情報通信コース

Information and Communications Engineering Course

http://educ.titech.ac.jp/ict/

2019

東京工業大学工学院情報通信系

Tokyo Institute of Technology, School of Engineering
Department of Information and Communications Engineering

目次

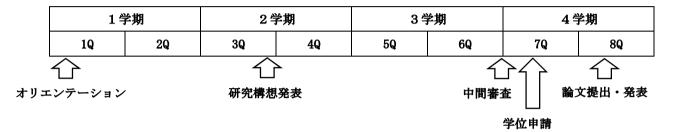
青報通信系の理念と概	
○	
算士課程 ———	
女員一覧 ———	
女員ページ	
一色 剛	●高機能プロセッサ設計自動化、高セキュリティVLSI ——————
植松 友彦	●情報量の尺度、通信路/情報源符号化、ネットワーク情報理論 ―――――
尾形わかは	●暗号、署名、暗号プロトコル
奥村 学	●自然言語処理、テキストマイニング、Webテキスト処理
奥村 幸彦	●移動通信、無線通信技術、無線通信ネットワーク ――――――――――――――――――――――――――――――――――――
小尾 高史	●社会情報システム、医用情報処理、医用画像処理
笠井 健太	●符号理論、LDPC符号、空間結合符号 ————————————————————————————————————
柏野 牧夫	●認知神経学、心理物理学、感覚運動情報学 ————————————————————————————————————
金子 寛彦	●空間認識、異種感覚情報統合、眼球運動 —————————
北口 善明	●分散システム運用、通信品質計測、IPv6───────────
熊澤 逸夫	●画像認識、触覚ディスプレイ、生体情報処理モデル、機械学習 ―――――
黒澤 実	●メカトロニクス、電気音響変換機、音響工学
小池 康晴	●計算論的神経科学、ヒューマンインタフェース ――――――――――――――――――――――――――――――――――――
小林 隆夫	●音声情報処理、ディジタル信号処理、機械学習
佐藤いまり	●視覚情報工学、コンピュータグラフィックス、画像・光情報処理 ————
篠崎 隆宏	●音声認識、音声情報処理、機械学習 ————————————————————————————————————
杉野・暢彦	●コンパイラ、自動並列化、コード変換・最適化 ――――――
鈴木 賢治	●機械学習、ディープラーニング、コンピューター診断支援、医用画像処理―――
髙木 茂孝	●電子回路、集積回路、回路理論 ————————————————————————————————————
髙橋 篤司	●EDA、物理設計、次世代リソグラフィ ————————————————————————————————————
高村 大也	●計算言語学、自然言語処理、機械学習 ————————————————————————————————————
田原麻梨江	●医用超音波、超音波工学 ————————————————————————————————————
永井 岳大	●色彩工学、質感科学、視覚心理物理学———————
中原 啓貴	●コンピュータアーキテクチャ、FPGA、多値論理 —————
中村健太郎	●超音波工学、光計測、光ファイバセンサ ————————————————————————————————————
中本 高道	●嗅覚ディスプレイ、感性情報センシング、匂いセンサ、組み込みシステム―――
中山 実	●視覚情報処理、知覚認知、学習評価、教育工学
長谷川晶一	●バーチャルリアリティ、シミュレーション、ヒューマンインタフェース ——
原 祐子	●高信頼組込みシステム、自動設計 (CAD)、IoT —————
府川 和彦	●無線通信、ディジタル信号処理、適応フィルタ、無線ネットワーク ――――
ベラールダニエル	●データサイエンス、機械学習、バイオインフォマティクス、人工知能 ———
ホルムペッター	●ネットワーク理論、ビックデータ解析 ―――――――
松本隆太郎	●量子情報理論、ネットワーク符号化、情報理論的セキュリティ ————————————————————————————————————
本村 真人	●リコンフィギュラブルハードウェア、ディープラーニングプロセッサ ————
山岡 克式	●情報通信ネットワーク(インターネット、電話網、新世代ネットワーク) ——
山口雅浩	●光工学、画像工学、ホログラフィー、分光画像
山田 功	●信号処理、機械学習、最適化、逆問題、データサイエンス ————————————————————————————————————
劉載勲	●機械学習、コンピュータビジョン、ディープラーニングプロセッサ ————————————————————————————————————
吉村奈津江	●脳活動信号処理、ブレイン・マシン・インタフェース ─────
渡辺 義浩	● コンピュータビジョン, 拡張現実, デジタルアーカイブ————
1次/2 我们	●

情報通信系

私たちが相互の円滑なコミュニケーションをはかり効率的な社会活動を行う上で、情報通信システムの果たす役割はますます重要になってきています。情報通信システムは私たちの生活を大きく変えるポテンシャルを有しているだけに、その影響する対象も非常に広範なものとなっています。

情報通信系は、情報通信コースおよびライフエンジニアリングコースから構成されます。これらのコースは、人に優しく持続的な高度情報通信社会をハードウェアとソフトウェアの両面から支える基盤技術と応用技術から成る学問領域に貢献することを目的にしています。具体的には、通信・ネットワーク、信号処理、VLSI(超大規模集積回路)、コンピュータ、セキュリティ、メディア情報処理、生体情報処理、感覚情報処理、知的情報処理など情報通信分野の広範な学術・研究分野において、研究および教育に取り組んでいます。

修士課程では、基礎的な理解力と応用発展力を身につけるとともに、情報通信産業全体を俯瞰する視野を養います。また同時に、国際感覚や研究開発等における強い倫理観についても様々な活動を通して体得します。これにより、世界第一級の力量をもつ研究者・技術者、グローバルに活躍できる産業界等の幹部候補を養成することを目的としています。博士課程では、これらの能力や視野をさらに発展させ、豊かな国際社会の実現に向けて科学・技術のフロンティアを開拓・牽引できるリーダーとなる人材を養成することを目的としています。



情報通信コース修士課程

(ライフエンジニアリングコースについては同コースのパンフレットを参照してください)

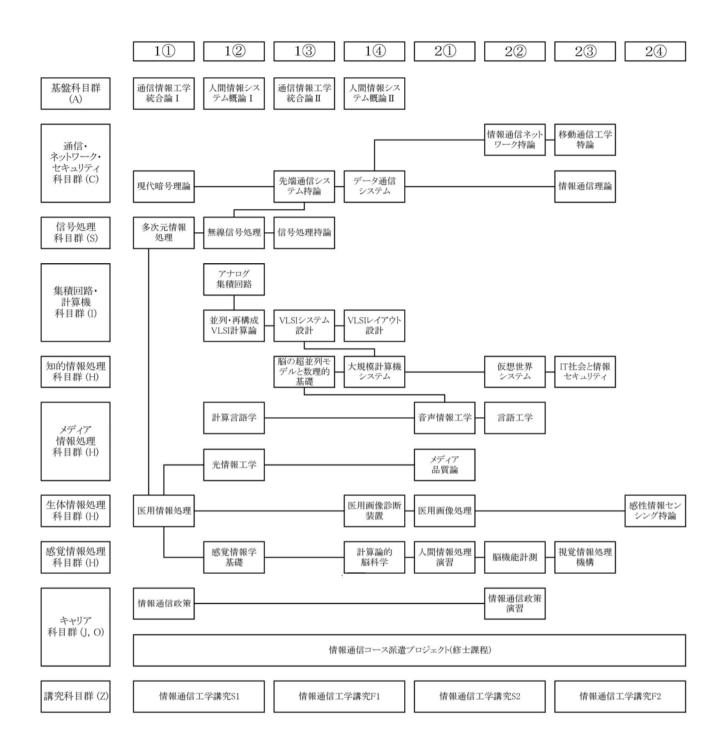
●修士論文研究

修士論文研究では、一連の研究プロセスを体験し、問題設定能力、問題解決力やコミュニケーション力の向上を目指します。標準的な研究の流れは以下のとおりです。ただし、発表、審査などの時期は各自の研究の進捗状況などによって変わるため、具体的な研究スケジュールなどについては指導教員と十分相談してください。

●学修目標

本課程では、次のような能力の修得を学修目標としています。

- ・情報通信分野における研究・技術開発に必要な専門的学力
- ・関連分野の専門学力を自ら修得し、実践的問題解決に結びつける力
- ・社会との関係の中で専門知識を活用して、新たな課題解決と創造的提案を行う力
- ・国際的視野をもって研究・開発の潮流を理解し体系化する能力
- ・情報通信分野に関する業務に従事するに必要な能力と学識
- ・日本語及び英語によって科学技術情報を論理的に説明・文書化する能力をもち、議論を展開できる力
- ・強い倫理観を持って研究開発等に携わる姿勢

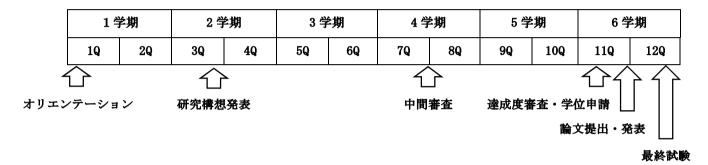

●修了要件(正確な内容は学修案内を参照してください)

本コースの修士課程を修了するために満たさなければならない要件は、次の通りです。

- 1. 30単位以上を大学院授業科目(400及び500番台)から修得していること
- 2. 本コースで指定された授業科目において、次の要件を満たすこと
 - ・講究科目8単位を修得していること
 - ・情報通信コース標準学修課程の専門科目群から22単位以上を修得していること
 - ・A 群から2単位以上、B 群から2単位以上を修得していること
 - ・文系教養科目のうち400番台を2単位以上、500番台の科目1単位以上、キャリア 科目から2単位以上を含み合計5単位以上を修得していること
 - ・コース標準学修課程以外の専門科目又は研究関連科目から2単位以上を修得していること
- 3. 研究構想発表を行い、中間審査を受け、修士論文審査及び最終試験に合格すること
- * A群:情報通信工学統合論 I、情報通信工学統合論 I I

B群:人間情報システム概論 I、人間情報システム概論 I I

●修士科目体系図



情報通信コース博士課程

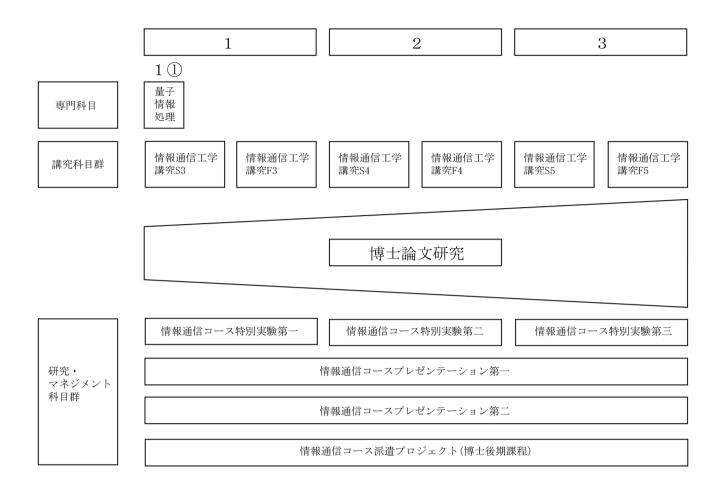
(ライフエンジニアリングコースについては同コースのパンフレットを参照してください)

●博士論文研究

博士論文研究では、問題解決力に加えて、問題設定能力を培います。標準的な研究の流れは以下のとおりです。ただし、発表、審査などの時期は各自の研究の進捗状況などによって変わるため、具体的な研究スケジュールなどについては指導教員と十分相談してください。

●学修目標

本課程では、次のような能力の修得を修士課程より高い基準で学修目標としています。


- ・情報通信分野における研究・技術開発に必要な高度な専門的学力
- ・関連分野の専門学力を自ら修得し、新しい領域の開拓および実践的問題解決に結びつける力
- ・社会との関係の中で専門知識を活用して、新たな課題解決と創造的提案を行う力
- ・国際的視野をもって研究・開発の潮流を理解し体系化する能力
- ・情報通信分野に関する高度に専門的な業務に従事するに必要な能力と学識
- ・情報通信分野について、独創的研究によって従来の学術水準に新しい知見を加えるとともに、研究者として自立して研究活動を行う力
- ・日本語及び英語によって科学技術情報を論理的に説明・文書化する能力をもち、リーダーとして研究・開発チームを指揮できる能力
- ・強い倫理観を持って研究開発等に携わる姿勢

●修了要件(正確な内容は学修案内を参照してください)

本コースの博士後期課程を修了するために満たさなければならない要件は、次の通りです。

- 1. 24単位以上を大学院授業科目(600番台)から修得していること
- 2. 本コースで指定された授業科目において、次の要件を満たすこと
 - ・講究科目12単位を修得していること
 - ・文系教養科目のうち600番台を2単位以上、キャリア科目から4単位以上を含み合計6単位以上 修得していること。
- 3. 研究構想発表を行い、中間審査並びに達成度審査を受け、博士論文審査及び最終試験に合格すること

●博士科目体系図

大学院入試

大学院課程入学案内(https://educ.titech.ac.jp/ict/admissions/)

および情報通信系サイト (https://educ.titech.ac.ip/ict/) を参考にしてください。

● 修士課程入学試験について

情報通信系情報通信コースおよび情報通信系ライフエンジニアリングコースを志望される方は、東京工業大学工学院情報通信系の募集要項を参照してください。英語については、本学の指定する外部英語テストのスコアをもって評価します。受験される方は早目に TOEIC や TOEFL などを受験してください。

入試に関する問い合わせ先: inquiry19@ict.e.titech.ac.jp

● 博士後期課程(博士課程)入学試験について

入試は、修士論文や現在までの研究実績などについての面接試験を予定しています。4月と10月を入学時とする出願の締切はその約3ヶ月前ですが、入学希望者は受験資格の判定、研究課題の検討のため、出願時期の少なくとも1ヶ月以前に希望する指導教員と相談を始めて下さい。また、外部英語スコアの提出が必要です。入試に関する問い合わせは、希望する指導教員か系主任に行なって下さい。

