

No. 2016-1

A 2-approximation algorithm for the minimum
knapsack problem with a forcing graph

Yotaro TAKAZAWA and Shinji MIZUNO

June, 2016

Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, JAPAN
http://educ.titech.ac.jp/iee/

Department of Industrial Engineering and Economics

WWWooorrrkkkiiinnnggg PPPaaapppeeerrr

A 2-approximation algorithm for the minimum
knapsack problem with a forcing graph

Yotaro Takazawa∗ and Mizuno Shinji†

June, 2016

Abstract

Carnes and Shmoys [2] presented a 2-approximation algorithm for
the minimum knapsack problem. We extend their algorithm to the
minimum knapsack problem with a forcing graph (MKPFG), which
has a forcing constraint for each edge in the graph. The forcing con-
straint means that at least one item (vertex) of the edge must be
packed in the knapsack. The problem is strongly NP-hard, since it
includes the vertex cover problem as a special case. Generalizing the
proposed algorithm, we also present an approximation algorithm for
the covering integer program with 0-1 variables.

keywords: Approximation algorithms, Minimum knapsack problem, Forc-
ing graph, Covering integer program

1 Introduction

For a given minimization problem having an optimal solution, an algorithm
is called an α-approximation algorithm if it runs in polynomial time and
produces a feasible solution whose objective value is less than or equal to α

∗Depertment of Industrial Engineering and Economics, School of Engineering, Tokyo
Institute of Technology, 2-12-1-W9-58, Oo-Okayama, Meguro-ku, Tokyo, 152-8552, Japan.
E-mail: takazawa.y.ab@m.titech.ac.jp

†Depertment of Industrial Engineering and Economics, School of Engineering, Tokyo
Institute of Technology, 2-12-1-W9-58, Oo-Okayama, Meguro-ku, Tokyo, 152-8552, Japan.
Tel.: +81-3-5734-2816, Fax: +81-3-5734-2947, E-mail: mizuno.s.ab@m.titech.ac.jp.

1

times the optimal value. Carnes and Shmoys [2] presented a 2-approximation
algorithm for the following minimum knapsack problem:

min
∑
j∈V

cjxj

s.t.
∑
j∈V

ajxj ≥ b,

xj ∈ {0, 1}, ∀j ∈ V = {1, · · · , n},

(1)

where V is a set of n items, aj, cj ≥ 0 (j ∈ V), and b > 0. Without loss of
generality, we assume

∑
j∈V aj ≥ b so that the problem is feasible.

In this paper, we propose a 2-approximation algorithm for the minimum
knapsack problem with a forcing graph:

MKPFG

∣∣∣∣∣∣∣∣∣∣∣∣

min
∑
j∈V

cjxj

s.t.
∑
j∈V

ajxj ≥ b,

xi + xj ≥ 1, ∀{i, j} ∈ E,
xj ∈ {0, 1}, ∀j ∈ V = {1, · · · , n},

(2)

by extending the algorithm of Carnes and Shmoys [2], where E is a set of
edges {i, j} ∈ V × V . The constraint xi + xj ≥ 1 means that either i or j
must be chosen. It is called a forcing constraint and the graph G = (V,E) is
called a forcing graph.

The problem MKPFG (2) includes the minimum weight vertex cover
problem (VCP) as a special case. It is known that VCP is a strongly NP-hard
problem and has inapproximability such that the problem is hard to approx-
imate within any constant factor better than 1.36 unless P = NP [5] and 2
under unique games conjecture [9]. It follows that MKPFG is strongly NP-
hard and has at least the same inapproximability as VCP. Bar-Yehuda and
Even [1] proposed a 2-approximation algorithm for VCP, so we also extend
their result.

The maximum version of MKPFG is known as the knapsack problem
with a conflict graph (KPCG). KPCG is the maximum knapsack problem
with disjunctive constraints for pairs of items which cannot be packed si-
multaneously in the knapsack. KPCG is also referred to as the disjunctively
constrained knapsack problem. Exact and heuristic algorithms for KPCG
were studied by [6, 7, 12] and approximation algorithms were proposed by

2

[10, 11]. Any exact algorithm for KPCG can solve MKPFG since MKPFG
can be transformed into KPCG by complementing the variables. However,
the approach of converting MKPFG into KPCG cannot be used in general
when we consider the performance guarantee of approximation algorithms.
To our knowledge, no approximation algorithms for MKPFG are presented
so far.

In section3, we generalize our algorithm to the covering integer program
with 0-1 variables (CIP), which is also referred to as the capacitated covering
problem.

