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Note on time bounds of two-phase algorithms 
for L-convex function minimization

Kazuo Murota · Akiyoshi Shioura

Abstract We analyze minimization algorithms, called the two-phase algorithms, for L♮-convex functions in

discrete convex analysis and derive tight bounds for the number of iterations.

1 Introduction and Result

With motivations from auction theory, we discuss minimization of a discrete convex function called L♮-

convex function. A function g : Zn → R∪ {+∞} defined on integer lattice points is said to be L♮-convex [10]

if for every p, q ∈ dom g and every nonnegative λ ∈ Z+, it holds that

g(p) + g(q) ≥ g((p+ λ1) ∧ q) + g(p ∨ (q − λ1)), (1.1)

where dom g = {p ∈ Zn | g(p) < +∞}, 1 = (1, 1, . . . , 1), and for p, q ∈ Zn the vectors p ∧ q and p ∨ q denote,

respectively, the vectors of component-wise minimum and maximum of p and q. The concept of L♮-convex

function plays a primary role in the theory of discrete convex analysis [10], and an important application

can be found in auction theory, in addition to discrete optimization and computer vision (see [14]).

We consider a certain type of algorithm for L♮-convex function minimization, called the two-phase

algorithm. While the two-phase algorithm and its variants are originally considered in [12,13] for a specific

L♮-convex function arising from an auction model (see Section 2 for details), the algorithms work for general

L♮-convex functions.

As its name indicates, the two-phase algorithm consists of two phases, the up phase and the down

phase. The algorithm starts from an arbitrarily chosen initial vector, and the vector moves upward in the

up phase and then downward in the down phase. A detailed descrpition of the algorithm is as follows, where

g : Zn → R∪{+∞} is an L♮-convex function, N = {1, 2, . . . , n}, and χX ∈ {0, 1}n is the characteristic vector

of a set X ⊆ N .

Algorithm TwoPhase

Step 0: Find a vector p◦ ∈ dom g and set p := p◦. Go to Up Phase.

Up Phase:

Step U1: Find a minimizer X ⊆ N of g(p+ χX).

Step U2: If g(p+ χX) = g(p), then go to Down Phase.
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Step U3: Set p := p+ χX , and go to Step U1.

Down Phase:

Step D1: Find a minimizer X ⊆ N of g(p− χX).

Step D2: If g(p− χX) = g(p), then output p and stop.

Step D3: Set p := p− χX , and go to Step D1.

In this paper, we analyze the number of updates of vector p in the two-phase algorithm1. We denote

µ(p◦) = min{η(p∗, p◦) | p∗ ∈ argmin g},

where argmin g is the set of minimizers of g and

η(p, q) = ∥p− q∥+∞ + ∥p− q∥−∞ (p, q ∈ Zn), (1.2)

∥q∥+∞ = max(0, q(1), q(2), . . . , q(n)) (q ∈ Zn),

∥q∥−∞ = max(0,−q(1),−q(2), . . . ,−q(n)) (q ∈ Zn).

That is, µ(p◦) is the η-distance from vector p◦ to the nearest minimizer of g.

Theorem 1.1 Suppose that the algorithm TwoPhase is applied to an L♮-convex function g with an initial vector

p◦ ∈ dom g. Then, the number of updates of vector p is bounded by µ(p◦) in the up phase and by µ(p◦) in the

down phase; in total, bounded by 2µ(p◦).

It is noted that while the minimizers X selected in Steps U1 and D1 are not uniquely determined, the

bounds in Theorem 1.1 hold irrespectively of the choice of X.

The following numerical example shows that the bounds in the theorem above are tight.

Example 1.2 Let us consider a function g : Z2 → R ∪ {+∞} given by

g(p(1), p(2)) =

{
−2(p(1)− p(2)) +max{0, p(1)} (if p(1)− p(2) ≤ k),

+∞ (otherwise),
(1.3)

where k is an arbitrary positive integer. It can be shown that g is an L♮-convex function and

argmin g = {(p(1), p(2)) ∈ Z2 | p(1)− p(2) = k, p(1) ≤ 0}.

Suppose that the algorithm TwoPhase is applied to this function g with the initial vector p◦ = (0, 0).