職・教員名	研究分野
教授 一色 剛 ISSHIKI Tsuyoshi	高機能プロセッサ設計自動化、セキュリティSW/HW設計
教授 植松 友彦 UYEMATSU Tomohiko	情報理論、符号理論、通信理論
教授 尾形わかは OGATA Wakaha	暗号、署名、暗号プロトコル
教授 奥村 学 OKUMURA Manabu	自然言語処理、テキストマイニング、Webテキスト処理、機械学習
特定教授 奥村 幸彦 OKUMURA Yukihiko	移動通信、無線通信技術、無線通信ネットワーク
准教授 小尾 高史 OBI Takashi	医用画像再構成、医療情報ネットワーク、認証基盤、社会情報システム
准教授 笠井 健太 KASAI Kenta	符号理論、LDPC符号、空間結合符号
特定教授 柏野 牧夫 KASHINO Makio	聴覚情報処理、生体情報処理、スポーツ脳科学
教授 金子 寛彦 KANEKO Hirohiko	視覚情報処理、空間認識、眼球運動、異種感覚統合
准教授 北口 善明 KITAGUCHI Yoshiaki	情報通信工学、次世代ネットワーク運用管理技術、ネットワークセキュリティ、 システム信頼性評価
教授 熊澤 逸夫 KUMAZAWA Itsuo	神経回路モデル、認知科学、画像処理、画像符号化、パターン認識、ユーザインターフェイス
准教授 黒澤 実 KUROSAWA Minoru	メカトロニクス、アクチュエータ工学、センシング工学
教授 小池 康晴 KOIKE Yasuharu	ヒューマンインタフェース,計算論的神経科学,運動制御・学習モデル
教授 小林 隆夫 KOBAYASHI Takao	音声情報処理、ディジタル信号処理、機械学習
特定教授 佐藤いまり SATO Imari	視覚情報工学、画像・光情報処理、反射解析、コンピュータグラフィックス
准教授 篠崎 隆宏 SHINOZAKI Takahiro	音声認識、音声理解、教師なし学習、音声情報処理、機械学習
教授 杉野 暢彦 SUGINO Nobuhiko	GPGPU向けコンパイラ、自動コード並列化、信号処理システム実現
特任教授 鈴木 賢治 SUZUKI Kenji	機械学習、ディープラーニング、コンピュータ支援診断、 医用画像処理、医用画像理解、人工知能
教授 髙木 茂孝 TAKAGI Shigetaka	集積回路、回路網理論
教授 髙橋 篤司 TAKAHASHI Atsushi	EDA、物理設計、次世代リソグラフィ
教授 高村 大也 TAKAMURA Hiroya	計算言語学、自然言語処理、テキストマイニング、機械学習

居室	電話 メール BOX	e-mail URL	担当コース
(大)南3号館521	03-5734-2842 \$3-66	isshiki@vlsi.ce.titech.ac.jp www.vlsi.ce.titech.ac.jp	情報通信系 情報通信コース
(大)南3号館304	03-5734-3243 \$3-53	uematsu@it.ce.titech.ac.jp www.it.ce.titech.ac.jp	情報通信系 情報通信コース
(大)西9号館102	03-5734-3500 W9-116	ogata.w.aa@m.titech.ac.jp www.security.mot.titech.ac.jp	情報通信系 情報通信コース
(す)R2 棟 720	045-924-5067 R2-7	oku@pi.titech.ac.jp www.lr.pi.titech.ac.jp	情報通信系 情報通信コース
(大)南3号館916	-	okumuray@nttdocomo.com www.radio.ce.titech.ac.jp	情報通信系 情報通信コース
(す)R2 棟 326	045-924-5482 R2-60	obi@isl.titech.ac.jp www-obi.isl.titech.ac.jp	情報通信系 情報通信コース 情報通信系 ライフエンジニアリングコース
(大) 南 3 号館 418	03-5734-3902 \$3-61	kenta@comm.ce.titech.ac.jp www.comm.ce.titech.ac.jp	情報通信系 情報通信コース
(す)G2 棟 504	- G2-12	kashino.makio@lab.ntt.co.jp www.kecl.ntt.co.jp/people/kashino.makio/	情報通信系 情報通信コース
(す)G2 棟 708	045-924-5292 G2-3	kaneko@ip.titech.ac.jp www.kaneko.ip.titech.ac.jp	情報通信系 ライフエンジニアリングコース 情報通信系 情報通信コース
(大)南3号館517	03-5734-3354 \$3-62	kitaguchi.y.aa@m.titech.ac.jp www.net.ce.titech.ac.jp	情報通信系 情報通信コース
(す)R2 棟 330	045-924-5291 R2-59	kumazawa@isl.titech.ac.jp kuma2.isl.titech.ac.jp	情報通信系 情報通信コース
(す)G2 棟 614	045-924-5598 G2-32	mkur@ip.titech.ac.jp www.kurosawa.ip.titech.ac.jp	電気電子系 電気電子コース 情報通信系 情報通信コース
(す)J3 棟 1120	045-924-5054 J3-10	koike@pi.titech.ac.jp www.cns.pi.titech.ac.jp	情報通信系 ライフエンジニアリングコース 情報通信系 情報通信コース
(す)G2 棟 815	045-924-5030 G2-4	takao.kobayashi@ip.titech.ac.jp www.kbys.ip.titech.ac.jp	情報通信系 情報通信コース
国立情報学研究所	- G2-12	imarik@nii.ac.jp research.nii.ac.jp/pbv/	情報通信系 情報通信コース
(す)G2 棟 804	045-924-5582 G2-2	shinot@ict.e.titech.ac.jp www.ts.ip.titech.ac.jp	情報通信系 情報通信コース 情報通信系 ライフエンジニアリングコース
(す)G2 棟 809	045-924-5452 G2-29	sugino@ip.titech.ac.jp www.sgn.ip.titech.ac.jp	情報通信系 情報通信コース
(す)R2 棟 523	045-924-5028 R2-58	suzuki.di@m.titech.ac.jp www.ece.iit.edu/~ksuzuki/	情報通信系 情報通信コース
(大) 南 3 号館 416	03-5734-3030 S3-51	takagi@ec.ce.titech.ac.jp www.ec.ce.titech.ac.jp/index-j.html	情報通信系 情報通信コース
(大) 南 3 号館 401	03-5734-2665 \$3-58	atsushi@ict.e.titech.ac.jp www.eda.ict.e.titech.ac.jp/takahashi	情報通信系 情報通信コース
(す)R2 棟 814	045-924-5015 R2-7	takamura@pi.titech.ac.jp www.lr.pi.titech.ac.jp	情報通信系 情報通信コース

(大):大岡山、(す):すずかけ台

職・教員名	研究分野
准教授 田原麻梨江 TABARU Marie	生体計測工学、業計測工学、医用工学、波動工学
准教授 永井 岳大 NAGAI Takehiro	色彩工学、質感科学、視覚心理物理学
准教授 中原 啓貴 NAKAHARA Hiroki	FPGA、ディープラーニング、多値論理
教授 中村健太郎 NAKAMURA Kentaro	超音波デバイス・超音波計測、光応用計測、光ファイバセンサ
教授 中本 高道 NAKAMOTO Takamichi	ヒューマンインタフェース、嗅覚ディスプレイ、感性情報処理、センサ情報処理、 匂いセンシングシステム、バイオセンサ
教授 中山 実 NAKAYAMA Minoru	知覚認知、言語理解、ヒューマンファクタ、教育システム評価、教育工学
准教授 長谷川晶一 HASEGAWA Shoichi	バーチャルリアリティ、ヒューマンインタフェース、動力学シミュレーション、力 触覚、エンタテインメント工学
准教授 原 祐子 HARA Yuko	ハードウェア・ソフトウェア協調設計、高信頼・低消費電力組込みシステム
教授 府川 和彦 FUKAWA Kazuhiko	無線通信、信号処理、無線ネットワーク
特任准教授 Daniel Berrar Daniel Peter Berrar	データサイエンス、機械学習、バイオインフォマティクス、人工知能
特任教授 Petter Holme Johan Petter Holme	ネットワーク理論、ビッグデータ解析
特定准教授 松本隆太郎 MATSUMOTO Ryutaro	誤り訂正符号、情報理論、無線通信、量子通信
教授 山岡 克式 YAMAOKA Katsunori	情報通信ネットワーク、インターネット
教授 山口 雅浩 YAMAGUCHI Masahiro	光工学、画像工学(マルチスペクトルイメージング、色再現、 多原色ディスプレイ、医用画像、3次元画像、ホログラフィ)
教授 山田 功 YAMADA Isao	信号処理、機械学習、最適化、逆問題、データサイエンス
准教授 吉村奈津江 YOSHIMURA Natsue	脳活動信号処理、ヒューマンインタフェース、計算論的脳科学
准教授 渡辺 義浩 WATANABE Yoshihiro	コンピュータビジョン、拡張現実、デジタルアーカイブ、インタラクション
教授 本村 真人 MOTOMURA Masato	リコンフィギュラブルハードウェア、知能コンピューティング、ディープラーニン グプロセッサ、アニーリングマシン
准教授 劉 載勲 YU Jaehoon	機械学習、コンピュータビジョン、ディープラーニングプロセッサ、ハードウェア アクセラレータ

居室	電話 メール BOX	e-mail URL	担当コース
(す)R2 棟 713	045-924-5052 R2-25	mtabaru@sonic.pi.titech.ac.jp www.nakamura.pi.titech.ac.jp	電気電子系 ライフエンジニアリングコース 電気電子系 電気電子コース 情報通信系 ライフエンジニアリングコース
(す)G2 棟 710	045-924-5460 G2-1	nagai.t.aa@m.titech.ac.jp	情報通信系 ライフエンジニアリングコース 情報通信系 情報通信コース
(大)南3号館410	03-5734-2919 \$3-59	nakahara@ict.e.titech.ac.jp www.hirokinakaharaoboe.net	情報通信系 情報通信コース
(す)R2 棟 718	045-924-5090 R2-26	knakamur@sonic.pi.titech.ac.jp www.nakamura.pi.titech.ac.jp	電気電子系 ライフエンジニアリングコース 電気電子系 電気電子コース 情報通信系 ライフエンジニアリングコース
(す)R2 棟 516	045-924-5017 R2-5	nakamoto.t.ab@m.titech.ac.jp silvia.mn.ee.titech.ac.jp	情報通信系 情報通信コース 情報通信系 ライフエンジニアリングコース 電気電子系 電気電子コース
(大)西9号館821	03-5734-3234 W9-107	nakayama@ict.e.titech.ac.jp www.nk.ict.e.titech.ac.jp	情報通信系 情報通信コース システム制御系 システム制御コース 社会・人間科学系 社会人間科学コース
(す)R2 棟 624	045-924-5049 R2-20	hase@pi.titech.ac.jp haselab.net	情報通信系 情報通信コース
(大)南3号館317	03-5734-2914 \$3-50	hara@cad.ce.titech.ac.jp http://www.cad.ce.titech.ac.jp	情報通信系 情報通信コース
(大)南3号館918	03-5734-3126 \$3-52	fukawa@radio.ce.titech.ac.jp www.radio.ce.titech.ac.jp	情報通信系 情報通信コース
(大)南3号館	- \$3-70	www.berrar.com daniel.berrar@ict.e.titech.ac.jp	情報通信系 情報通信コース
(す) R2 棟	- R2-16	holme@cns.pi.titech.ac.jp http://petterhol.me	情報通信系 情報通信コース
(大)南3号館311	03-5734-3864 \$3-54	ryutaroh@it.ce.titech.ac.jp www.it.ce.titech.ac.jp	情報通信系 情報通信コース
(大)南3号館308	03-5734-3763 \$3-68	yamaoka@net.ce.titech.ac.jp www.net.ce.titech.ac.jp	情報通信系 情報通信コース
(す)G2 棟 914	045-924-5137 G2-28	yamaguchi.m.aa@m.titech.ac.jp www-oid.ip.titech.ac.jp	情報通信系 ライフエンジニアリングコース 情報通信系 情報通信コース
(大)南3号館502	03-5734-2503 \$3-60	isao@sp.ce.titech.ac.jp www.sp.ce.titech.ac.jp	情報通信系 情報通信コース
(す)R2 棟 810	045-924-5086 R2-16	yoshimura@pi.titech.ac.jp www.cns.pi.titech.ac.jp	情報通信系 ライフエンジニアリングコース 情報通信系 情報通信コース
(す) G2 棟 716	045-924-5474 G2-31	watanabe.y.cl@m.titech.ac.jp	情報通信系 情報通信コース
(す)J3 棟 1713	045-924-5653 J3-30	motomura@ict.e.titech.ac.jp	情報通信系 情報通信コース
(す)J3 棟 1715-1	045-924-5654 J3-30	yu.jaehoon@artic.iir.titech.ac.jp	情報通信系 情報通信コース

(大):大岡山、(す):すずかけ台

人間情報システムG 感覚情報処理F

特定教授 柏野牧夫 聴覚情報処理、生体情報処理、スポーツ脳科学

教授 金子寛彦 視覚情報処理、空間認識、眼球運動、異種感覚 統合

教授 小池康晴 (バイオインタフェース研究 ユニット) ヒューマンインターフェース、生体工学、 運動制御

准教授 吉村奈津江(バイオインタフェース 研究ユニット) 脳活動信号処理、ヒューマンイン タフェース、計算論的脳科学

特定教授 佐藤いまり 視覚情報工学、画像・光情報処理、反射解析、 コンピュータグラフィックス

特任教授 ペッター・ホルム(バイオインタフェース研究ユニット)ネットワーク理論/計算論的社会科学

准教授 永井岳大 色彩工学、質感科学、視覚心理物理学

人間情報システムG 知的情報処理F

教授 熊澤 逸夫 (未来産業技術研究所) 神経回路モデル、認知科学、画像処理、画像符 号化、パターン認識、ユーザインターフェイス

准教授 黒澤実 (電気電子系主担当) メカトロニクス、アクチュエータエ学、センシング エ学

教授 杉野 暢彦 GPGPU向けコンパイラ、自動コード並列化、信 号処理システム実現

准教授 渡辺 義浩 コンピュータビジョン, 拡張現実, デジタル アーカイブ, インタラクション

人間情報システムG メディア情報処理F

教授 奥村学 (未来産業技術研究所) 自然言語処理、テキストマイニング、Webテキスト処理、機械学習

教授 高村大也 (未来産業技術研究所)計算言語学、自然言語処理、テキストマイニング、機械学習

教授 小林隆夫 音声情報処理、ディジタル信号処理、機械学習

准教授 篠崎隆宏 音声認識、音声理解、教師なし学習、音声情報 処理、機械学習

教授 中本高道 (未来産業技術研究所) ヒューマンインタフェース、嗅覚ディスプレイ、感性静処理、 センサ情報処理、匂いセンシングシステム、バイオセンサ

准教授 長谷川晶一 (未来産業技術研究所)バーチャルリアリティ、ヒューマンインタフェース、動力学シミュレーション、力触覚、エンタテインメント工学

教授 山口雅浩 光工学、画像工学(マルチスペクトルイメージング、色再現 多原色ディスプレイ、医用画像、3次元画像、ホログラフィ)