2 An Algorithm and Analysis

Carnes and Shmoys [2] used the following LP relaxation of the minimum
knapsack problem (1), which was constructed by Carr et al. [3]:

min
∑
j∈V

cjxj

s.t.
∑

j∈V \A

aj(A)xj ≥ b(A), ∀A ⊆ V,

xj ≥ 0, ∀j ∈ V,

(3)

where

b(A) = max{0, b−
∑

j∈A aj}, ∀A ⊆ V,

aj(A) = min{aj, b(A)}, ∀A ⊆ V, ∀j ∈ V \A. (4)

It is known that any feasible 0-1 solution of (3) is feasible for (1).
Similarly, we use the following LP relaxation of MKPFG (2):

min
∑
j∈V

cjxj

s.t.
∑

j∈V \A

aj(A)xj ≥ b(A), ∀A ⊆ V,

xi + xj ≥ 1, ∀{i, j} ∈ E,
xj ≥ 0, ∀j ∈ V.

(5)

3

The dual of (5) is represented as

max
∑
A⊆V

b(A)y(A) +
∑

{i,j}∈E

z{i,j}

s.t.
∑

A⊆V :j /∈A

aj(A)y(A) +
∑

k:{j,k}∈E

z{j,k} ≤ cj, ∀j ∈ V,

y(A) ≥ 0, ∀A ⊆ V,
z{i,j} ≥ 0, ∀{i, j} ∈ E,

(6)

where each dual variable y(A) corresponds to the inequality
∑

j∈V \A aj(A)xj ≥
b(A) and z{i,j} corresponds to the forcing constraint for the edge {i, j}.

Now we introduce a well-known result for a primal-dual pair of linear
programming [4].

Lemma 2.1. Let x̄ and ȳ be feasible solutions for the following primal and
dual linear programming problems:

min
{
cTx | Ax ≥ b, x ≥ 0

}
and max

{
bTy | ATy ≤ c, y ≥ 0

}
.

If the conditions

(a): ∀j ∈ {1, · · · , n}, x̄j > 0 ⇒
∑m

i=1 aij ȳi = cj,
(b): ∀i ∈ {1, · · · ,m}, ȳi > 0 ⇒

∑n
j=1 aijx̄j ≤ αbi

hold, then x̄ is a solution within a factor of α of the optimal solution, that
is, the primal objective value cT x̄ is less than or equal to α times the optimal
value. (Note that the primal problem has an optimal solution because both
the primal and dual problems are feasible.).

By applying Lemma 2.1 to the problems (5) and (6), we have the following
lemma and corollary.

Lemma 2.2. Let x and (y, z) be feasible solutions for (5) and (6), respec-
tively. If these solutions satisfy

(a): ∀j ∈ V, xj > 0 ⇒
∑

A⊆V :j /∈A aj(A)y(A) +
∑

k:{j,k}∈E z{j,k} = cj,

(b-1): ∀{i, j} ∈ E, z{i,j} > 0 ⇒ xi + xj ≤ 2,
(b-2): ∀A ⊆ V, y(A) > 0 ⇒

∑
j∈V \A aj(A)xj ≤ 2b(A),

(7)

then x is a solution within a factor of 2 of the optimal solution of (5).

4

Corollary 2.1. Let x be a feasible 0-1 solution of (5) and (y, z) be a feasible
solution of (6). If these solutions satisfy (7), x is a solution within a factor
of 2 of the optimal solution of (2).

We propose a polynomial algorithm for calculating x and (y, z) which
satisfy the conditions in Corollary 2.1. The algorithm generates a sequence
of points x and (y, z) which always satisfy the following conditions:

• x ∈ {0, 1}n.

• (y, z) is feasible for (6).

• x and (y, z) satisfy (7).

All the forcing constraints in (5) are satisfied in Step 1 and the other con-
straints in (5) are met in Step 2. For the points x and (y, z) at each
step, we use symbols S = {j ∈ V | xj = 1}, b̄ = b −

∑
j∈V ajxj, and

c̄j = cj − (
∑

A⊆V :j /∈A aj(A)y(A)+
∑

k:{j,k}∈E z{j,k}) for j ∈ V . Ē ⊆ E denotes
a set of unchecked edges in Step 1. Now we state our algorithm.

Algorithm 1

Step 0: Let x = 0 and (y, z) = (0,0) be initial solutions. Set S = ∅,
V ′ = {j ∈ V | aj > 0}, Ē = E, b̄ = b, and c̄j = cj for j ∈ V .