Then, the trajectory of vector p is as follows (see Figure 1):

(0, 0) → (1, 0) → (2, 0) → · · · → (k, 0)

→ (k − 1,−1) → (k − 2,−2) → · · · → (0,−k).

Therefore, the numbers of updates of vector p in the up and down phases are each equal to k. We also have

µ(p◦) = η(p∗, p◦) = k with p∗ = (0,−k) ∈ argmin g. Hence, we see that the bounds in Theorem 1.1 for the

numbers of updates of vector p in the up and down phases are tight. ⊓⊔

We also consider a variant of TwoPhase in [13], named TwoPhaseMinMin, for finding a (unique)

minimal minimizer of an L♮-convex function2. The algorithm TwoPhaseMinMin is different from TwoPhase

in the choice of X in each iteration and the termination condition of each phase. It is obtained from

TwoPhase by changing Steps U1, U2, D1, and D2 to the following:

Step U1: Find the unique minimal minimizer X ⊆ N of g(p+ χX).

Step U2: If X = ∅, then go to Down Phase.

Step D1: Find the unique maximal minimizer X ⊆ N of g(p− χX).

Step D2: If X = ∅, then output p and stop.

1 A weaker statement than Theorem 1.1 is given in an unpublished technical report [12].
2 Due to L♮-convexity, a minimal minimizer is uniquely determined if it exists.
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Fig. 1 Behavior of vector p in Algorithm TwoPhase applied to function g in (1.3) with p◦ = (0, 0). The thick half-line

corresponds to the set of minimizers of g.

The following bounds for the numbers of updates of p are shown in [13]3, where p∗min ∈ Zn denotes the

unique minimal minimizer of L♮-convex function g.

Proposition 1.3 ([13, Theorem 4.13]) Suppose that the algorithm TwoPhaseMinMin is applied to an L♮-

convex function g with an initial vector p◦ ∈ dom g. Then, the number of updates of vector p is bounded by

η(p◦, p∗min) in the up phase and by 2η(p◦, p∗min) in the down phase; in total, bounded by 3η(p◦, p∗min).

By Theorem 1.1, we can improve the bound on the number of updates in the down phase. The behavior

of TwoPhaseMinMin applied to an L♮-convex function g is the same as that of TwoPhase applied to

the L♮-convex function gε(p) = g(p) + ε
∑n

i=1 p(i) with a sufficiently small positive ε. Indeed, we have the

following equivalences:

X ⊆ N is a minimizer of gε(p+ χX)

⇐⇒ X is the minimal minimizer of g(p+ χX),

X ⊆ N is a minimizer of gε(p− χX)

⇐⇒ X is the maximal minimizer of g(p− χX),

p ∈ Zn
+ is a minimizer of gε
⇐⇒ p is the minimal minimizer of g.

These facts, together with Theorem 1.1, imply the following bounds.

Theorem 1.4 Suppose that the algorithm TwoPhaseMinMin is applied to an L♮-convex function g with an

initial vector p◦ ∈ dom g. Then, the number of updates of vector p is bounded by η(p◦, p∗min) in the up phase and

by η(p◦, p∗min) in the down phase; in total, bounded by 2η(p◦, p∗min).

2 Motivation from Auction Theory

This research is motivated by design and analysis of iterative auction in auction theory. In the auction

literature an algorithm (a mechanism, more precisely) called iterative auction (also called dynamic auction,

Walrasian tâtonnement process, etc.) is often used to find equilibrium prices of goods (see, e.g., [3,4]). An

3 While the algorithm TwoPhaseMinMin in [13] is proposed as an algorithm for a specific L♮-convex function (i.e.,

Lyapunov function), the algorithm as well as its analysis can be naturally extended to general L♮-convex functions.
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iterative auction updates prices repeatedly by using bidders’ demand information, and finds equilibrium

prices. A well-known iterative auction is the English auction for a single item.