人間情報システムG 生体情報処理F

准教授 小尾高史(未来産業技術研究所) 医用画像再構成、医療情報ネットワーク、認証 基盤、社会情報システム

准教授 田原麻梨江(未来産業技術研究所)(電気電子系主担当)生体計測工学、農業計測工学、医用工学、波動工学

教授 中村健太郎 (未来産業技術開発研究所) (電気電子系主担当)超音波デバイス・超音波計測、光応用計測、光ファイバセンサ

教授 鈴木賢治(WRHI) 機械学習、ディープラーニング、コンピュータ支援 診断、医用画像処理、医用画像理解、人工知能

信号処理G メディア信号処理F

教授 中山実 知覚認知、言語理解、ヒューマンファクタ、教育 システム評価、教育工学

信号処理G 逆問題F

教授 山田功 信号処理、機械学習、最適化、逆問題、データ サイエンス

通信・ネットワーク・セキュリティG 通信方式F

教授 府川和彦 無線通信、信号処理、無線ネットワーク

特定教授 奥村幸彦 移動通信,無線通信技術,無線通信ネットワーク

通信・ネットワーク・セキュリティG 情報理論F

教授 植松友彦 情報理論、符号理論、通信理論

特定准教授 松本隆太郎 誤り訂正符号、情報理論、無線通信、量子通信

教授 尾形わかは 暗号、署名、暗号プロトコル

准教授 笠井健太 符号理論、LDPC符号、空間結合符号

特任准教授 ベラール・ダニエル データサイエンス、機械学習、統計学 バイオインフォマティクス、システムバイオロジー

通信・ネットワーク・セキュリティG 通信ネットワークF

教授 山岡克式 情報通信ネットワーク、インターネット

准教授 北口善明 情報通信工学、次世代ネットワーク運用管理技術、ネットワークセキュリティ

集積回路・計算機G デジタル集積回路F

教授 一色剛 高機能プロセッサ設計自動化、セキュリティSW /HW設計

教授 高橋篤司 EDA、物理設計、次世代リソグラフィ

准教授 原祐子 ハードウェア・ソフトウェア協調設計、高信頼・低 消費電力組込みシステム

集積回路・計算機G アナログ集積回路F

教授 高木茂孝 集積回路、回路網理論

情報通信融合G 高度分散情報通信システムF

教授 本村真人 リコンフィギュラブルハードウェア、知能コン ピューティング、ディープラーニングプロセッサ

准教授 中原啓貴 FPGA、ディープラーニング、多値論理

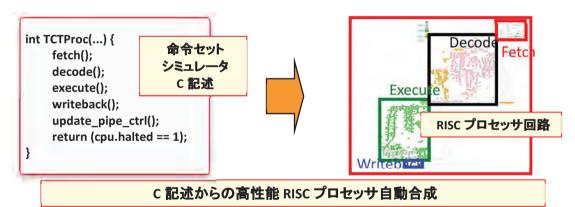
准教授 劉載勲 機械学習、コンピュータビジョン、ディープラーニ ングプロセッサ、ハードウェアアクセラレータ

高機能 VLSI システム設計

教授 一色 剛

研究分野:高機能プロセッサ設計自動化、高セキュリティ VLSI

ホームページ: http://www.vlsi.ce.titech.ac.jp



研究内容・目的

現在の携帯情報端末や情報機器は非常に複雑で高機能な組込みシステムが搭載されており、そのハードウエアは最先端の VLSI 技術を駆使したシステム・オン・チップ (SoC) によって実現されている。その上で多様なアプリケーションを実行できる柔軟性と、高い処理性能・消費電力効率を達成するために、複数のプロセッサを搭載したマルチコア構成や、アプリケーションに特化した専用プロセッサや専用ハードウエアとの最適な組合せが重要となってきている。

また、あらゆる組込み機器がネットワークに繋がる IoT (Internet-of-Things)の到来によって、IoT デバイスやネットワーク機器のセキュリティ技術の重要性が益々高まっており、ここでもハードウエア・ソフトウエアの協調ソリューションが必須となっている。

本研究室では、このような SoC のシステムレベル設計最適化手法と高セキュリティ SoC アーキテクチャの確立とを目指し、ハードウエア(プロセッサ、高並列演算機構、高速通信機構、キャッシュ機構、高速暗号処理回路)とソフトウエア(コンパイラ生成、回路自動生成手法、設計

ツール統合化環境、プログラム解析・マルウエア検知手法)の両面からの研究に取り組んでいる。

●研究テーマ

1. C 記述からの論理回路自動合成技術

組込み機器で必要となる複雑な信号処理を効率的に実現するためには、処理アルゴリズムと ハードウエアアーキテクチャの同時最適化が重要であるが、これまでの VLSI 設計技術では、ア ルゴリズムの記述抽象度でアーキテクチャを直接的に表現することが困難であった。本研究室で は、高い抽象度の C 言語データフロー記述方式上で回路構造を定義し、直接的に論理回路を合成する新しい VLSI 設計方式に取り組んでいる。この新たな設計技術を使って、大規模な高並列画像信号処理システム、高性能プロセッサ、高性能キャッシュメモリ、ネットワーク・オン・チップ等の開発を進めている。

2. アプリケーション特化プロセッサ設計環境

アプリケーション特化プロセッサ(ASIP: Application-Specific Instruction-set Processor)は、汎用プロセッサの柔軟性と専用回路の処理性能・電力効率を両立する可能性を持っており、画像信号処理分野を中心に活用され始めいている。本研究室では、ASIP 設計全般において、アルゴリズム(アプリケーション)設計、命令セット設計・拡張、専用演算回路設計、高速シミュレーションモデル生成、専用コンパイラ生成、回路検証環境生成等をすべて網羅した ASIP 統合設計環境の構築に取り組んでいる。また、ASIP の適用アプリとして、画像系(信号処理、画像認識、グラフィックス)のほか、通信系(無線通信制御、ベースバンド、符号化、パケット処理)や暗号系(AES、RSA)への展開を計画している。

3. プログラム解析によるマルウエア検知技術

現在のセキュリティ技術の大きな役割を占めるウイルス検知技術は、バイナリシグネチャ (パターンマッチング) による 1 次検知、仮想空間動作 (サンドボックス) による 2 次検知など の組合せで構築されているが、近年の爆発的なマルウエア発生状況には十分なソリューションと はなっていない。本研究室では、プロセッサ・コンパイラ生成・シミュレータ生成技術の研究成果をベースに、バイナリデータから直接プログラム構造を解析し、その構造情報を活用した網羅性の高いマルウエア検知技術の構築を目指している。特に、プログラム構造からの動的振舞い予測手法・特徴検知手法のアルゴリズム開発 (ソフトウエア) と、バイナリデータのプログラム構造解析処理を高速に行うための専用回路設計 (ハードウエア) の両面から取り組んでいる。

教員からのメッセージ

いずれの研究テーマも国内外の第一線の大学や企業との共同研究を活発に進めており、プロセッサ設計、VLSI 設計、組込みシステム、ソフトウエア全般のいずれかに興味があり、特に実用性が高く広く社会に貢献できる研究を望む学生を歓迎する。

関連する業績、プロジェクトなど

- 1. H. Xiao, T. Isshiki, A. U. Khan, D. Li, H. Kunieda, Y. Nakase, S. Kimura, "A Low-Cost and Energy-Effcient Multiprocessor System-on-Chip for UWB MAC Layer", IEICE Trans. Information and Systems, vol.E95-D, no.8, pp.2027-2038(リコー共同研究)
- 2. T. Isshiki, D. Li, H. Kunieda, T. Isomura and K. Satou, "Trace-Driven Workload Simulation Method for Multiprocessor System-On-Chips", Design Automation Conference (DAC) (2009) (卜曰夕共同研究)
- 3. J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid, H. Meyr, T. Isshiki, and Hi. Kunieda, "MAPS: An Integrated Framework for MPSoC Application Parallelization", Design Automation Conference (DAC) (2008) (アーヘン工科大学共同研究)

情報理論に関する研究

教授 植松 友彦

研究分野: ノンパラメトリックデータに対する情報理論、ネットワーク情報理論ホームページ: http://www.it.ce.titech.ac.jp/

研究内容

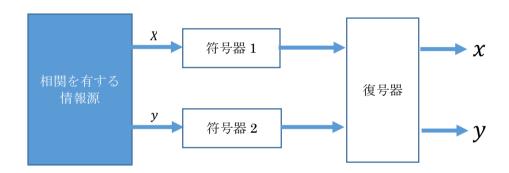
- (1) ノンパラメトリックなデータに対する情報理論の構築
- (2)ネットワーク情報理論の研究
- (3)相関を有する情報源からの乱数生成

研究テーマ

1. ノンパラメトリックなデータに対する情報理論の構築

これまでの情報理論は、データを生成するメカニズムとして確率モデルである情報源や通信路を仮定し、確率過程によってデータが生成・伝達されると考えて理論を構築して来た。しかしながら、ビッグデータの時代になると、収集されたデータの背後に確率モデル(パラメトリックモデル)が必ずしも存在する保証はなく、データ自身に基づいて情報理論を構築する必要がある。そこで、本研究では、機械学習やビックデータ解析への応用を目的とし、生成モデルを仮定しないデータの圧縮・識別・分類、ならびに複数のデータ間の相関検出を行う方法を確立する。その結果、データ圧縮やデータ分類の性能限界を明らかにすることで、現在の技術水準が究極の性能に対してどのレベルまで来ているのか、あるいは、より高性能なシステムの設計・開発の指針を示す。

これまでの研究成果としては、ノンパラメトリックデータに関するデータ圧縮について検討を行い、符号化レート(圧縮率)の限界を明らかにすると共に、具体的な固定長符号化ならびに可変長符号化法を提案し、ブロック長を長くしたときに、符号化レートがこの限界に漸近することを明らかにしている。


2. ネットワーク情報理論に関する研究

相関を有する2つの一般情報源からの出力列をそれぞれ独立に符号化して受信者に送り、受信者は2つの符号器の出力から2つの情報源の出力列を共に復元する符号化問題をSlepian-

Wolf 符号化問題と呼ぶ。Slepian-Wolf 符号化問題において、復号誤り率 ε を許容したとき、2 つの符号器の符号化レートが満足すべき領域を ε 達成可能領域と呼ぶ。1998 年に Han は ε 達成可能領域を情報スペクトルによって表現することに成功した。これに対して我々は、 ε 達成可能領域をスムース最大エントロピーに類似した情報量を用いて記述し、この ε 達成可能領域の内界と外界がスムース最大エントロピーを用いて記述できることを示した。尚、任意に小さい復号誤り率を考えた場合、得られた内界と外界は一致することを明らかにした。

次に、相関を有する2つの一般情報源からの出力列をそれぞれ独立に符号化して受信者に送り、受信者は2つの符号器の出力から片方の情報源の出力列のみを復元する Wyner-Ahlswede-Korner 符号化問題を検討し、復号誤り率 ϵ を許容したとき、2つの符号器の符号化レートが満足すべき領域 (ϵ 達成可能領域) がスムース最大エントロピーとスムース最大ダイバージェンスを用いて記述できることを明らかにした。

更に、歪みを許容した固定長符号化において、復号器のみが情報源と相関を有する副情報源からの出力を参照できる場合、すなわち Wyner-Ziv 符号化問題におけるレート歪み関数がスムース最大ダイバージェンスを用いて記述できることを明らかにした。

●教員からのメッセージ

植松研究室では、使い捨てではない画期的な研究による人類の知的遺産の構築を理念として、 情報理論の分野における世界的レベルでの貢献、世界初あるいは世界一の研究成果を目指して 研究を行っています。数学的モデルによって情報の本質を明らかにしようとする野心溢れる学 生の入門を歓迎します。

●関連する業績、プロジェクトなど

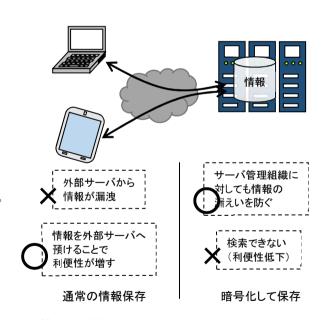
- 1. T. Uyematsu and T. Matsuta, "Equivalence among Some Information Measures for Individual Sequences," Proc. SITA 2018, pp.226-231, December 2018.
- 2. T. Uyematsu and T. Matsuta, "Revisiting the Slepian-Wolf Coding Problem for General Sources: A Direct Approach," Proc. IEEE Inter. Symp. on Inform. Theory, pp. 1336-1340, June-July 2014.
- 3. T. Uyematsu and T. Matsuta, "Source coding with side information at the decoder revisited," Proc. IEEE Inter. Symp. on Inform. Theory, pp. 1570-1575, June 2015.
- 4. T. Uyematsu and T. Matsuta, "Revisiting Wyner-Ziv Source Coding Problem Using Smooth Min and Max Renyi Divergence," Proc. SITA 2015, pp. 49-54, November 2015.