Step 1: If Ē = ∅, then go to Step 2. Otherwise choose an edge e = {i, j} ∈
Ē. If xi+xj ≥ 1, then update Ē = Ē\{e} and go back to the top of Step
1. If xi + xj = 0, increase z{i,j} as much as possible while maintaining
feasibility for (6). Since z{i,j} appears in only two constraints of (6)
corresponding to the vertices i and j, we see that

z{i,j} = c̄s for s = argmin{c̄i, c̄j}.

Update xs = 1, S = S ∪ {s}, Ē = Ē\{e}, c̄i = c̄i − z{i,j}, c̄j = c̄j − z{i,j},
and b̄ = b̄− as. Go back to the top of Step 1.

Step 2: If b̄ ≤ 0, then output x̃ = x and (ỹ, z̃) = (y, z) and stop. Otherwise
calculate aj(S) for all j ∈ V ′\S by (4), where b(S) = b̄. Increase y(S)
as much as possible while maintaining feasibility for (6). Since y(S)

5

appears in constraints of (6) for j ∈ V ′\S so that aj(S) > 0, we see
that

y(S) =
c̄s

as(S)
for s = arg min

j∈V ′\S

{
c̄j

aj(S)

}
.

Update xs = 1, S = S ∪ {s}, c̄j = c̄j − aj(S)y(S) for any j ∈ V ′\S,
and b̄ = b̄− as. Go back to the top of Step 2.

For the outputs x̃ and (ỹ, z̃) of Algorithm 1, we have the following results.

Lemma 2.3. x̃ is a feasible 0-1 solution of (5) and (ỹ, z̃) is a feasible solution
of (6).

Proof. By the assumption that MKPFG (2) is feasible, x = (1, · · · , 1) is
feasible for the LP relaxation problem (5). Algorithm 1 starts form x = 0
and updates an variable xj from 0 to 1 at each iteration until satisfying all
the constraints in (5). Hence x̃ is a feasible 0-1 solution of (5).

Algorithm 1 starts from the dual feasible solution (y, z) = (0,0) and
maintains dual feasibility throughout the algorithm. Hence (ỹ, z̃) is feasible
for (6).

Lemma 2.4. x̃ and (ỹ, z̃) satisfy (7).

Proof. Since x = 0 at the beginning and the algorithm sets xj = 1 only if the
j-th constraint in (6) becomes tight, (a) of (7) is satisfied. (b-1) of (7) follows
from x̃ ∈ {0, 1}n. Thus it suffices to show that (b-2) holds. We consider two
cases, whether or not the algorithm stops at the first iteration of Step 2.

If the algorithm stops at the first iteration of Step 2, we obtain a primal
feasible solution in Step 1. Then (b-2) holds since ỹ(A) = 0 for any A ⊆ V .
Otherwise, the algorithm does not obtain a primal feasible solution in Step
1. Define S̃ = {j ∈ V | x̃j = 1}. Let x̃ℓ be the variable which becomes 1
from 0 at the last iteration of Step 2. From Step 2, ỹ(A) > 0 implies

A ⊆ S̃\{ℓ}. (8)

Since the algorithm does not stop just before setting x̃ℓ = 1, we have∑
j∈S̃\{ℓ}

aj < b. (9)

6

By (8) and (9), we observe that∑
j∈(S̃\{ℓ})\A

aj(A) ≤
∑

j∈(S̃\{ℓ})\A

aj =
∑

j∈S̃\{ℓ}

aj −
∑
j∈A

aj < b−
∑
j∈A

aj ≤ b(A),

where the first and last inequality follows from the definitions (4) of aj(A)
and b(A). Thus, we have that∑

j∈V \A

aj(A)x̃j =
∑

j∈S̃\A

aj(A) =
∑

j∈(S̃\{ℓ})\A

aj(A) + aℓ(A) < 2b(A),

where the last inequality follows from aℓ(A) ≤ b(A).

Lemma 2.5. The running time of Algorithm 1 is O(|E| + |V ′|2), where
V ′ = {j ∈ V | aj > 0}.

Proof. The running time of one iteration of Step 1 is O(1) and the number of
iterations in Step 1 is at most |E|. The running time of one iteration of Step
2 is O(|V ′|) and the number of iterations in Step 2 is at most |V ′|. Therefore
the running time of the algorithm is O(|E|+ |V ′|2).

The following result follows from Corollary 2.1 and Lemmas 2.3, 2.4, and
2.5.

Theorem 2.1. Algorithm 1 is a 2-approximation algorithm for MKPFG (2).

