, s

∗
2); v1) = v1 + ω1 − s1 > v1 + ω1 − s′1 = u1(g

VC
1 (s′1, s

∗
2); v1).

From Cases 1–2, we can conclude that s1 is not weakly dominated. This fact im-

plies that the set of iterated elimination of weakly dominated strategies is ]1, 7[ × ]1, 7[.

We now consider the strategy profile (2, 2). Then, (2, 2) ∈ ]1, 7[ × ]1, 7[ but
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gVC(2, 2) = (0, (0, 0)) /∈ C(v). This implies that the voluntary contribution mecha-

nism fails to implement any sub-correspondence of the core in iterated elimination

of weakly dominated strategies.

C Appendix: Experimental instructions (PC and

VC)

In this experiment, please remember that you cannot talk or communicate with other

subjects. If there is communication, the experiment will be stopped at that point.

First, please confirm that the following items are on your desk. If any of the

items are missing, please contact an experimenter.

• Instructions (this set of papers)

• Payoff table for practice

• Record sheet for practice

• Pencil and eraser

C.1 Overview

In this experiment, at the beginning of each period, an experimenter will choose

the person you are paired with from the other subjects at random. The person you

are paired with will change each period. This experiment consists of 20 periods.

As explained in more detail below, at the beginning of each period, you will make

decisions using a computer assigned to you based on the “Payoff table.” You will

choose one integer number from 1 to 20 in each period. No subject knows who they

have been paired with either during or after the experiment.

The rewards you receive after the experiment is complete are proportional to the

total payoffs you earn throughout the 20 periods of the experiment. A detailed ex-

planation of the rewards you receive will be provided later in Section C.4 (Rewards).

C.2 Details

You will choose one integer number from 1 to 20 in each period. Your payoff in each

period is determined by the “Outcome” of the period. The outcome is determined
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by the number you choose as well as the number the other person chooses. Your

“Payoff table” describes the relation between outcomes and the payoffs you earn.

Your “Payoff table” displays both your payoff and the other person’s payoff when

the number you choose and the number the other person chooses are determined.

The following table is a part of the “Payoff table for practice.”

The vertical line of the above table shows the number you choose, and the hori-

zontal line is the number the other person chooses. The lower left-hand red number

is your payoff, and the upper right-hand blue number is the other person’s payoff in

each cell. The numbers in each cell are displayed in yen.

For example, suppose that the number you choose is “3,” and the number the

other person chooses is “1.” In this case, your payoff is “140” when the vertical line

is 3 and the horizontal line is 1. Then, the other person’s payoff is “100.”

The person you are paired with is chosen from the other subjects at random by

an experimenter. The person you are paired with has a payoff table in which the

vertical line and the horizontal line of your payoff table are reversed.

C.3 Operation

This experiment consists of 20 periods. Here, we will explain how to operate the

computer you will use in period 1 of the experiment. The operation after period 1

is the same as the operation in period 1.

1. At the beginning of period 1, you will be paired with the person an exper-

imenter will choose from the other subjects at random. Then, “Input one

integer number from 1 to 20” is displayed on the screen of your computer.

The following figure is an example of the screen.
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2. Please look at the “Payoff table” and confirm the relation between the numbers

you and the other person choose and the payoffs.

3. After deciding which number to choose, you input that number in the cell of

“The number you chose.” Then, click the “OK” button at the bottom of the

screen.

4. After inputting the number you chose on your computer, fill out the number

you chose in the column “the number you chose” in the record sheet. Moreover,

please fill out why you chose that number in the column “Reason for your

decision” in the record sheet.

5. After all subjects click the “OK” button, period 1 is complete. Then, “The

number you chose,” “The number the other person chose,” and “Your payoff”

are displayed on the screen. We ask that you transcribe this information in

the record sheet.

6. After the transcription, please the “NEXT” button at the bottom of the screen.

Once all subjects click the “NEXT” button, period 2 will start. At the beginning

of period 2, you will be paired with the person an experimenter will choose from the
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other subjects at random. The operation after period 1 is the same as the operation

in period 1. The experiment is complete when period 20 is complete.

C.4 Rewards

Your rewards are the sum of your payoffs over all 20 periods. For example, if the

sum of your payoffs are 2,580, then your rewards are 2,580 yen. If you earn more

payoffs in each period, then you receive more rewards.

This concludes our explanation. Next, you can practice making decisions using

the “Payoff table for practice.” After practicing, you will have some time to look at

the payoff table for the actual experiment before we begin the experiment. If you

have any questions, please raise your hand.
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