Let us consider an auction market with n types of items, denoted by N = {1, 2, . . . , n}, and m bidders,

denoted by M = {1, 2, . . . ,m}. Each bidder i ∈ M has his/her valuation function fi : 2N → Z with the

value fi(X) representing the degree of satisfaction for an item set X ⊆ N . We assume that each fi is an

integer-valued function satisfying the so-called “gross-substitutes” condition, which is a natural assumption

for valuation functions (see [2,6,7] for the precise definition). An allocation of items is defined as a family

of item sets X1, X2, . . . , Xm satisfying Xi ∩Xh = ∅ if i ̸= h and
∪

i∈M Xi ⊆ N .

The goal of an auction is to find equilibrium allocation and prices of items. A pair of price vector p∗ ∈ Zn
+

and an allocation of items X∗
1 , X

∗
2 , . . . , X

∗
m is called a Walrasian equilibrium [3,4] if the following conditions

hold:

X∗
i ∈ argmax{fi(X)−

∑
j∈X

p(j) | X ⊆ N} (i ∈ M),

p(j) = 0 (j ∈ N \
∪
i∈M

X∗
i ).

Hence, in the equilibrium each bidder gets his/her best item set and all unsold items have zero price.

The natural and popular iterative auctions are ascending and descending auctions, in which prices are

monotonically increasing or decreasing. Monotone movement of prices is preferable in iterative auctions

since it makes easier to forecast the outcome of equilibrium price computation. For the unit-demand auction

model where each bidder desires at most one item, an ascending auction and an descending auction are

proposed by Demange–Gale–Sotomayor [5] and by Mishra–Parkes [9], respectively. These iterative auctions

are generalized to the multi-demand auction model by Kelso–Crawford [7], Gul–Stacchetti [6], and Ausubel

[2].

While ascending and descending auctions have a merit that the price movement is monotone, these

iterative auctions have a drawback that the number of iterations is large. In an ascending auction, we

cannot decrease prices during the computation, and therefore the initial prices should be lower bounds of

unknown equilibrium prices. Therefore, even if the auctioneer knows the expectation of equilibrium prices, it

is difficult to reduce the number of iterations by using the knowledge. It is customary in ascending auctions

to set the initial prices to the lowest possible prices, but this makes the number of iterations large. This is

also the case with descending auctions.

To make it possible to start from arbitrarily chosen prices, Andersson–Erlanson [1] proposed an iterative

auction, for the unit-demand model, by combining the ascending auction by [5] and the descending auction

by [9]. The algorithm admits the use of arbitrarily chosen initial prices, and consists of two phases, the

price ascending phase and descending phase. Hence, the movement of prices is first monotone increasing

and then monotone decreasing. Moreover, the flexibility in the choice of initial prices is useful in reducing

the number of iterations, especially when the auctioneer has information about the expected equilibrium

prices. Andersson–Erlanson [1] also theoretically analyzed the number of iterations in the two-phase auction

algorithm.

The connection between equilibrium price computation and optimization is made clear in Ausubel [2],

which shows that a price vector p ∈ Zn
+ is an equilibrium price vector if and only if p is a minimizer of the

Lyapunov function L : Zn
+ → Z given by

L(p) =
m∑
i=1

max{fi(X)− p(X) | X ⊆ N}+ p(N) (p ∈ Zn
+), (2.4)

under the assumption that each fi is an integer valued function satisfying the gross-substitutes condition.

The connection to discrete convex analysis is pointed out in Murota–Shioura–Yang [12,13], which show that

the Lyapunov function is an L♮-convex function, and hence iterative auctions can be seen as minimization

algorithms for a specific L♮-convex function. Indeed, it is shown [13] that some of the existing iterative

auctions coincide with L♮-convex function minimization algorithms applied to the Lyapunov function. In

particular, the two-phase auction algorithm for the unit-demand model by Andersson–Erlanson [1] can be
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recognized as the algorithm TwoPhaseMinMin applied to the Lyapunov function. Moreover, for the multi-

demand model, a two-phase auction algorithm is proposed in [12,13] (see also Ausubel [2]) by applying

TwoPhaseMinMin to the Lyapunov function. Hence, our result (Theorem 1.4) provides tight bounds for

the numbers of iterations required by the two-phase auction algorithms. We here rephrase Theorem 1.4 for

the two-phase auction in [13].

