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Abstract

The number of items in e-commerce sites is continuously increasing,
and attributes of those items are becoming more complicated. So it is
crucial to find a way to deal with complicated data. A recommenda-
tion system using Nonnegative Tensor Factorization, NTF, is one way
to tackle the problem. In NTF, we can deal with the data with 3 or
more attributes like users, categories, and so on, as tensor’s axes. In this
paper, we proposed a new enhancement of NTF, named Graph Regular-
ized NTF (G-NTF). The idea is based on one of the enhancements of
Nonnegative Matrix Factorization, GWNMF [2]. Its factorization is reg-
ularized by graph networks which represent similarities between elements
in each attribute respectively. We proved that the simple improvement of
GWNMF’s updating formula will converge in our method. G-NTF was
applied to the real dataset of an apparel e-commerce site. This revealed
that our method is successful and can recommend more suitable items to
users than any other methods.

1 Introduction

Market size of e-commerce is expanding significantly, and the number of items
in e-commerce sites is increasing. Therefore, for each user, to find and pick
up items they really want are becoming difficult. Improving recommendation
system is a fundamental problem in such a situation [4]. Users will purchase
more if they can find items they want more easily, thereby e-commerce sites can
increase their sales.

Nonnegative Matrix Factorization is popular way to recommend. If the
training data is highly sparse because of too many items, however, the accuracy
of recommendation tends to be low. There is a lot of research to tackle the
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problem [5]. However, as long as we try to recommend the specific item, it is
not practical, and we cannot complement whole missing data by using the small
amount of data. Instead of recommending specific item, we try to lower sparsity
by recommending a set of items whose some of attributes match. We can use
the tensor to deal with combination of some attributes. Each purchasement’s
log is stored in the element of the tensor. Each element corresponds to one user
and one combination of some attributes. Nonnegative Tensor Factorization is
one way to recommend by using the tennor.

In this paper, we propose the enhancement of NTF, denoted by G-NTF.
Factorization of G-NTF is regularized by graph networks which represent sim-
ilarities between elements in each attribute respectively. This is because that
feature vectors of two users with similar purchasing tendencies should be similar.

We apply our method to the real dataset of order histories of the apparel
e-commerce site, and evaluate our method. In the dataset, order histories are
recorded with attributes of the apparel item, for example classification, price,
color, and so on. Note that, the dataset was provided on Data Analysis Compe-
tition 2016 sponsored by Joint Association Study group of Management sCience
(JASMAC).

2 Related Works

There are a lot of recommendation algorithms, but they would be classified
into the two; the content-based filtering and the collaborative filtering. In this
paper we focus on the latter. Intuitively, by using the collaborative filtering
algorithm, we can recommend the user the item which was bought by other
users who behaved like the user. Through this approach, we can recommend
variety of items. Especially, we introduce NMF, GWNMF and NTF in this
section.

Nonnegative Matrix Factorization, NMF, is one of the most popular col-
laborative filtering algorithm. NMF decomposes one nonnegative matrix X ∈
RN×M

+ into the two nonnegative matrices A ∈ RN×D
+ and B ∈ RM×D

+ , so that
the product ABT approximates X. In the context of the recommendation, N
is the number of users, M is the number items. The n-th row vector of A,
denoted by An· can be regarded as the feature vector of the user n.

To find matrices A,B, NMF is formulated as follows;

min L = ∥X −ABT ∥2
s.t. A,B ≥ 0

(1)

Gu et al. [2] proposed Graph Regularized Weighted Nonnegative Matrix
Factorization, GWNMF, which works as a more precise recommendation system
than NMF. The method uses the information of similarities between users and
also between items in the process to find factor matrices.