暗号理論とその応用

教授 尾形 わかは

研究分野:暗号、署名、暗号プロトコル

ホームページ: http://www.security.mot.titech.ac.jp/

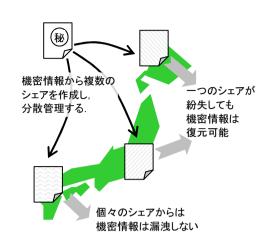

研究内容・目的

情報化社会においては、情報を秘匿するための暗号、通信相手を確認するためのエンティティ認証、伝送される情報の完全性を保証するためのメッセージ認証が不可欠であり、すでにインターネットや携帯電話において情報やユーザの安全性を守るために、これらの技術が利用されています。このような暗号技術は、単に情報を暗号化したり、相手を認証するだけでなく、様々な機能の実現に応用することができ、一見、実現不可能であると思えることも可能となります。当研究室では、より高い安全性と利便性を持ったサービスを実現するためには、どのように暗号技術が利用可能であるのか、また、どのような弊害が起こり得るのか、それを解明する研究を行っています。

研究テーマ

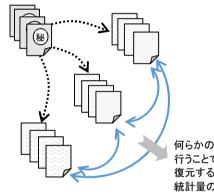
1. 検索可能暗号方式の構築と評価

近年では、個人や企業が大量の情報を外部サーバに預けて保管し、またその情報の処理 (検索や加工など) も外部の計算資源を利用して行うことが主流となりつつありますが、外部サーバに情報を保存することにより、情報漏洩のリスクが高まります。特に、組織における機密情報や、個人のプライバシー情報を外部に出す場合は、サーバ管理者への漏洩リスクも考慮する必要があります。このような漏えいリスクは、情報の暗号化によって軽減することが可



能ですが、通常の暗号方式によって暗号化された情報は、情報の検索や加工などの処理が不可能となり、利便性が大幅に低下します。このような問題を解決するものの一つとして、情報の検索が可能であるように暗号化する検索可能暗号があります。

当研究室では、サーバ管理者による検索結果の改ざんを検出可能な検索可能暗号や構築に関する研究や、安全性を段階的に定義し、各安全性レベルが保証される具体的な方式の構築を試みる研究などを行っています。


2. 秘密分散法の安全性強化や応用研究

情報の紛失に備えるための一般的な方法は、幾つかのコピーを保存しておくこと(バックアップ)ですが、コピーの数を増やすほど情報漏えいのリスクは増大します。秘密分散法とは、情報の紛失と漏えいを同時に防ぐことのできる暗号技術です。典型的な秘密分散共有法である「しきい値法」では、秘密情報から幾つかの補助的な情報(=シェア)が次の2つの性質を満たすように作成されます。(a)あらかじめ定められた数(しきい値)のシェアからは元の秘密情報を復元できる、(b)しきい値未満のシェアか

らは元の秘密情報について何もわからない。例えば、しきい値法を用いて生成したシェアを別々のサーバに保管することで、サーバに対するサイバーアタックや災害の際にも、情報漏洩や情報紛失を防ぐことができます。当研究室では、秘密分散法にユーザ認証の仕組みを組み込んだパスワード認証付き秘密分散法や、サーバによる情報改竄の検知などの機能を持つ秘密分散法の構築を行っています。

秘密分散法は、情報を安全に保存するだけでなく、 保存した複数の情報の操作(統計処理など)ができるという利点も持っており、プライバシーを保護したデータマイニングなどのサービスへの応用が期待されています。原理的にはどんな演算も可能ですが、実用的には計算コストがかかりすぎるなどの問題点があるため、漏洩する情報を抑えつつ効率よく必要な演算を行う方法の研究を行っています。

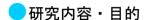
何らかの通信を 行うことで,各情報を 復元することなく 統計量のみを復元

教員からのメッセージ

安全な暗号方式を設計するには、必要な機能と攻撃者のモデル化、それらに基づいた厳密な証明が欠かせません。これらの暗号理論研究で得た能力は、暗号研究者だけでなく様々な分野の研究者や技術者になった時に役立つと思います。

関連する業績、プロジェクトなど

学術論文:


- S. Taketani, W. Ogata, "Improvement of UC Secure Searchable Symmetric Encryption Scheme," Advances in Information and Computer Security, the 8th International Workshop on Security, IWSEC 2015, LNCS Vol. 9241, pp.135-152 (2015)
- 2. W. Ogata, H. Eguchi, "Cheating Detectable Threshold Scheme against Most Powerful Cheaters for Long Secrets," Designs, Codes and Cryptography, Vol.71, No.3, pp.527-539 (2014)
- 3. T. Araki, W. Ogata, "A Simple and Efficient Secret Sharing Scheme Secure against Cheating," IEICE Trans. on Fundamentals, Vol.E94-A, No.6 pp.1338-1345 (2011)

ことばを計算機で処理する技術と その応用システムの開発

教授 奥村 学

研究分野:自然言語処理、テキストマイニング、Web テキスト処理

ホームページ: http://www.lr.pi.titech.ac.jp/

奥村研究室では、ことばを計算機で処理する技術に関する研究と、その技術を用いた 応用システムの開発を行なう。ことばの理解というテーマでは、これまで研究が難しい とされている、意味、文脈理解を中心に行なっていきたい。それと同時に、世の中で役 に立ちそうなシステムの開発も行なっていきたい。

●研究テーマ

1. 人間の言語理解のモデルを目指して(頑健な自然言語の意味、文脈解析)

これまでの研究成果により、自然言語の解析技術のうち、形態素、構文解析がある程度の精度で、分野を限らないテキストに対して実行できるようになってきている。だが、その先の解析技術である意味、文脈解析はその水準に達しているとは言えない。そこで、テキスト中の単語の語義の決定、照応/省略の解消、テキストの構造の決定などの意味/文脈解析の問題について個別に研究し、頑健な意味、文脈解析技術の構築を目指す。

2. 機械学習、統計的手法に基づいた自然言語処理

言語処理の手法としては、現在 WWW 上などに大量の言語データ (コーパス) が蓄積されるようになってきたことから、それらのコーパスを情報源として、統計的手法あるいは機械学習手法を利用することで、言語処理用知識を得て、その知識を利用する立場を採って、言語処理手法を開発している。たとえば、今後高度な言語処理を行なうためには、我々人間が持っている常識的知識を計算機も利用して言語処理を行なう必要がある。この常識的知識をコーパスから自動獲得する研究を行なっている。

3. ソーシャルメディアを対象としたテキストマイニング

インターネットの普及にともない、Web 上で多くの人々情報発信するようになっている。このため、発信された人々の情報を収集し、それを利用したいという要求が高まっている。そこで、現在非常に注目を集めている、ソーシャルメディア上のテキストから社会の動向、意見や、書いているユーザがどのような人間なのかを分析する手法の研究開発を行なっている(図は、blogWatcher の出力イメージ)。

4. テキスト情報の提示技術

近年電子化されたテキストが世の中に満ち溢れており、大量のテキストから必要なテキストを検索する技術と同時に、テキスト集合から人間が情報を効率的に入手できるよう、「わかりやすく」テキスト集合からの情報を提示する技術が求められている。テキストの要約、マルチメディア(音声、アニメーションなど)を用いたテキストの提示など、「わかりやすい」テキスト情報の提示技術を探求する。

教員からのメッセージ

2000 年 4 月に精密工学研究所 (現在の未来産業技術研究所) に着任して、18 年が経ちました。研究室は、現在は高村大也教授と共同で運営しており、助教 1 名、博士課程の学生さん 16 名、修士課程の学生さん 23 名という、にぎやかな状態が定常になりつつあります。「ことば」の処理に興味がある、意欲のある学生さんが来て下さることを期待しています。各自がやりたいこと (夢)を目指して、楽しく一緒に研究しましょう。

●関連する業績、プロジェクトなど

- 1. IBM Faculty Award 受賞, 2015.
- 2. ソーシャルメディアを対象としたテキストマイニング, 電子情報通信学会 Fundamentals Review 誌, http://www.ieice.org/ess/ESS/Fundam-Review.html, Vol. 6, No. 4, 2013.
- 3. 自然言語処理の基礎, 奥村 学, コロナ社, 2010.

次世代移動通信システムの研究

特定教授 奥村 幸彦

研究分野:移動通信、無線通信技術、無線通信ネットワーク

ホームページ: http://www.radio.ce.titech.ac.jp/

研究内容・目的

2020 年からのサービス開始を目指して研究開発が進められている第 5 世代移動通信システム (5G)では、スマートフォンやタブレット端末の普及によるモバイルデータトラヒックの急増や、 IoT (Internet of Things)の普及に伴うトラヒックの質的な変化に対応するため、現行の第 4 世代移動通信システム(4G)に対して、通信容量の大幅な向上、データ通信の超高速化と、低遅延化、接続可能デバイス数の大幅な増加、端末及びネットワーク双方の低消費電力化と低コスト化といった各種要求条件を満足する必要がある。加えて、様々な産業分野のニーズから生み出される新たなサービスやアプリケーションを柔軟に収容できるシステムを構築する必要があり、5G の更なる進化とともに、新たな無線通信技術を段階的に導入できる次世代移動通信システムの継続的な研究が必要である。当研究室では、下記のテーマを中心に研究を行っている。

- 次世代移動通信システムの方式検討と性能評価
- 次世代移動通信システムの更なる進化に向けた無線アクセス技術
- 次世代移動通信システムの更なる進化に向けた無線制御やアプリケーション

また、上記テーマの研究においてシミュレーション等による検討に加えて、実験装置を用いた 検証も行っており、企業の最先端の研究開発環境における研究も可能である。

研究テーマ

1. 次世代移動通信システムの方式検討と性能評価

5Gでは、2010年比で約1,000倍になると言われている通信トラヒックの収容、よりリッチなコンテンツを扱えるように基地局あたりの最大スループットを4Gの1 Gbps クラスに対して10 Gbps クラスまで向上、1 ms以下の無線伝送遅延を提供等が求められている。さらに、100倍近い数の端末の同時接続を可能としつつ、ネットワーク全体の消費電力や設備・運用コストを十分に抑える必要がある。

現在、これらの多岐にわたるシステム性能要求条件を満足する 5G 無線アクセス方式・インターフェイスの検討とその国際標準規格化が進められている。本研究では、タイムリーにシミュレーションによる性能評価を通して 5G 無線アクセス方式の検討を行う。

2. 次世代移動通信システムの更なる進化に向けた無線アクセス技術

5Gでは上記のシステム性能要求を達成するため、(i)周波数あたりの伝送効率(周波数利用効率)の向上、(ii)より高い周波数帯を採用することによる周波数帯域幅の拡大、(iii)より多くの基地局の高密度配置による面的システム容量の拡大等により無線アクセスの性能向上が図られる。ところで、周波数が高くなると電波伝搬損失が大きくなり、電波が遠くまで飛ばなくなることが知られている。それを解決するため、超多数素子のアンテナを用いて鋭い指向性ビームを生成し電波伝搬損失を補償する Massive MIMO の検討が進められている。また、Massive MIMO は周波数利用効率の向上や、基地局間の干渉を抑えることで高密度化にも貢献できる。本研究では、5G及びその更なる進化版(5G+,…)の導入を目指し、Massive MIMOを中心とする無線アクセス技術について、試作装置を用いた屋内・屋外伝送実験による検証も含めて詳細な検討を行う。

3. 次世代移動通信システムの更なる進化に向けた無線制御やアプリケーション

5G は、4G のサービスエリアに追加する形でエリア展開され、5G の周波数帯も複数になることが予想されるため、端末は複数の 4G/5G の周波数帯、次世 (代 Wi-Fi 等を含む複数の無線アクセス

ネットワークに同時に接続しつつ、ユーザのニーズに合わせて適切なものを選択する必要がある。 本研究では、これらの無線制御技術について検討を行う。また、5G及びその進化版におけるア プリケーションやサービスについても、シミュレーション検討または実験検証を行う。

教員からのメッセージ

当研究室では、机上の理論検討やシミュレーションによる方式検討に加えて、より実践的な研究活動を体験してもらうため、企業における最先端の研究施設に滞在する形でも研究が行えます。企業の研究者との深い技術議論や意見交換の場を提供し、企業・研究機関等へ就職後に即戦力として活躍できる人材の育成を目指しています。企業の研究者とともに次世代移動通信システム・技術の創出に貢献したいと考えている学生の方を募集しております。

●関連する業績、プロジェクトなど

- 1. ドコモの 5G に向けた取組み -2020 年での 5G サービス実現に向けて-https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/rd/technical_journal/bn/vol23_4/vol23_4_003jp.pdf
- 2. ドコモと国内外の主要ベンダが継続実施中の「5 G実験」の一部を担う研究活動(2014 年度~2022 年度予定)
- 3. 総務省・電波資源拡大のための研究開発「5G 研究開発プロジェクト」と連動する研究活動 (2015 年度~2018 年度)
- 4. 5 G モバイル推進フォーラムの「5G システム総合実証試験」と連動する研究活動 (2017 年度~2019 年度)

医療・社会の情報化を支える 画像・情報処理技術

准教授 小尾 高史

研究分野:医用画像・情報処理、医療・社会情報システム

ホームページ: http://www-obi.isl.titech.ac.jp/

研究内容・目的

社会で問題となっているさまざまな課題の解決を目指し、利用者が医療機関や公共機関が有する情報などを安全に利用できるインフラの構築や、医療情報・社会情報を有効に利用可能とするシステムの研究を行っています。また、人の生体活動を調べるために必要となる新たな生体計測、画像化技術、特に生体機能解明や診療に必要となる画像処理技術の研究を行っています。

研究テーマ

1. 医療情報・社会情報流通基盤の安全性確保に関する研究

医療情報などの様々な情報の安全な流通を可能とするためには、本人確認やアクセスコントロールを行うと共に、これらデバイスの有する機能の標準化による情報システム間の相互運用性確保が極めて重要になります。本研究室では、多機能 IC チップの認証デバイスとしての性能を十分生かしつつ、安全な情報流通を保証するために必要となるフレームワークの確立を目指した研究を行っています。具体的なテーマとしては、マイナンバー制度のように、国民が直接的かつ積極的に自己のさまざまな情報を活用可能となる公共システムに関する研究、医療分野向けの情報システムに関する研究、さらには医療用ネットワーク基盤の開発などがあります。

特に、公的 IC カードの代表例である個人番号カードに必要となる機能の検討や、カードに搭載される機能を利用して、ネットワークサービスの安全性確保や医療分野・金融分野における新しいサービスの創設についての研究開発など、国民生活に直接関係する様々な技術の開発を実施しています。また、OpenFlow と呼ばれるネットワークフロー制御技術を医療分野で活用する技術の開発を行っており、この技術を応用して、医療機関同士を安全に接続するネットワーク基盤を構築する方法や具体的なサービスモデルに関する研究開発も行っています。

図1 個人番号カードの多目的利用の検討(左)と医療用ネットワーク基盤の検討(右)

2. 医用画像処理・情報処理に関する研究

Positron Emission Tomography (PET)や X線 CT などは、体外で収集したデータから人体内部の情報を画像化する代表的装置であり、診断における重要な位置を占めています。本研究室では、疾病の早期発見や高精度な画像診断を可能にすることを目的として、体内の構造や機能を画像として正確に収集する手法の開発を行っています。特に、観測系の特性を正確に記述して統計的な画像再構成をおこなう手法を開発し、様々な対象へ適用しています。

また、他の医用画像関連の研究としては、マクロ病理画像解析の研究を行っています。がん等の治療方針の決定に必要となる病理診断では、摘出された臓器目視で観察し、微妙な色合いや質感等から病変部の位置や広がり、転移の有無等についてあらかじめ特定します。一般にはその後、ホルマリン等により固定処理を施たうえで、病変部を切り出し、作成した病理標本を顕微鏡で観察することで診断を行います。一方、臓器全体の色合いや質感のみから病変部・重症度の特定がある程度可能とも言われており、それを客観的に確認するための新たな撮像装置の開発、画像処理手法の開発を行っています。

その他、糖尿病予備軍の患者に対して行動変容を促すことで症状改善につながることを明らかにするために必要となる医療データ解析手法の開発や、個々の患者に対してどのような行動変容を促すべきかをAIで予測するための研究開発を行っています。

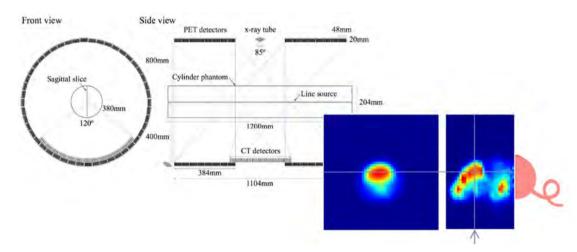


図2 OpenPET-X線CT同時撮影装置の概略(左)とマウスの機能画像推定結果(右)

<u>教員からのメッセージ</u>

今後、医療分野や公共分野など身近なところで実際に使われる技術に興味のある人、こんなことができたらいいなとか、自分だったらこうしたいなと思っている人、世の中で困っていることを解決してみたいと思っている人を歓迎します。また、小尾研究室は、本学の科学技術創成研究院社会情報流通基盤研究センターに関連する研究室やセンターに関わる多くの民間企業などと共同で研究開発を進めていますので、幅広い研究テーマも自由に選択することができます。

●関連する業績、プロジェクトなど

- 1. T. Obi. Toward Realization of National Mobile ID in Japan, Government ID World 2018, http://www.governmentidworld.com/proceedings, Sep. 2018.
- 2. I. Ismet, T. Obi, E. Yoshida, T. Yamaya. Monte Carlo simulation of sensitivity and NECR of an entire-body PET scanner, Radiological Physics and Technology, Springer, Vol. 7, No. 2, pp. 203-210, Jul. 2014.