Corollary 2.1 For an arbitrarily chosen initial price vector p◦ ∈ Zn
+, the two-phase auction of Murota–Shioura–

Yang [13] terminates by outputting the unique minimal equilibrium price vector p∗min. The number of updates of

vector p is bounded by η(p◦, p∗min) in the ascending phase and by η(p◦, p∗min) in the descending phase; in total,

bounded by 2η(p◦, p∗min).

3 Proof

In this section we give a proof of Theorem 1.1 by improving the analysis of a more general minimization

algorithm by Kolmogorov–Shioura [8] (named “primal algorithm” in [8]). In this algorithm, vector p can

move upwards or downwards arbitrarily in each iteration, as far as the function value g(p) decreases.

Algorithm GreedyUpDown

Step 0: Find a vector p◦ ∈ dom g and set p := p◦.

Set SuccessUp := false, SuccessDown := false.

Step 1: Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):

Find a minimizer X ⊆ N of g(p+ χX).

If g(p+ χX) = g(p), then set SuccessUp := true;

otherwise set p := p+ χX .

DOWN (do only if SuccessDown is false):

Find a minimizer X ⊆ N of g(p− χX).

If g(p− χX) = g(p), then set SuccessDown := true;

otherwise set p := p− χX .

Step 2: Output p and stop.

The algorithm TwoPhase is a special implementation of the algorithm GreedyUpDown, where UP is

performed repeatedly until SuccessUp is true, and then DOWN is performed repeatedly. We will show the

following bounds for GreedyUpDown, where we say that an update of p in GreedyUpDown is an up-update

if p is updated to p+ χX with some nonempty X, and a down-update if p is updated to p − χX with some

nonempty X.

Theorem 3.1 Suppose that the algorithm GreedyUpDown is applied to an L♮-convex function g with an initial

vector p◦ ∈ dom g. Then, the numbers of up-updates and down-updates of vector p are each bounded by µ(p◦); in

total, the number of updates of p is bounded by 2µ(p◦).

Theorem 1.1 is an immediate corollary of this theorem.

In the following, we prove Theorem 3.1 by using the following property of L♮-convex functions. For a

vector q ∈ Zn, we denote supp+(q) = {j ∈ N | q(j) > 0}.

Lemma 3.2 ([10, Theorem 7.7]) Let g : Zn → R ∪ {+∞} be an L♮-convex function. For every p, q ∈ dom g

with supp+(p− q) ̸= ∅, it holds that

g(p) + g(q) ≥ g(p− χY ) + g(q + χY )

with Y = argmaxj∈N{p(j)− q(j)}.
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We denote by p⊕ the unique minimal vector in argmin{g(q) | q ∈ Zn, q ≥ p◦}, and by p⊖ the unique

maximal vector in argmin{g(q) | q ∈ Zn, q ≤ p◦}. The number of updates of vector p in the algorithm

GreedyUpDown is analyzed in [8].

Proposition 3.3 ([8, Section 2.2]) The number of up-updates (resp., down-updates) of vector p in the algorithm

GreedyUpDown is bounded by ∥p⊕ − p◦∥∞ (resp., ∥p⊖ − p◦∥∞).

The following lemma is a key observation to recast this result to Theorem 3.1.

Lemma 3.4 It holds that ∥p⊕ − p◦∥∞ ≤ µ(p◦) and ∥p⊖ − p◦∥∞ ≤ µ(p◦).

Proof We prove the former inequality ∥p⊕−p◦∥∞ ≤ µ(p◦) only since the latter inequality ∥p⊖−p◦∥∞ ≤ µ(p◦)

can be proven in the same manner.

To prove the inequality ∥p⊕ − p◦∥∞ ≤ µ(p◦), we show that ∥p⊕ − p◦∥∞ ≤ η(p∗, p◦) holds for every

minimizer p∗ of g; recall the definition of η(p∗, p◦) in (1.2).

We first consider the case with p∗ ≥ p◦. Since p⊕ is a minimizer of g in the set {q ∈ Zn | q ≥ p◦}, we
have p⊕ ∈ argmin g. Hence, it holds that

∥p⊕ − p◦∥∞ ≤ ∥p∗ − p◦∥∞ = η(p∗, p◦).