We define user similarity matrix WA = {WA
ij }, each element represents

similarity between user i and j. It is calculated by using the information of
users’ ages, sex and so on. Similarly, it is needed to calculate item similarity
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matrix WB = {WB
ij } each element represents similarity between item i and j,

by using the information of categories of items.
Two feature vectors corresponding two users who have high similarity score

should be close. It is the same for items. Therefore, Gu et al. [2] formulated
GWNMF as follows;

min L = ∥X −ABT ∥2
+λA

2

∑
ij ∥Ai· −Aj·∥WA

ij

+λB

2

∑
ij ∥Bi· −Bj·∥WB

ij

= ∥X −ABT ∥2
+λAtrace

(
ATLAA

)
+ λBtrace

(
BTLBB

)
s.t. A,B ≥ 0

(2)

where λA and λB are parameters of regularization, DA is the diagonal matrix
whose diagonal elements are DA

ii =
∑n

j=1 W
A
ij , L

A = DA −WA is the graph
laplasian. Note that, the formulation is different from exact graph regularized
WEIGHTED NMF which Gu et al. proposed. In this paper, for simplicity, we
omit the weight matrix which defines how much to consider errors related to
certain elements.

And also Gu et al. proposed the algorithm to find the solution of optimiza-
tion problem below. The main step of the algorithm is composed by updating
for each element. Updating formula of A’s element is given as follows;

And ← And

√ [
XB + λAL

−
AA

]
nd[

(ABT )B + λAL
+
AA

]
nd

, (3)

where LA
+ is the matrix which is replaced negative elements of matrix LA by

zero, and LA
− = LA

+ − LA. Similarly, we define LB
+ and LB

− with updating
formula of B’s element is Given as;

Bmd ← Bmd

√ [
XTA+ λBL

−
BB

]
md[

(ABT )TA+ λBL
+
BB

]
md

. (4)

Nonnegative Tensor Factorization [1], NTF, is simple extension of NMF.
NTF decomposes one K-dimensional nonnegative tensor X′ ∈ RN1×···×Nk

+ into
K nonnegative matrices like A(1) ∈ RN1×D, . . . ,A(K) ∈ RNK×D.

There are two approaches to formulate NTF, CP factorization and Tucker
factorization, but we focus on the former 0in this research.

CP factorization is formulated as follows;

min L = ∥X′ −
∑D

d=1 A(1)·d ◦ · · · ◦A(K)·d∥
2

s.t. A(1), · · · ,A(K) ≥ 0
(5)

where A(k)·d represents d-th column vector of A(k) and the operator ◦ repre-
sents outer product of vectors.
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3 Graph Regularized Nonnegative Tensor Fac-
torization

In this section we propose Graph Regularized Nonnegative Tensor Factorization,
G-NTF. It is enhanced NTF which introduces the idea of Graph Regularization.
G-NTF decomposes the k-dimensional tensor formulated as follows;

min L = ∥X′ −
∑D

d=1 A(1)·d ◦ · · · ◦A(K)·d∥
2

+
λ(1)

2

∑
ij ∥A(1)i· −A(1)j·∥W

(1)
ij

+ · · ·+ λ(K)

2

∑
ij ∥A(K)i· −A(K)j·∥W

(K)
ij

s.t. A(1), · · · ,A(K) ≥ 0

(6)

When k = 2, the formulation is same as graph regularized NMF. And practically,
k is assumed to be k = 3, 4 or so.

3.1 Updating Formula and Algorithm

To optimize Eq.(6), we propose the algorithm which updates each value of factor
matrices repeatedly. Each value is updated as optimizing so that other values
are fixed.

First, we focus on updating the values of matrix A(1). If we pay attention
to matrix A(1), Eq.(6) is able to rewrite as follows;

min L = ∥X ′
(1) −

∑D
d=1 A(1)·d ◦ V(1)

T
·d∥

2

+λ(1)trace
(
AT

(1)L
1A(1)

)
= ∥X ′

(1) −A(1)VT
(1)∥

2

+λ(1)trace
(
AT

(1)L
1A(1)

)
s.t. A(1) ≥ 0

(7)

where X ′
(1) is a mode-(1) flatten tensor, X ′

(1) ∈ RN1×
∏

i̸=1 Ni , which refers to
X′ ( General cases will be defined later), V(1) is defined as

V(1)·d =
(
A(2)·d ⊗

(
· · · ⊗

(
A(K−1)·d ⊗A(K)·d

)
· · ·

))
where the operator ⊗ represents Kronecker product, V(1) is defined as

V(1) =
((
· · ·

(
A(K) ⊙A(K−1)

)
⊙ · · ·

)
⊙A(2)

)
,

where the operator ⊙ represents Khatri-Rao product.
Now, objective function of Eq.(7) is considered as objective function of