誤り訂正符号の基礎と応用

准教授 笠井健太

研究分野:符号理論、LDPC 符号、空間結合符号 ホームページ: http://www.comm.ce.titech.ac.jp

一研究内容・目的

符号理論の目的は、通信路符号化定理などの情報理論が与える情報通信に関する主要な結果を 現実的な方法によって実現することです。符号理論は情報通信産業に直接貢献する誤り訂正技術を 扱っているので、シンプルで抽象的な問題だけではなく、現実の情報通信産業が直面している複雑な 問題に対して実現可能な解決法を与えることが望まれています。一方で、符号理論は情報通信に関す る多くの応用問題の基礎をなすために、他の通信工学の分野に比べてより厳密な証明が求められま す。符号理論は、工学的重要性と理論体系の美しさによって多くの研究者の魅了し、多くの他分野に 影響力のある学問分野を形成しています。本研究室では推論に基づく誤り訂正技術を使って、情報通 信システムの問題解決に取り組んでいます。

研究テーマ

噴水符号:インターネットのパケット通信に適した誤り訂正

インターネットでは、情報はパケットと呼ばれる単位にまとめられて送られます。ネットワーク機器の性能の不足などで、パケットはしばしば消失してしまうことがあります。この時にどのような問題が考えられるでしょうか。例えば、1 ギガバイトのファイルをパケットに分割してサーバから数百万人のユーザに送りたい状況を考えてみましょう。1番目から順にパケットを単純に送るような方法では、1つでもパケットが消失してしまうだけで、サーバに再送要求をしなければならず、サーバでは数百万人分の再送要求を受け付けることになり、現実的ではありません。従来のブロック誤り訂正符号では、ある決められた符号化率で符号化するために、上記の問題を解決することができませんでした。

ファイルを非常に小さい符号化率でファイルをパケット列に符号化しブロードキャストする事によってこの問題を解決することができます。この符号化法は、パケットを水滴に例え、噴水(fountain)符号と呼ばれています。受信者は、無限に送られてくるパケット列の中から数パーセントだけ余分に任意のパケットを受信することで、サーバに再送を要求することなしにファイルを完全に受信することができます。本研究室で開発された乗法繰り返し多元 LDPC 符号を用いた噴水符号は、小さなサイズのファイルに対して世界で最もオーバヘッドの少ない噴水符号を実現しています。

噴水符号を用いると、サーバで は再送要求に応える必要がな く、多くのユーザそれぞれ対し て最適な誤り訂正を実現する ことができます。

受信者はサーバから送信される任意のパケットをファイルサイズより数パーセント多く受信することにより、ファイルを手に入れることができます。

量子誤り訂正符号

量子コンピュータおよび量子通信を実現することにより、従来のコンピュータや通信の枠組みでは実現が困難だと考えられている複雑な計算や安全な通信が実現できます。量子状態は劣化したりノイズの影響で変化することがあるので、量子コンピュータや量子通信を安定的に運用するためには、効率的に復号可能な量子誤り訂正符号が必要となります。本研究室では、現在世界で最も誤り復号性能が優れた量子誤り訂正符号を開発することに成功しています。

空間結合符号

事後確率を最大にするシンボルを推定することにより、シンボル復号誤り率を最小にすることができます。しかしこの最大事後確率復号法は、理論上理想的な復号法なのですが、計算量が大きく実現することができません。空間結合符号はこの最大事後確率復号と同じ復号性能を、確率推論に基づく低計算量の復号法により実現することができます。本研究室では、この空間結合符号を通信の様々な問題に適用し理論限界に迫る結果を引き出すことに成功しています。

空間結合符号は次のようなドミノ倒しの話に例えられます。解くべき難しい問題を1列に並べ、隣の問題が解けると次の問題が簡単に解けるように隣同士を結合します。そして、端に簡単に解ける問題を用意しておくことで、ドミノ倒しの様に端から順にすべての問題が解けてしまうという寸法です。

学生の得意分野や性格に応じて指導方針を考えています。研究室までお越しください。

●関連する業績、プロジェクトなど

文鉱

- > T. Nozaki, K. Kasai and K. Sakaniwa, "Analytical Solution of Covariance Evolution for Irregular LDPC Codes," IEEE Trans. on Information Theory, 2012.
- K. Kasai, D. Declercq and K. Sakaniwa, "Fountain Coding via Multiplicatively Repeated Non-Binary LDPC Codes," IEEE Trans. on Communications, 2012.
- K. Kasai, M. Hagiwara, H. Imai and K. Sakaniwa, "Quantum Error Correction beyond the Bounded Distance Decoding Limit," IEEE Trans. on Information Theory, 2012.
- K. Kasai, D. Declercq, C. Poulliat and K. Sakaniwa, "Multiplicatively Repeated Non-Binary LDPC Codes," IEEE Trans. on Information Theory, 2011.

講演(招待)

K. Kasai, "The Many Applications of Spatially-Coupled Codes," IEEE Information Theory Workshop, Paraty, Brazil, Oct. 16-20, 2011.

受賞

▶ エリクソン・ヤングサイエンティストアワード 2010

潜在脳機能の解明と活用

特定教授 柏野 牧夫

研究分野:認知神経科学、心理物理学、感覚運動情報処理

ホームページ: http://www.kecl.ntt.co.jp/people/kashino.makio/

研究内容・目的

人間の知覚、運動、意思決定、感情、コミュニケーションなどの認知的機能は、「潜在脳機能」 (本人も自覚できない、身体に根ざした、非記号的・非論理的な脳内情報処理)によって支えられている。この潜在脳機能の動作原理を解明し、好ましい状態になるように調整する方法を開発することを目指している。

研究テーマ

1. 聴覚情景分析と選択的聴取

日常場面では、様々な音が現れたり消えたりしながら混在している。耳から脳に至る聴覚系では、混ざり合った音を音源ごとのまとまりに分けたり(聴覚情景分析)、その中から目下必要なものだけを重点的に処理したりしている(選択的聴取)。この高度で柔軟な情報処理のしくみを解明することを目指している。ここで重要な手がかりとなるのが、聴覚の錯覚(錯聴、空耳)、すなわち、音の物理的特性と知覚的特性との系統的なズレである。錯聴を素材とした心理物理実験、脳機能計測、数理モデルにより、知覚を生み出す脳内各部のダイナミックな連携が明らかになりつつある(図1)。

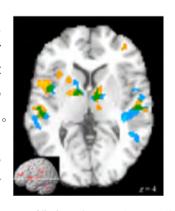


図1. 錯聴を生み出す脳活動

2. 自閉症スペクトラムにおける感覚特性

他者とのコミュニケーションの困難、狭く深い興味などによって特徴付けられる自閉症スペクトラム(autism spectrum disorder; ASD)は神経発達障がいの一種である。ASD 当事者は、様々な音が存在する環境で所望の音を聞き取りにくい(選択的聴取困難)、特定の音に対して強い嫌悪を感じる(聴覚過敏)などの問題をしばしば訴え、それがコミュニケーションを阻害する要因のひとつともなっている。このような感覚特性の特殊性に着目し、それを心理物理実験や生理計測によって客観的に定量化するとともに、原因となっている神経メカニズムを解明することを目指している。研究成果は、ASD の客観的診断や適切な支援の基盤となる。

3. Body-mind reading & feedback

心身は別物ではなく、相互に密接に関係している。むしろ、表裏一体、同一の現象に対する記述の視点の違いと言った方が適切かもしれない。本人も自覚できない潜在脳機能は、眼球運動や

心拍変動、無自覚的動作、ホルモン分泌などの身体的反応に 表れ、同時に、それらの身体的反応が潜在脳機能を誘導する。 各種身体的反応を非侵襲的に計測し、情動、意思決定、コミ ュニケーションなどに関する情報を推定する手法を研究し ている。さらに、身体的反応から潜在脳機能を調整する可能 性も探っている(図 2)。

4. スポーツ脳科学

球技や格闘技などでは、一瞬の間に、ゲームの状況や相手の意図を把握し、それに応じて適切な意思決定をして、身体各部を協調させて動かさなければならない。意識的なプロセスは致命的に遅すぎるため、ここではほとんど役立たない。無自覚的に動作する潜在脳機能こそが、勝負の鍵を握っている。トップアスリートの潜在脳機能を解明し、その知見をプレイヤー個人の個性やレベルに応じて適用すれば、効果的に技能を高めることができるだろう。ウェアラブルセンサによるスポーツ実践中の心身状態計測、body-mind reading & feedback 技術、潜在脳機能に関する知見を融合させて、初心者からトップアスリートまで、技能向上を支援する手法の開発を目指している(図3)。

図2. 眼から音の印象を読む

図3. スポーツ中の生体計測

●教員からのメッセージ

感覚、運動、コミュニケーションを支える潜在脳機能は、科学のフロンティアとして魅力的であるだけでなく、工学的な応用可能性も幅広い。この分野はきわめて学際的であり、およそあらゆる学問に関係していると言ってよい。様々な分野の知識や手法を柔軟に取り入れ、新しい研究領域を開拓する気概のある学生であれば、学部時代のバックグラウンドは問わない。

■関連する業績、プロジェクトなど

- 1. 柏野 牧夫: 『空耳の科学―だまされる耳、聞き分ける脳』, ヤマハミュージックメディア, (2012).
- 2. Kashino, M., Kondo, H.M.: Functional brain networks underlying perceptual switching: auditory streaming and verbal transformations. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367 (1591): 977-987, (2012). doi: 10.1098/rstb.2011.0370.
- 3. Lin, I.F., Yamada, T., Komine, Y., Kato, N., Kashino, M.: Enhanced segregation of concurrent sounds with similar spectral uncertainties in individuals with autism spectrum disorder. *Scientific Reports*, 5: 10524, (2015). doi: 10.1038/srep10524.
- 4. Liao, H.I., Kidani, S., Yoneya, M., Kashino, M., Furukawa, S.: Correspondences among pupillary dilation response, subjective salience of sounds, and loudness. *Psychonomic Bulletin & Review*, 23(2):412-25, (2016). doi: 10.3758/s13423-015-0898-0.
- 5. スポーツ脳科学プロジェクト http://sports-brain.ilab.ntt.co.jp/

人間の視覚情報処理メカニズムの 理解と応用

教授 金子 寛彦

研究分野:空間認識、異種感覚情報統合、眼球運動ホームページ: http://www.kaneko.ip.titech.ac.jp/

研究内容・目的

人間が外界を「見る」ための情報処理過程は、左右眼の網膜に写った二枚の二次元画像から始まる。 その最初の情報が二次元であるにもかかわらず、見ている対象は生き生きとした三次元空間に感じられる。飛んでくるボールをラケットで打ち返すことや、針の穴に糸を通すような作業ができることからわかるように、三次元知覚のための情報処理は素早く精密である。

本研究室では、視覚系を中心とした人間の知覚認知メカニズムの解明を目指している。具体的には、空間認識、視覚と前庭感覚や体性感覚との統合、眼球運動などの情報処理過程に関する研究を行っている。その中で、心理物理的手法により計測される知覚や認識の様相を表すデータと、眼球運動や身体の運動・行動などの生体計測データを用いる。これらのデータを用いて、知覚情報処理特性を定量化し、知覚情報処理メカニズムのモデル化を進めてゆく。得られた知見は、立体表示やバーチャルリアリティ(VR)システム、ヒューマンインターフェースといった情報機器の設計、あるいは、車のインテリアや道路のデザインなどにも役立てることができる。

●研究テーマ

1. 両眼視差による空間認識機構

三次元空間にある対象を両眼で観察したとき、左右に約6cm離れた両眼の網膜像はわずかに異なる(図1)。両眼視差とはこの左右像の違いのことであり、人間はこの情報から三次元形状を認識できる。一般に水平方向のずれ(水平視差)の効果が検討されるが、垂直方向のずれ(垂直視差)(図2)も空間認識において重要であることが明らかにされており、本研究室でも垂直視差処理の特性とメカニズムを研究している。この研究により、垂直視差と水平視差の処理特性が大きく異なっていることがわかってきた。水平視差が対象の空間形状の情報となるのに対し、垂直視差は観察者自身の眼や頭部の位置の情報となり、それらの位置の変化による水平視差の変化を補正する働きをしていると考えられる。

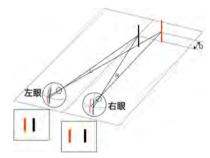


図 1. 対象の空間的位置と両眼像.

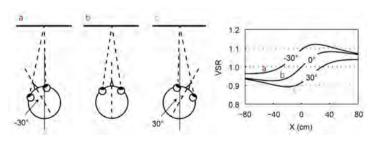


図2. 額面平行面による垂直視差(VSR)と頭部方向の関係.