3 Generalization to a Covering Integer Pro-

gram with 0-1 Variables

In this section, we generalize Algorithm 1 to a covering integer program with
0-1 variables (CIP), which is represented as

CIP

∣∣∣∣∣∣∣∣∣∣
min

∑
j∈N

cjxj

s.t.
∑
j∈N

aijxj ≥ bi, ∀i ∈ M = {1, · · · ,m},

xj ∈ {0, 1}, ∀j ∈ N = {1, · · · , n},

(10)

where bi, aij, and cj (i ∈ M, j ∈ N) are nonnegative. Assume that∑
j∈N aij ≥ bi for any i ∈ M , so that the problem is feasible. Let ∆i be

7

the number of non-zero coefficients in the i-th constraint
∑

j∈N aijxj ≥ bi.
Without loss of generality, we assume that ∆1 ≥ ∆2 ≥ · · · ≥ ∆m and ∆2 ≥ 2.
There are some ∆1-approximation algorithms for CIP, see Koufogiannakis
and Young [8] and references therein. We propose a ∆2-approximation algo-
rithm. The minimum knapsack problem with a forcing graph (2) is a special
case of CIP for which ∆2 = 2.

We introduce a LP relaxation problem of CIP constructed by Carr et al.
[3]. The relaxation problem is represented as

min
∑
j∈N

cjxj

s.t.
∑

j∈N\A

aij(A)xj ≥ bi(A), ∀A ⊆ N, ∀i ∈ M,

xj ≥ 0, ∀j ∈ N,

(11)

where

bi(A) = max{0, bi −
∑

j∈A aij}, ∀i ∈ M, ∀A ⊆ N,

aij(A) = min{aij, bi(A)}, ∀i ∈ M,∀A ⊆ N, ∀j ∈ N\A. (12)

Carr et al. [3] show that any feasible 0-1 solution of (11) is feasible for (10).
The dual problem of (11) can be stated as

max
∑
i∈M

∑
A⊆N

bi(A)yi(A)

s.t.
∑
i∈M

∑
A⊆N :j /∈A

aij(A)yi(A) ≤ cj, ∀j ∈ N,

yi(A) ≥ 0, ∀A ⊆ N, ∀i ∈ M.

(13)

By applying Lemma 2.1 to the LP problems (11) and (13), we have the
following result.

Lemma 3.1. Let x be a feasible 0-1 solution of (11) and y be a feasible
solution of (13). If these solutions satisfy

(a): ∀j ∈ N, xj > 0 ⇒
∑

i∈M
∑

A⊆N :j /∈A aij(A)yi(A) = cj,

(b): ∀i ∈ M, ∀A ⊆ N, yi(A) > 0 ⇒
∑

j∈N\A aij(A)xj ≤ ∆2b(A),
(14)

then x is a solution within a factor of ∆2 of the optimal solution of (10).

8

Our algorithm is presented in Algorithm 2 below. The goal is to find x
and y which satisfy the conditions in Lemma 3.1. The algorithm generates
a sequence of points x and y. Throughout the algorithm, the conditions
x ∈ {0, 1}n, constraints in (13), and (14) are satisfied. The constraints
in (11) are satisfied at Step 2. In Algorithm 2, we use the symbols S =
{j ∈ N | xj = 1}, bi(S) = max{0, bi −

∑
j∈S aij} for i ∈ M , and c̄j =

cj −
∑

i∈M
∑

A⊆N :j /∈N aij(A)yi(A) for j ∈ N .

Algorithm 2

Step 0: Set x = 0, y = 0, and S = ∅. Let N ′
i = {j ∈ N | aij > 0} for

i ∈ M , c̄j = cj for j ∈ N , and i = m.

Step 1: If i = 0, then output x̃ = x and ỹ = y and stop. Otherwise set
bi(S) = max{0, bi −

∑
j∈S aij} and go to Step 2.

Step 2: If bi(S) = 0, then update i = i − 1 and go to Step 1. Otherwise
calculate aij(S) for any j ∈ N ′

i\S by (12). Increase yi(S) while main-
taining dual feasibility until at least one constraint s ∈ N ′

i\S is tight.
Namely set

yi(S) =
c̄s

ais(S)
for s = arg min

j∈N ′
i\S

{
c̄j

aij(S)

}
.

Update c̄j = c̄j − aij(S)yi(S) for j ∈ N ′\S, xs = 1, S = S ∪ {s}, and
bi(S) = max{0, bi(S)− ais}. Go back to the top of Step 2.

In the same way as the proof of Lemma 2.3, we have the following result
for the outputs x̃ and ỹ of Algorithm 2.