GWNMF (Eq.(2)) respect to A

min L = ∥X −ABT ∥2
+λ(1)trace

(
ATL1A

) (8)
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Then we can obtain updating formula

A(1)n1d
← A(1)n1d

√√√√√√
[
X ′

(1)V(1) + λ(1)L
−
(1)A(1)

]
n1d[

(A(1)VT
(1))V(1) + λ(1)L

+
(1)A(1)

]
n1d

. (9)

Similarly, with respect to A(k), we can use updating formulas as follows;

A(k)nkd
← A(k)nkd

√√√√√√
[
X ′

(k)V(k) + λ(k)L
−
(k)A(k)

]
nkd[

(A(k)VT
(k))V(k) + λ(k)L

+
(k)A(k)

]
nkd

(10)

where
{X ′

(k)}i,j = X ′
I1,··· ,Ii−1,i,Ii+1,··· ,IK ,

Is =


(
j/

(∏
l ̸=1,...,s,k,...,K Nl

)
+ 1

)
%Ns for s < k(

j/
(∏

l ̸=k,...,s Nl

)
+ 1

)
%Ns for s > k

,

V(k) =((
· · ·

(((
· · ·

(
A(k−1) ⊙A(k−2)

)
⊙ · · ·

)
⊙A(1)

)
⊙A(K)

)
⊙ · · ·

)
⊙A(k+1)

)
.

In the definition of Is, operator/ represents a quotient, operator % represents a
remainder, and if the remainder is equol to zero it is considered as Is = Ns.

3.2 Convergence

As Gu et al. proved the convergence of the algorithm for GWNMF, the algo-
rithm for G-NTF using updating formula, Eq.(10), converges.

Definition 3.1. G(h, h′) is an auxiliary function for F (h) if the conditions
G(h, h′) ≥ F (h), G(h, h) = F (f) are satisfied.

Theorem 3.1. Let

F (A(k)) = trace
(
λ(k)A

T
(k)L(k)A(k)

−2X ′
(k)V(k)AT

(k) + (A(k)VT
(k))V(k)A

T
(k)

)
Then the following function

G(A,A′)

= λ(k)

∑
ij

(L+
(k)

A′
(k))ijA

2
ij

A2
ij

−λ(k)

∑
ijl(L

−
(k))jlA(k)

′
ji
A(k)

′
li

(
1 + log

A(k)ji
A(k)li

A(k)
′
ji
A(k)

′
li

)
−2

∑
ij(X ′

(k)V(k))ijA(k)
′
ij

(
1 + log

A(k)ij

A(k)
′
ij

)
+
∑

ij

((A′
(k)V

T
(k))V(k))

ij
A(k)

2
ij

A(k)
′
ij
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is an auxiliary function for F (A(k)). Furthermor, it is a convex function in
A(K) and its global minimum is given by the right side of Eq.(10)

Proof. As against A(k) ∈ RNk×D, L+
(k) is matrix RNk×Nk and symmetric be-

cause of the definition. Also, VT
(k)V(k) is matrix Rd×d and clearly symmetric.

Therefore, we can use the approach in [2].

Theorem 3.2. For any k, updating A(k) using Eq.(10) will monotonically de-
crease the value of the objective in Eq.(6), hence it converge.

Proof. By theorem3.1 and lemma in [3] which is naturaly derived, we can get

F (A0
(k)) = G(A0

(k),A
0
(k)) ≥ G(A1

(k),A
0
(k)) ≥ F (A1

(k)) ≥ · · ·

Therefore, F (A(k)) is monotonically decreasing. Since F (A(k)) is obviously
bounded below, we prove the theorem.

4 Experiments

We carried out three experiments with real apparel e-commerce data, and we
confirmed that G-NTF was the practicality method.

4.1 Datasets

We used the order history data which was corrected on the one of the most
famous fashion e-commerce sites in Japan. It is recorded from April 2015 to
March 2016. The data consists of Order-table, Order-detail-table, User-table
and Item table. Order-table and Order-detail-table have approximately 1M
records of orders, who bought what for how much. User-table is a list of 100K
users and including their age, sex, etc. Item table is a list of approximately 760K
items and has large classification, small classification (we call it ”Category”, or
later), color, etc.