2. 視覚情報と前庭・体性感覚情報の統合機構

人間は、視覚情報に加えて、耳の奥にある三半規管と耳石器官をセンサーとした前庭感覚情報や、体表面や内部にあるセンサーによる体性感覚情報を用いて、自己の運動感覚の生成、姿勢や眼球運動の制御などを行っている。本研究室では、ヘッドマウントディスプレイ(HMD) 図3)などを用いて、視覚情報と前庭・体性感覚情報を独立にコントロールして実験を行い、異種感覚情報統合過程についての検討を行っている。そして人間の感覚系は、それぞれの感覚情報の特性を生かして統合し、外界や自分自身の位置や動きの知覚を生成していることが明らかになってきた。感覚情報が矛盾した時の空間知覚や自己運動感覚に関する知見は、宇宙空間など特殊な環境における知覚を予測するためにも役立つ。

図3. HMD を使った実験.

3. 眼球運動計測に基づいた心理状態の推定

人の視線が向く方向と注意が向く方向は完全には一致しない(図 4)。 そのため、注意位置の推定が可能になれば、視線計測より精度よく人 の心理状態を推定することが可能となり、多くの応用が見込まれる。 視線計測については多くの手法が開発され、精度の高い機器が実用化 されているが、注意位置を計測する機器は、現段階では実用化されて いない。本研究室では、将来的に実用化可能な注意位置推定手法を確 立するため、無意識的眼球運動である、微小輻輳運動、眼振、瞳孔変 動に着目し、注意位置を推定する手法の研究を行っている。

図4. 視線位置と注意位置が異なる例.

<u> ◆教員からのメッセージ</u>

我々が見ている世界は、脳内の電気信号によって作られている。すなわち、我々が感じているリアリティは、実際のものを直接感じているわけではなくバーチャルなものである。だから、最近流行りのバーチャルリアリティシステムは、実際のものと異なるバーチャルな情報を入力し、その結果バーチャルなリアリティを感じさせる嘘と欺瞞に満ちたものだ。などと考えつつバーチャルリアリティシステムで三次元空間を見ても、そのリアリティに感動する。リアリティとはいったいなんだろうか?視覚や脳の分野はまだまだ未知な部分が多いため、既存の知識や方法論が通用せず、進むべき方向を自分で見つけなければならないという困難がある。しかし、世界中の誰も知らないことが初めて解ったり、誰も見たことがないものを初めて見たりといった、ゾクゾクするような楽しい経験ができる分野でもある。夢を持って未知なことに果敢にチャレンジする気持ちを持つ人、そして、人間に興味があって自分の知覚や脳の働きを不思議で面白いと思う人を歓迎する。

関連する業績

- 1. Toru Maekawa, Hirohiko Kaneko, "Does Changing Vertical Disparity Induce Horizontal Head Movement?" PLoS ONE 10(9): e0137483 (2015).
- 2. Kei Kanari, Hirohiko Kaneko, "Standard Deviation of Luminance Distribution Affects Lightness and Pupillary Response", Journal of Optical Society of America A, 31 (12), 2795-2805 (2014).
- 3. Yusuke Matsuda, Hirohiko Kaneko, "Gathering and Repetition of the Elements in an Image Affect the Perception of Order and Disorder" International Journal of Affective Engineering, 13 (3), 167-173 (2014).
- 4. 金子寛彦, 浅野拓也, 南明宏, 水科晴樹, "三次元実物体とその二次元画像に対する大きさ知覚の違い", 電子情報通信学会論文誌 A, J97-A(1), 45-52(2014).
- 5. 水科晴樹, 阪本清美, 金子寛彦, "課題遂行時の作業負荷により誘発された心理的ストレスとサッカード眼球運動の動特性との関係", 電子情報通信学会論文誌 D, J94-D (10), 1640-1651 (2011).
- 6. 金子寛彦, "空間知覚の適応的側面" 光学, 36 (6), 302-310 (2007).

ネットワーク運用技術の研究

准教授 北口 善明

研究分野:分散システム運用,通信品質計測, IPv6

ホームページ: http://www.net.ce.titech.ac.jp/(山岡研究室と合同)

研究目的・内容

インターネットに代表される情報通信ネットワークは、今日の我々にとって必要不可欠な存在 となっています。現代社会を支える基盤技術である情報通信ネットワークにおいて、安定的な運 用やサービス品質保証を実現するために必要な技術を確立することを目的としています。

研究テーマ

1. ユーザ視点でのネットワーク状態計測手法

キャンパスネットワークやイベントネットワークなどの運用においてネットワークを提供する場合、ユーザから「つながらない」というクレームを受ける時があります。「つながらない」状況の問題点を突き止めるには、ユーザ側からのネットワーク観測が有効となりますが、ユーザからは得てして「つながらない」という漠然とした情報しか得られないことが多いです。そこで、ネットワーク障害などを定量的に解決するために、我々はエンドユーザが利用している実環境からの状態観測情報をネットワーク運用者に的

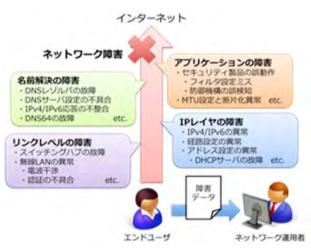


図 1 ユーザ視点によるネットワーク状態計測手法

確に伝える手法の確立を目指しており、ユーザ視点によるネットワーク状態計測手法を提案し研究を行っています。

2. IPv6 時代におけるネットワーク運用の研究

IPv6 (Internet Protocol version 6) は、1995年に策定された次世代のインターネットプロトコルです。現行のプロトコル (IPv4) が持つ IP アドレス数の限界を回避するために登場しましたが、互換性がないことからネットワークを二重運用するデュアルスタック化が必要となり、運用コスト増加が原因で利用が進んでいませんでした。ただし、拡大し続けるインターネットを支えるためには IPv6 への移行が必須となっており、導入に伴う課題を明らかにして解決するこ

とが求められています。我々は、実際のネットワーク環境を用いて、IPv6 導入に伴う課題の評価を進めています。特に、プロトコルや実装における脆弱性評価および動作不良に関しては、標準化団体や機器ベンダと連携して取り組み、次世代インターネットの発展に貢献します。

3. インタークラウド環境を活用した広域分散システムの評価手法

多くの大学や研究機関では、自組織のコンピュータ資源によるオンサイトシステムを有しています。さらにクラウドコンピューティングの登場により多くのクラウドサービスを活用したシステム構築が行われています。システムの地理的な分散が可能となる広域分散システムでは、拠点障害に対する耐性を高める効果がありますが、通信遅延の影響を受けるため単組織で構成する場合と比較してネットワークに対する考慮が必要となります。そこで、広域分散システムの有用性と課

図 2 広域分散システム評価ネットワーク

題解消のために、広域分散システムの評価手法に関する研究を進めています。

4. その他の研究テーマ

- · IoT デバイスにおけるセキュリティゲートウェイとその同期運用機構に関する研究
- ・インターネットにおける通信品質計測手法と評価手法の研究
- ・IPv6 普及度評価のための計測・評価手法の研究
- ・次世代キャンパスネットワークの運用技術に関する研究

教員からのメッセージ

情報通信ネットワークに関する研究は、ネットワーク運用と密接に関係します。そのため、実際のネットワーク運用に関わりながら研究を進める方針としています。

●関連する業績、プロジェクトなど

論文:

- [1] I. Nakagawa et al., "A design and implementation of global distributed POSIX file system on the top of multiple independent cloud services," Proc. of the 5th International Congress on Advanced Applied Informatics (IIAI AAI 2016), pp.867-872, 2016.07.
- [2] 北口善明 ほか, "広域分散システムの耐障害性を評価する検証プラットフォームの実装と評価", 情報処理学会論文誌,Vol.57,No.3, pp.958-966, 2016.03.

プロジェクト:

- ・ITRC RICC 分科会 distcloud プロジェクト (http://www.ricc.itrc.net/)
- ・SINDAN プロジェクト (http://www.sindan-net.com/)
- ・iNonius プロジェクト (http://inonius.net/)

画像処理・ニューラルネット・ 人と機械のインタラクション

教授 熊澤 逸夫

研究分野:画像認識、触覚ディスプレイ、生体情報処理モデル、機械学習

- 研究内容・目的

工場の自動化、自動車の自動運転、ドローンの無人飛行、ロボットの高機能化、監視カメラによる人物特定や行動分析等、画像認識の用途が広がっている。当研究室では画像センサの新原理、画質改善、画像表現の数学的手法、3次元形状計測、特徴抽出、文字認識、リモートセンシング画像や監視カメラ映像の分析と識別、製品検査等、広範に画像処理、画像認識の研究を行っている。 またスマートフォンやウェアラブル端末の操作性を改善するために、多様なセンサとディスプレイを組み合わせて人と機械のインタラクションを分かりやすく効率良く行えるようにする方法を研究している。そのために視覚と聴覚以外に触覚も活用することを試み、触覚に情報を提示する手段を開発している。ここで人の感覚特性や運動特性を加味するために、生体情報処理モデルを構築して利用している。さらに生体の神経回路を模擬したニューラルネットの学習手法を開発し、これを画像処理、触覚ディスプレイ、人と機械のインタラクション、そして画像認識に応用している。

●研究テーマ

1. マルチスペクトル画像センサの新原理の開発

マルチスペクトルセンサを初め、光の到達時間の差に基づく3次元センサ等、画像センサは人の視覚能力を超え、センシングの対象を広げている。3原色のみならずより細かく波長帯を区別して非可視域も含めて画像を計測できるマルチスペクトル画像センサは、リモートセンシングや食品、工業製品の不良検査、植物工場における作物の生育状態の診断等、応用範囲が広いが現状の技術では大きく重く高コストとなるため身近に利用することが難しかった。本課題では小型の無人機(ドローン)に搭載して一般農家が日常的に農作物の監視に利用できるように画期的に小型軽量、低コスト化したマルチスペクトルセンサを開発することを目指している。提案している新原理の特徴はクロストークを許容することによる光学系の簡略化とクロストーク除去に用いる高度な数理的手法にある。

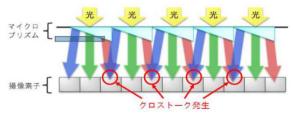


図1 マルチスペクトル画像計測の原理

図2 多視点画像の計測

2. 画像復元の数理的研究

画像復元は、デジタルカメラ画像の修正、衛星画像のノイズ除去、MRI 画像復元、超解像画像処理、JPEG 最適復号、インペインティング、画像圧縮等、幅広く応用されている。当研究室では、画像復元の性能を向上させるために重要な 1. 正則化関数の設計と 2. 最適化問題の効率的な解法について数理的側面から研究を行っており、画素関係性を無向グラフで表現した場合の正則化関数 [業績 1]や、確率的最適化技術の画像復元への応用[業績 2]などを提案している。

3. 画像認識の研究とその応用

当研究室では、画像認識の新アルゴリズムと機械学習を組み合わせて高性能な画像認識手法を 開発して、自動運転や人物の行動分析、工場の検査工程の自動化、リモートセンシング画像の分析、手指の運動を3次元的に認識してジェスチャー入力を実現する等の目的に応用している。

4. 3次元物体計測と認識の研究

3次元の物体を認識するためには、同じ物体でも視点によって見え方が異なることに対応しなければならない。図2には当研究室で構築した多視点画像計測システムを示す。図中の黒い立方体フレームの中央部に置かれた対象を多数の異なる視点から撮影し、登録した多視点画像と与えられた画像を照合することによって、物体を3次元的に認識する。

5. 触覚への情報提示手段の研究

視覚と聴覚に加えて触覚にも情報を提示してスマートフォンやゲームのユーザーインターフェイス(UI)やユーザーエクスペリエンス(UX)を向上する方法を研究している。図3には当研究室で開発した触覚情報提示装置の一例を示す。

図3

6. 多様なセンサと多様な情報提示手段を組み合わせた人と機械のインタラクション方式に関する研究

画像センサ、圧力センサ、タッチセンサ、加速度センサ、ジャイロセンサ等の多様なセンサと視覚、聴覚、触覚への情報提示を組み合わせて人と機械のインタラクションを分かりやすく実現する方法を研究している。図4にスマートフォンに実装した多様なセンサと触覚ディスプレイの開発例を示す。

図 4

◯教員からのメッセージ

研究に興味を持ち、遊び感覚で楽しく取り組めるようにすることが大切です。当研究室ではそのような意欲のある方が楽しく研究に取り組める場を提供します。

●関連する業績、プロジェクトなど

- 1. S. Ono, I. Yamada, and I. Kumazawa, "Total generalized variation for graph signals," IEEE ICASSP), Brisbane, Australia, Apr. 2015.
- 2. S. Ono, M. Yamagishi, T. Miyata, and I. Kumazawa, "Image restoration using a stochastic variant of the alternating direction method of multipliers," IEEE ICASSP, Shanghai, China, Mar. 2016.
- 3. Itsuo Kumazawa and Ryo Koizumi: "An actuated stage for a tablet computer: generation of tactile feedback and communication using the motion of the whole tablet",

Proceedings of the 20th IEEE VR 2013, RD-006, pp.173-174(ベストデモ賞)

応用音響システム

准教授 黒澤 実

研究分野:電気音響、アクチュエータ、音響測位 ホームページ: http://www.kurosawa.ip.titech.ac.jp

研究内容・目的

電気音響技術の応用となるシステムやデバイスに関する研究を行っている。オーディオシステムの研究は、これまでに顧みられなかった再生音のあり方に関する視点で、音楽では欠かせない和声の再現性に注目している。音響放射力アクチュエータは独自の技術分野確立を目指している。音響測位では独自のデジタル信号処理技術により実時間速度位置計測を実現している。

●研究テーマ

1. 高品位オーディオシステム

進歩した電子回路技術の恩恵を受け、音響信号のデジタルフォーマットは飛躍的に進化を遂げ、

広い周波数帯域と高い分解能を実現する に至った。しかし、電気音響機器により 再生される音は、現実の音とはひどくか け離れており、技術進歩の恩恵には浴し ていない。

高級音響機器や映画館における電気音響機器から再生される音に限らず、館内放送の音,車内放送のアナウンス、テレビの音声など、様々な電気音響機器に共通の問題が存在していると考えられる。特に高解像度画像と共に用いられるシステムにおいては、これまでに無い高臨場感が求められており、電気的に再生される音の質は大きな問題となっている。

例えば、抵抗器では電流雑音が知られており、抵抗器の中を流れる電流には揺らぎが存在する。この揺らぎが信号に及ぼす影響は未だ検討されたことが無かった。我々はオーディオシステムから、音楽の持つ豊かな和声が再生されることを目指して研究を進めている。