We then assume that supp+(p◦−p∗) ̸= ∅. This implies supp+(p⊕−p∗) ̸= ∅. Let Y = argmaxj∈N{p⊕(j)−
p∗(j)}.

Claim: There exists some t ∈ Y such that p⊕(t) = p◦(t).

[Proof of Claim] By Lemma 3.2, it holds that

g(p⊕) + g(p∗) ≥ g(p⊕ − χY ) + g(p∗ + χY ). (3.5)

Since p∗ is a minimizer of g, we have g(p∗ + χY ) ≥ g(p∗), which, combined with (3.5), implies g(p⊕ −
χY ) ≤ g(p⊕). From this inequality follows that p⊕ − χY ̸≥ p◦ since p⊕ is the minimal vector in the set

argmin{g(q) | q ∈ Zn, q ≥ p◦}. Hence, there exists some t ∈ Y with p⊕(t) = p◦(t). [End of Proof of Claim]

It holds that

∥p∗ − p◦∥−∞ = max
j∈N

{p◦(j)− p∗(j)} (by supp+(p◦ − p∗) ̸= ∅)

≥ p◦(t)− p∗(t)

= p⊕(t)− p∗(t) (by the claim above)

= max
j∈N

{p⊕(j)− p∗(j)} (by t ∈ Y and the definition of Y ).

It follows that for every k ∈ N , we have

p⊕(k)− p◦(k) = [p∗(k)− p◦(k)] + [p⊕(k)− p∗(k)]

≤ ∥p∗ − p◦∥+∞ +max
j∈N

{p⊕(j)− p∗(j)}

= ∥p∗ − p◦∥+∞ + ∥p∗ − p◦∥−∞ = η(p∗, p◦).

Hence, ∥p⊕ − p◦∥∞ ≤ η(p∗, p◦) holds. ⊓⊔

Theorem 3.1 follows from Proposition 3.3 and Lemma 3.4.
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4 Concluding Remark

In this note we analyzed the number of updates of vector p in the algorithm TwoPhase by using the η-

distance µ(p◦) from the initial vector p◦ to the nearest minimizer of the given L♮-convex function g. In [11,12]

some “monotone” algorithms for L♮-convex function minimization, where vector p is monotone increasing

or decreasing, are analyzed, and the bounds for the numbers of updates of vector p are obtained in terms

of the following distances:

µ̂(p◦) = min{∥p∗ − p◦∥∞ | p∗ ∈ argmin g, p∗ ≥ p◦} (p◦ ∈ Zn),

µ̌(p◦) = min{∥p∗ − p◦∥∞ | p∗ ∈ argmin g, p∗ ≤ p◦} (p◦ ∈ Zn),

where it is assumed that µ̂(p◦) = +∞ (resp., µ̌(p◦) = +∞) if argmin g ∩ {q ∈ Zn | q ≥ p◦} = ∅ (resp.,

argmin g ∩ {q ∈ Zn | q ≤ p◦} = ∅).
By definition, we have µ̂(p◦) ≥ µ(p◦) and µ̌(p◦) ≥ µ(p◦) for every p◦ ∈ Zn. In fact, the analysis in Section

3 can be used to show that the inequalities hold with equality whenever µ̂(p◦) and µ̌(p◦) take finite values.

Proposition 4.1

(i) µ̂(p◦) = µ(p◦) holds if argmin g ∩ {q ∈ Zn | q ≥ p◦} ̸= ∅
(ii) µ̌(p◦) = µ(p◦) holds if argmin g ∩ {q ∈ Zn | q ≤ p◦} ̸= ∅.

Proof We prove (i) only since (ii) can be proved similarly. It suffices to show that µ̂(p◦) ≤ µ(p◦). Since

argmin g ∩ {q ∈ Zn | q ≥ p◦} ̸= ∅, we have p⊕ ∈ argmin g, where p⊕ is defined in Section 3. By the first

inequality in Lemma 3.4, we have µ̂(p◦) ≤ ∥p⊕ − p◦∥∞ ≤ µ(p◦). ⊓⊔
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