In general, users of the e-commerce site have a price palatability. In other
words, there are users who buy cheap items in any categories, and other users
who buy expensive items in any categories. In the dataset, a similar behavior
was observed. There are users who buy only items in high price range or who
buy only items in low price range. Therefore, we try to recommend items which
have suitable prices for users.

4.2 Pre-processing & Settings

Based on the idea in 4.1 we prepared the 3-dimensional tensor whose axes repre-
sent Users, Categories and PriceRanges respectively, and each element of it rep-
resents ”who bought what for how much”. We also prepared the 2-dimensional
matrix to test NMF and GWNMF. Axes of the matrix represent Users and
combinations of Categories and PriceRanges. Note that, it is same as a mode-
User flatten tensor. Each element of this matrix also represents ”who bought
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Figure 1: Convergence of G-NTF’s objective function value

what for how much”, but even if two columns represent same category, if they
are different price ranges, they are considered as completely different categories.
Therefore, they are thought to perform worse than methods which use the tensor
directly.

To estimate methods, we recommend each user combinate units of the {Category-
PriceRange} which weren’t bought by the user in training term, but correspond-
ing element in the reconstructed tensor or matrix has top-k high value in the
part of the tensor or the matrix related to the user. Having high value means
that corresponding unit is predicted likely to be bought.

To set similarity between users, we separated users into 12 groups according
to sex and age. Then we calculated cosine similarity of each groups’ purchase
vector. Similarities between users were set by similarities of groups which they
belong. Similarities between categories were set by they belong to the same
large classification or not. Similarities between pricerange were set by how close
they are.

We divided the data into training data and test data. Only training data
was used in a training phase. To evaluate methods, we used annual average of
F1 scores of top-k recommendation for test data. F1 score is harmonic mean
precision and recall. Precision is a measure of how many recommended unit was
bought in fact in test term. Recall is a measure of how many units which are
bought in fact in test term was recommended.

4.3 Results

First, Figure 1 shows the result of experiment 1, a convergence of G-NTF’s
objective function value. The training term was set from April to June. The
objective value converged when the number of iteration is 25 or more. Therefore,
in following experiments, we set the number of iteration to 50 with margin.

Table 1 shows the result of experiment 2 to compare methods. Training
term was set at 3 months, and test term was set at 1 month. We focus on
the presence of graph regularization. Because of GWNMF and G-NTF showed
higher performance than NMF and NTF respectively, graph regularization has a
good impact on F1 scores. Next we focus on form of data. Because of NTF and
G-NTF showed higher performance than NMF and GWNMF respectively, using

7



Table 1: F1 scores of methods with a different number to recommend and
execution time for train

Method top-1 top-3 top-5 time(s)

NMF 0.041 0.076 0.088 519
GWNMF 0.046 0.085 0.097 581

NTF 0.044 0.078 0.091 1247
G-NTF 0.052 0.093 0.107 1276

Figure 2: F1 scores of G-NTF and NTF with a different length of training terms.

tensors is meaningful in general. In conclusion, our method G-NTF showed the
highest performance. Note that, methods using tensors took more time than
methods using matrices respectively. However, the execution time of G-NTF is
feasible.

Figure 2 shows the result of experiment 3. We changed training terms from
1 month to 6 months, and test term was set at 1 month. With the shorter
training term, both NTF and G-NTF performed better than the case with the
longer training term. Trends and especially seasonality are reasons of this.
Apparel items have those, so it is important to recommend fashionable items.
The shorter the training term, G-NTF outdo NTF. It’s mean that the smaller
the data is, the stronger similarity affects. From these results, we can know that
regularizing by similarity is meaningful to recommend with high performance.

5 Conclusions

In this paper, we have proposed the new recommendation algorithm, G-NTF.
It is the enhancement of NTF with idea of Graph regularization [2]. By us-
ing flatten tensors, we gave the algorithm updating formula which was proved
convergence. And the algorithm shows high recommendation performance than
NMF, GWNMF or neutral NTF, in the experiment with real order history data
of the apparel e-commerce site. Especially, the less training data it has, the
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higher performance it shows. It is practically useful well.
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