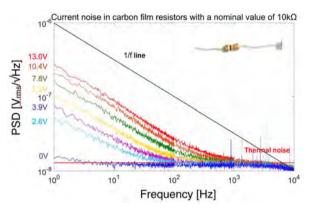


図1 炭素皮膜抵抗器の電流雑音:印加電圧 2.6-13V

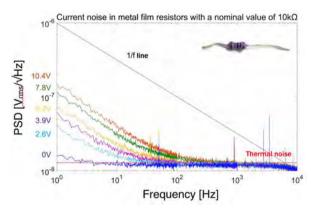


図2 金属皮膜抵抗器の電流雑音:印加電圧 2.6-10.4V

2. 音響放射カアクチュエータ

音響放射面から水中に超音 波が放射される際に、非線形 作用による音響放射圧が生ず る。音響放射圧を駆動力源と する、新しい水中での自走型 アクチュエータに関する研究 開発を進めている。音響放射 力アクチュエータは、水中で 20cm/s の速度で移動でき、セ ンチメートル~ミリメート の素子寸法が実現可能である。 現在は、推力発生メカニズ ムの定量的解析と様々な形態

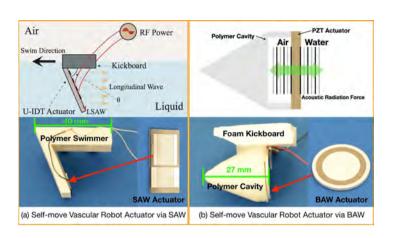


図3 弾性表面波(左)および厚み振動子(右)を用いたアクチュエータ

でのアクチュエータ実現に関して研究を行っている。水中を自在に移動できる水中ロボットの実現や、血管内での医療応用をめざした研究開発を進めている。

3. エコーロケーションシステム ~高分解能速度・測位システム~

超音波を対象物に放射し、反射波を信号処理することで対象物の位置や動きといった空間情報を取得できる。受波信号の高速な信号処理を実現するため、1 ビット Δ Σ 変調信号を用いた簡便な相互相関処理方法を開発している。1 ビット信号処理回路を FPGA に実装し、実時間で対象物体の3次元的な位置と速度ベクトルを検知するシステムについて研究を進めている。

●教員からのメッセージ

自分の手を動かして何かを作り上げる喜びと、成功したときの感動を大切に。そのために自ら考え学ぶ努力を。そして世の中に役に立つ技術とは何かを考え実践しよう。研究においてはたくさんの失敗を経験することが大事である。そしてその失敗の原因が何であったのかを突き詰めて、原因と結果の因果関係を明らかにできる能力と表現力を培ってほしい。

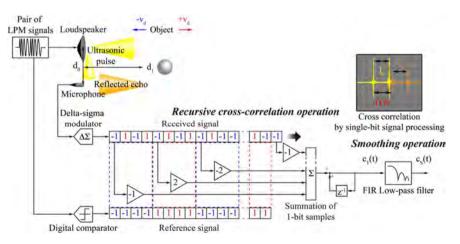


図 4 エコーロケーションシステムと 1bit 演算による相互相間信号処理

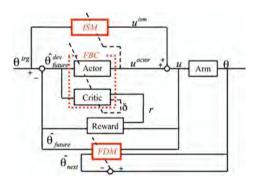
脳の運動機能の解明とその応用

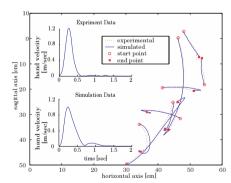
教授 小池 康晴

研究分野:計算論的神経科学、ヒューマンインタフェース

ホームページ: http://www.cns.pi.titech.ac.jp

研究内容・目的

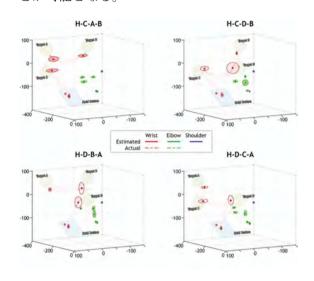

人間は、生まれた時から、自律的に環境との相互作用によって知識を獲得している。手足が自由に動かせるようになり、道具を使いはじめ、言葉を喋るようになる。このようなことが行なえるのは、脳の中に何かが獲得されたためである。このような人間の脳の機能を知り、コンピューターを使ってその機能を再現することを目標にしている。この時、脳の中で行なわれている方法を真似て機能を再現することに重点を置いている。

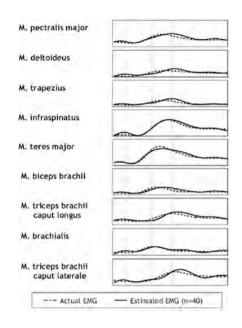

具体的には、筋骨格系のモデルをつくり、筋肉の活動と腕の運動の関係から、脳では、どのよう に腕を制御しているのかを明らかにすることなどである。

研究テーマ

1. 筋骨格系モデルの構築とその応用

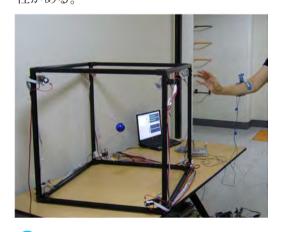
随意運動における脳の各領野の機能や役割を解明することは、人間の行っている巧みな操作を実現する上で重要である。この研究では、腕の制御に関する小脳と大脳基底核の関連モデルを計算機上に作成し、脳で行われている軌道計画や運動指令の生成がどのように行われているかをシミュレーションと行動実験により明らかにすることを目的としている。





2. 脳の運動機能解明 (ブレイン・マシン・インタフェース)

人間の脳活動を解析するためには、その活動から対応する運動が再現できるほど、精密なモデル化が必要である。Brain-Machine interface は、脳の神経活動によって、思っただけでロボットを動かす技術であるが、本研究では、脳の神経活動から筋肉の活動を推定し、推定された筋肉の活動から運動を再現している。このような方法により、運動だけでなく、力の情報も再現するこ


とが可能となる。

3. ヒューマンインタフェースの開発

現在使うことができるヒューマンインタフェースとしては、マウス、ジョイスティックなどがある。これらは、人間の動作を計測し、その操作量を基にカーソルの動きなどに変換する。操作を行なう前から動きを検出することはできないが、動きの基になる筋肉の活動は前もって計測することができる。この信号から動きが推定できれば、遅れのないインタフェースを作成できる可能性がある。

<u> ◆教員からのメッセージ</u>

運動制御や視覚情報処理など、脳の機能に関して計算論的神経科学に基づく研究を行っています。 基礎研究からヒューマンインタフェースへの応用まで、吉村准教授と共同で研究室を運営しています。

- 1. 脳科学研究戦略推進プログラム
- 2. CREST「共生社会に向けた人間調和型情報技術の構築」**知覚中心ヒューマンインターフェースの開発**
- 3. 新学術領域研究「行動適応を担う脳神経回路の機能シフト機構」

表現豊かな音声合成の実現

教授 小林 隆夫

研究分野:音声情報処理、ディジタル信号処理、機械学習

ホームページ: http://www.kbys.ip.titech.ac.jp

研究内容・目的

音声合成、音声認識、音声分析、音声変換、音声符号化など、音声情報処理のための基盤技術を対象として、信号処理、統計的枠組み、機械学習に基づいた新たな手法の開発を行い、表現豊かで気の利いた音声言語インタフェースの実現をめざす。

研究テーマ

1. 平均声からの多様な音声の合成

与えられた任意のテキストに対応する音声を生成する技術はテキスト音声合成(TTS)と呼ばれ、自然なコピュータインタラクションを実現する上で必要不可欠な要素技術となっている。最近は TTS により自然性の高い合成音声が生成可能になりつつあるが、様々な声質や発話様式・感情表現を持った表現豊かな音声を合成することが課題として残されている。この問題に対し「平均声」からの多様な音声の合成という新たな枠組みを提案している。提案手法では、複数話者の音声から隠れマルコフモデル(HMM)を利用してそのスペクトルや声の高さ(F0)など複数話者の平均的な特徴を表す音声単位モデル(平均声モデル)を求める。音声合成時には、ターゲットとなる話者の数文章の音声(適応データ)を用いて平均声モデルを話者適応したモデルを作成し、これに基づいてターゲット話者の声質、韻律特徴を持った任意文章の音声合成を実現している。

図 1 平均声からの任意話者音声の合成:少量の目標話者の音声を基にその人の喋りを合成する

2. 多様な感情表現・発話様式による音声合成

人間の音声に存在する個人性には、その人独特の話し方や喜び・悲しみといった様々な感情表現が含まれる。ここでは、各話者の様々な感情表現・発話様式を音声のスタイルと呼び、多様なスタイルによる音声合成の実現をめざした研究を行っている。これまでに、HMM 音声合成に基づいたスタイルモデル化、スタイル補間、スタイル適応、スタイル制御などの新たな手法を提案し、多様な話者性と共に多様

なスタイル音声が合成可能なことを示した。図 2 に提案したスタイル 制御法の概念図を示す。この手法 では、スタイル空間の各軸がある 一つのスタイルに相当しており、ス タイル空間の座標を指定するだけ で、所望のスタイル及びその表出 度合を制御することができる。

図2スタイル制御:任意のスタイルを指定して音声合成が可能

3. 声質変換とその応用

アニメや映画などで主人公の声 を別の人の声に変えるいわゆる

「ボイスチェンジャー」は音声処理分野では声質変換と呼ばれ、合成音声に多様な話者性を付与したり、自分の声をプロの声優やナレーターの声に変換できる技術として注目されている。ここでは、新たなアプローチに基づいて、話者の個人性に対しロバストでかつ自然性の高い変換音声の生成をめざすと共に、異なる言語間の声質変換への応用を検討している。

4. 音声合成の新たな枠組みの開拓

合成音声の品質を向上させる取り組みとして、従来の HMM に代わりディープラーニングやガウス過程回帰(GPR)などの機械学習手法を取り入れた新たな音声合成の枠組みが注目されている。我々も、GPR に基づく音声合成手法を世界に先駆けて提案し、合成音声の品質が改善されることを示した。現在、GPR に基づいた多様な話者性やスタイルによる音声合成の実現をめざして研究を進めている。

●教員からのメッセージ

コンピュータが喋ったり人間の言葉を理解する能力がどれだけ人間に近付いたか知っていますか?現実にはまだまだなのです。簡単そうなのになぜできないか?そう思った人は、実はすでに研究に一歩足を踏みいれているのです。一緒に研究をしましょう。

- 1. J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, J. Isogai: Analysis of speaker adaptation algorithms for HMM-based speech synthesis and a constrained SMAPLR adaptation algorithm; IEEE Trans. Audio, Speech, and Language Processing, vol.17, 1, pp.66-83 (2009.1)
- 2. T. Nose, M. Tachibana, T. Kobayashi: HMM-based style control for expressive speech synthesis with arbitrary speaker's voice using model adaptation; IEICE Trans. Information and Systems, vol.E92-D, 3, pp.489-497(2009.3)
- 3. T. Koriyama, T. Nose, T. Kobayashi: Statistical parametric speech synthesis based on Gaussian process regression; IEEE Journal of Selected Topics in Signal Processing, vol.8, 2, pp.173-183 (2014.4)
- 4. 小林隆夫: 音声合成技術; 小特集 2020 年, 言葉の壁を超える音声翻訳 一新しい技術と研究の可能性一, 電子情報通信学会誌, vol.98, 8, pp.726-733 (2015.8)

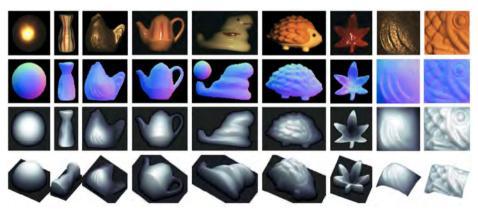
Physics-Based コンピュータビジョン技術に基づく 実世界モデルの構築と視覚特性の解明

佐藤 いまり 研究室

専門分野:視覚情報工学、コンピュータグラフィックス、

画像・光情報処理

http://research.nii.ac.jp/pbv/



研究目的

私たちは、ある物体を見ただけで、その物体の材質(金属、ガラス、布などで出来ているといったこと)を推測することができ、その物体の手触りや柔らかさといった付加的な情報も想像することができます。観察される明るさには、対象となる物体に関する情報(材質や形状など)やシーンの照明環境の影響が複雑に絡み合っているにも関わらず、私たちは、光情報のみに基づいて対象となる物体の材質や形状を容易に読み解くことができます。人間にとって容易な作業であっても、同じような解析をコンピュータにやらせることは困難です。このような機能が、私たちの脳内のどのような情報処理によって実現されているかについては詳細が分かっていません。本研究室では、照明方向や観察方向を変えて撮影した画像を通し、被写体となった対象世界がどうなっているのかを理解すること通して、人間の視覚情報処理のメカニズムを解明することを目的としています。

一 研究テーマ

コンピュータグラフィックス(CG)技術により実現される写実的な表現は、 映画やテレビにおける仮想物体の実写への重ね込みなど、写実性が要求されるアプリケーションにおいて大きな効果を示しています。 デジタル博物館などの応用では、文化財などの実物体が持つ複雑な形状や艶などの微妙な質感をモデル化し、その物体の見えを現実感高く CG により生成するための技術にも注目が集まっています。 CG により現実感の高い映像コンテンツを生成するためには、その入力としてシーンの物体 (形状や反射特性) に関する精密なモデルを必要とします。 このような背景のもと、 本研究室では、実在シーンの観測に基づき実在物体のモデルを自動構築する技術の開発を進めています。具体的には、照明方向や観察方向を変えた時に観察される物体表面の点の明るさの変化に基づき実在物体の反射特性(色艶、質感)や形状をモデル化する手法の開発を進めています。さらに、生成された画像の効果的な提示方法についても研究を進めています。

1. 実在光源環境モデル化の研究:

複雑な実世界の光源環境をモデル化し画像生成に用いる技術 や視覚情報解析に用いる研究を進めています。また、実光源環 境に基づき正確な陰影とともに仮想物体を実画像に重ね込む 手法、動的に変化する実光源環境下における合成画像の実時間 生成手法、光源推定に基づく絵画の陰影解析など、複合現実感 への技術応用も積極的に進めています。

2. 物体のモデル化の研究:

照明方向を変えて観察される画像から対象物体の反射特性(色艶、質感など)や形状をモデル化する手法の開発を進めています。反射特性のモデル化に関する研究では、反射特性を効率良くモデル化するための技術を開発しています。またRGB色による表現を超え、分光情報を計測・再現する技術の開発にも取り組んでいます。

3. 日常空間のスクリーン化の研究

日常空間のモデルを獲得し、模様突きの壁など、日常空間のあらゆる場所にプロジェクタ投影を行うための光学補正技術を開発しています。

●教員からのメッセージ

実世界は複雑だからこそ面白い!画像を通して実世界の事象を解明することは、驚きと発見があります。本研究室は、視覚心理の研究者、海外からの博士研究員やインターンシップの学生など、様々なメンバーにより構成されています。充実した光学実験設備も整っています。画像を通して実世界を知る楽しみを一緒に味わいましょう。

●参考文献・図書

- 1. F. Lu, Y. Matsushita, I. Sato, T. Okabe, Y. Sato, "From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic BRDF" *IEEE Trans. Pattern Analysis and Machine Intelligence* (TPAMI), 2105.
- 2. Y. Fu, A. Lam, I. Sato, T. Okabe, and Y. Sato. Separating Reflective and Fluorescent Components using High Frequency Illumination in the Spectral Domain, *IEEE Trans. Pattern Analysis and Machine Intelligence* (TPAMI), 2105.
- 3. C. Zhang and I. Sato, "Separating Reflective and Fluorescent Components of An Image," *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR 2011)* June 2011 [Best student paper honorable mention award].
- 4. H. Shuai, I. Sato, T. Okabe, and Y. Sato, "Fast spectral reflectance recovery using DLP projector," *Proceedings of Asian Conference on Computer Vision*, November 2010 [Best student paper award].