Lemma 3.2. x̃ is a 0-1 feasible solution of (11) and ỹ is a feasible solution
of (13).

The next lemma is similarly proved as Lemma 2.4.

Lemma 3.3. x̃ and ỹ satisfy (14).

9

Proof. All the conditions in (a) of (14) are naturally satisfied by the way the
algorithm updates primal variables. It suffices to show that all the conditions
in (b) are satisfied. For any i ∈ {2, · · · ,m} and any subset A ⊆ N such that
ỹi(A) > 0, we obtain that∑

j∈N\A

aij(A)x̃j ≤ ∆ibi(A) ≤ ∆2bi(A),

since aij(A) ≤ bi(A) by the definition (12) and the i-th constraint has ∆i

non-zero coefficients. Then, we consider the case of i = 1. In the similar way
of the proof in Lemma 2.4, for any subset A ⊆ N such that ỹ1(A) > 0, we
have ∑

j∈N\A

a1j(A)x̃j ≤ 2b1(A) ≤ ∆2b1(A).

Lemma 3.4. The running time of Algorithm 2 is O(∆1(m+ n)).

Proof. The running time of one iteration of Step 1 is O(∆1) and the number
of iterations in Step 1 is at most m. On the other hand, the running time
of one iteration of Step 2 is O(∆1) and the number of iterations in Step
2 is at most m + n. Therefore the total running time of the algorithm is
O(∆1m) +O(∆1(m+ n)) = O(∆1(m+ n)).

From the results above, we can obtain the next theorem.

Theorem 3.1. Algorithm 2 is a ∆2-approximation algorithm for CIP (10).

4 Conclusion

We proposed a 2-approximation algorithm for the minimum knapsack prob-
lem with a forcing graph. The approximability of the algorithm is the same
as that of the algorithms for the minimum knapsack problem presented by
Carnes and Shmoys [2] and for the minimum vertex cover problem by Bar-
Yehuda and Even [1]. Then we generalize the algorithm to the covering
integer program with 0-1 variables and proposed a ∆2-approximation algo-
rithm, where ∆2 is the second largerst number of non-zero coefficients in the
constraints.

10

Acknowledgment

This research is supported in part by Grant-in-Aid for Science Research (A)
26242027 of Japan Society for the Promotion of Science.

References

[1] R. Bar-Yehuda and S. Even: A linear-time approximation algorithm for
the weighted vertex cover problem, Journal of Algorithms, 2 (1981), 198-
203.

[2] T. Carnes and D. Shmoys: Primal-dual schema for capacitated covering
problems, Mathematical Programming, 153 (2015), 289-308.

[3] R. D. Carr, L. Fleischer, V. J. Leung, C. A. Phillips: Strengthening
integrality gaps for capacitated network design and covering problems,
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (2000), 106-115.

[4] D. Du, K. Ko, and X. Hu: Design and Analysis of Approximation Algo-
rithms, (Springer Optimization and Its Applications, 2011), 297-303.

[5] I. Dinur and S. Safra: On the hardness of approximating minimum vertex
cover, Annals of Mathematics, 162 (2005), 439-485.

[6] M. Hifi and N. Otmani: An algorithm for the disjunctively constrained
knapsack problem. International Journal of Operational Research, 13
(2012), 22-43.

[7] M. Hifi, S.Saleh, L.Wu: A fast large neighborhood search for disjunc-
tively constrained knapsack problems, Proceedings of 3rd International
Symposium on Combinatorial Optimization, ISCO 2014, volume 8596 of
Lecture Notes in Computer Science, (Springer, 2014), 396-407.

[8] C. Koufogiannakis and N. E. Young: Greedy δ-approximation algorithm
for covering with arbitrary constraints and submodular cost, Algorith-
mica, 66 (2013), 113-152.

[9] S. Khot and O. Regev: Vertex cover might be hard to approximate to
within 2-ϵ, Journal of Computer and System Sciences, 74 (2008), 335-349.

11

[10] U. Pferschy and J. Schauer: The knapsack problem with conflict graphs,
Journal of Graph Algorithms and Applications, 13 (2009), 233-249.

[11] U. Pferschy and J. Schauer: Approximation of knapsack problems with
conflict and forcing graphs, http://www.optimization-online.org/

DB_FILE/2014/11/4656.pdf (2014).

[12] T. Yamada, S. Kataoka, and K. Watanabe: Heuristic and exact algo-
rithms for the disjunctively constrained knapsack problem, Information
Processing Society of Japan Journal, 43 (2002), 2864-2870.

12

	cover_takazawa
	TAK-MIZ2016v7