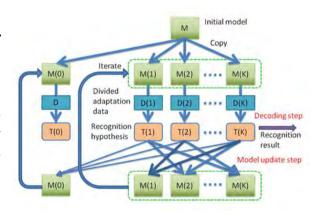
音声認識理解とその応用

准教授 篠崎 隆宏

研究分野:音声認識、音声情報処理、機械学習

ホームページ: http://www.ts.ip.titech.ac.jp

研究目的・内容

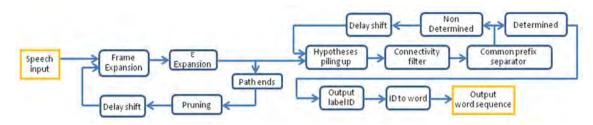

工学の立場から人間の音声認識・理解・学習機能を解明し、コンピュータ上に実現することを 目的としています。さらに、それらの機能を備えたシステムの応用をはかります。

我々が音声を認識理解する能力は生まれながらのものではなく、学習により後天的に獲得したものです。音声認識システムでも同様で、音声を認識するたには認識対象言語の音響的・言語的知識をコンピュータ上に取り込み音声モデルとして蓄える必要があります。音声認識システムの認識性能の大部分は、音声モデルの性能で決まります。そのために、隠れマルコフモデルやディープニューラルネットワークなどを駆使した様々な音声モデルが提案されており、それらを用いてより高い認識性能を得るための研究をしています。さらに、システムに音声をより賢く学習し理解させるための仕組みの実現を目指した研究を行っています。

研究テーマ

1. 進化的アルゴリズムを用いた音声 認識システムや機械翻訳システムの自 動最適化

性能の高い音声認識システムや機械翻訳システムを構築するためには、ニューラルネットワークの構造や、学習時の各種条件などを最適化する必要があります。従来このような最適化は専門家のノウハウに頼って行われてきましたが、システムの複雑さが増すにつれて次第に実行が困難になっ



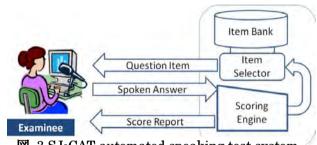
☑ 1 Unsupervised CV adaptation.

てきています。そこで進化的アルゴリズムを応用し、スーパーコンピューター上で少しずつ違った遺伝子を持った多数の認識システムを学習し評価することを繰り返すことで、システムの最適化を自動化する方法について提案し研究を行っています。

2. 音声認識理解システムの教師なし学習・強化学習

現在の音声認識技術の限界は、音声モデルの学習を大きなコストのかかる教師あり学習に頼っており、汎化性にも欠ける点です。そこでラベル付き音声を全くあるいは殆んど使用せずに、人間のように音声を学習し理解することの出来るシステムの実現を目指して、音声モデルの教師な

2 Pipeline based design of a speech decoder.


し学習や強化学習について取り組んでいます。Sequence-to-Sequence 型のニューラルネット等 を用いたシステムでは、音声とともに画像など他のモダリティを組み合わせたり、システムに「欲 求」に相当するような目的を持たせたりするなどの、フレキシブルな構成が可能です。

3. リアクティブ音声認識・理解・応答システムの構成法

音声信号はコンテキスト依存の時系列データであるとともに、認識処理は効率的に行う必要が あります。このため、人間と同じタイムスケールで動作するリアクティブな対話システムを実現 しようとすると、システム実装は複雑になります。そこで高度なシステムを容易に実現する方法 として、パイプラインに基づいた抽象度の高いシステム記述方法について研究を行っています。

4. 音声情報処理の応用

当研究室で開発し一般公開している 高性能日本語話し言葉音声認識システ ム(Kaldi CSJ レシピ)は、国内外の多く の企業や大学で使用されています。また 音声情報処理の応用として、日本語や英 語学習者の音声発話能力を自動評価す るスピーキングテストシステムや、機械

☑ 3 SJ-CAT automated speaking test system.

の動作音を監視し異常を自動検出する仕組み、低消費電力で動作する音声センサーなどにも取り 組んでいます。

教員からのメッセージ

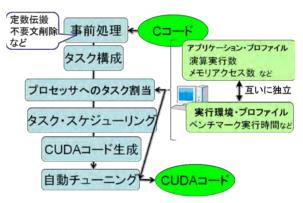
コンピュータを用いて「新しく面白そうなこと」に挑戦したい学生を歓迎します。企業や海外 の研究機関との協力も積極的に行っています。

- 1. T. Moriya, T. Tanaka, T. Shinozaki, S. Watanabe, K. Duh, "Evolution-Strategy-Based Automation of System Development for High-Performance Speech Recognition," IEEE TASLP, pp. 77-88, 2019.
- B. Zhuang, W. Wang, T. Shinozaki, "Investigation of Attention Based Multimodal Fusion and Maximum Mutual Information Objective for DSTC7 Track3", Proc. Dialog System Technology Challenges (DSTC7), 2019.
- T. Kato, T. Shinozaki, "Reinforcement Learning of Speech Recognition System Based on Policy Gradient and Hypothesis Selection," Proc. IEEE ICASSP pp.5759-5763, 2018.

新しいコンパイラ技術の創成

教授 杉野 暢彦

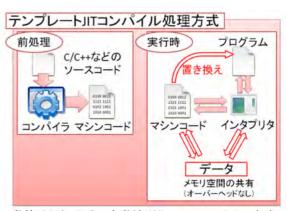
研究分野:コンパイラ、自動並列化、コード変換・最適化


●研究内容・目的

汎用高性能プロセッサ及び埋込プロセッサ用の高効率・高性能コンパイラの開発をめざしている。プロセッサは年々複雑化し、それを利用したアプリケーションも大規模化・多様化してきている、現在のシステム開発においてはハードウェアだけでなく、ソフトウェアによりハードウェアリソースを如何に活用できるかが、システムの性能を大きく左右する重要な課題となっている。コンパイラを代表とする自動コード生成、自動並列化、コード最適化技術はその中でも鍵として注目されている。

研究テーマ

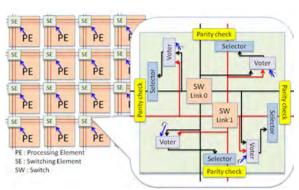
1. GPGPU 向けコンパイラ


GPGPU 向けにアプリケーションを開発するためには、アーキテクチャと CUDA を始めとする専用言語の知識が必要になる上に、プログラマは性能を引き出すために様々に試行錯誤を繰り返すことになり、あまり容易ではありません。そこで、C 言語から CUDA へとコードを再構成するコンパイラを提案しています。提案コンパイラでは、入力コードを

GPGPU 向けソース (C) -to-ソース (CUDA) コンパイラ

タスクに分割した後、 各タスクの性質に応じて CPU/GPU への割り当てを行い、更に GPU アーキテクチャに合わせたチューニングを行い、実行効率を向上できます。また、自動中チューニングにおいて、消費エネルギーの低減を目指すことも可能です。

2.動的言語向け自動並列化 JIT コンパイラ 携帯機器などのアプリケーションは python な どの動的言語スクリプトで書かれることが多く、 通常、それらは仮想マシン上において、インタプ リ タ 及 び 処 理 の 高 速 化 を 指 向 し た JIT (Just-In-Time) コンパイル方式の処理系により、 逐次実行的に実装されています。しかしながら、 この実装では「並列化」という概念が欠けており、 携帯機器でも CPU がマルチコア化している現在


動的言語処理系の自動並列化 JIT コンパイル方式

では、並列処理により処理速度を向上させることも嘱望されています。そこで、動的言語処理系に「自動並列化」の概念を導入して、その1つの実装方法を提案しています。例題プログラムによる検証実験では、並列化による性能向上を確認しています。

3. 動的再構成可能プロセッサを用いた技術

動的再構成可能プロセッサは、並列処理やパイプライン処理による高い演算能力を持つだけでなく、動的に回路構成情報であるコンテキストを変更できることにより、様々なアプリケーションに柔軟に対応可能であり、現在注目されている技術の1つです。この動的再構成可能プロセッ

サと汎用プロセッサを組み合わせて利用する 場合に、効率的な処理を可能とするためには、 与えられたプログラムのどの部分をコンテキ ストとして実現するか、また、実行中のどのタ イミングでコンテキストを書き換えるか、など 様々な要素を考慮する必要があり、今後の研究 成果が期待されています。一方、動的再構成可 能ユニットを改良して、ビット誤りや故障に強 い高信頼なシステムの設計に応用できる技術 についても提案している。

高信頼性システム向けの動的再構成可能ユニット

教員からのメッセージ

コンパイラ関連の研究では、プロセッサアーキテクチャに直接関係する最適化や自動並列化などの部分については、まだまだ手探りの部分もあります。実際にプログラミングすることも必要になりますが、何よりもブレークスルーを産む原動力は熱意と根気、それに多方面からものを捉えられる頭の柔らかさ、残された難しい問題に挑戦する元気のあるバラエティに富んだ学生の皆さんを歓迎します。また、教員は TAIST-Tokyo Tech にも参加しており、海外の学生や研究者と積極的に交流したい学生も歓迎します。

- 1. 湯本厚史,杉野暢彦, "プロファイルに基づく GPGPU のためのソースコード変換コンパイラ," ETNET2012(情報処理学会 SLDM,EMB,電子情報通信学会 CPSY,DC)(2012 年 3 月)
- 2. R. Ikeda, etal. "An Automatic Parallelization Scheme Used in JIT Compilation for Dynamic Language Applications," Proceedings of ICICTES 2012, (2012 年 3 月)
- 3. K. Umehara, etal. "A Dynamically Reconfigurable Processor for Highly Reliable Systems," Proceedings of ICICTES 2013, (2013 年 1 月)

画像を学ぶ計算知能と診断支援

特任教授 鈴木 賢治

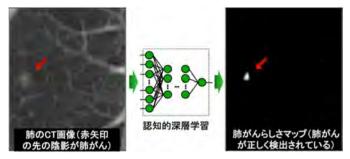
研究分野:深層·機械学習, AI 支援画像診断, 医用画像理解, 人工知能

ホームページ: http://www.ece.iit.edu/~ksuzuki/

研究内容・目的

学会・産業界ともに、深層学習(Deep Learning)が革新的な技術として世界的な話題となっています。深層学習は膨大な情報(Big Data)を学習でき、これを中心とした人工知能(AI)が、第4次産業革命をもたらすとも言われています。我々は、画像を直接学習する機械学習"認知的機械学習"の研究を20年以上に渡って続けています。これは、ニューラルネットで構成され、視覚のモデルに近い構造と機能を持ちます。最近になって、同様の機械学習が深層学習と呼ばれ盛んに研究・応用され始めています。人の物体認識には、対象物の記述による「認識・理解」と、記述なしで対象物を直感的に認める「知覚・認知」があります。30年以上研究されてきた特徴量に基づく機械学習は前者("大人のAI")を、認知的機械学習を含めた深層学習は後者("幼児のAI")を担い、両者が一体となってヒトの視覚が実現できると考えています。後者の研究は今始まったばかりで、視覚分野のAI研究の今後30年のフロンティアとなりましょう。

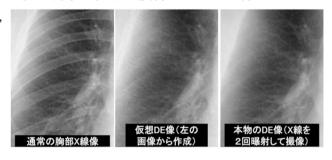
一方、日本は、人口の 4 分の一が 65 歳を越える超高齢化社会に突入しました。それに伴い、医療や医療技術への関心と需要は年々高まっています。日本人の死因の 7 割は病死です。中でも、悪性腫瘍(がん)は 30 年に渡って死因の一位を独走しています。WHO(世界保健機構)によれば、世界のがん患者数は次の 20 年で 50%以上増加すると予測されています。このことから、病気による死亡者数を減らす技術の研究開発は、医学的だけでなく、社会的にも、世界的にも大変重要な課題といえます。産業界では、日立、キャノン、GE、Siemens、IBM、サムソンなどの国内外の大企業が、医療を成長戦略分野と位置づけ、大変力を入れています。また、囲碁の世界チャンピオンを打ち負かした AI を開発した Google DeepMind は、医療を次のターゲットに選びました。このように、医療分野は、今後最も大きく伸びる分野の 1 つと考えられています。


研究テーマ

1. 認知的機械学習:脳を含むヒトの視覚機能を実現する深層学習の研究

人が何気なく無意識のうちに("幼児の AI"),あるいは,熟練の専門家が長年の経験により行う("大人の AI")視覚による認知・認識・判断を人工的に実現する機械学習モデルを開発します.我々が長年に渡って開発してきた画像を直接学ぶ認知的機械学習を発展させ,知覚・認知(すなわち,必ずしも記述ができない非記号的知識)から高次の理解・判断(すなわち,記述・説明ができる記号的知識)までを一貫して取り扱える深層学習モデルを構築します.これにより,視覚分野の AI 研究を革新的に発展させられると期待されます.

2. AIドクター: お手本画像を学ぶ計算知能によるコンピュータ支援診断システム


たとえ長年の訓練を受けた熟練の 医師でも、医用画像から全ての病巣を 検出することは難しいです. 例えば、 胸部 X 線像では、最大 30%の肺がん が見落とされていると言われていま す. このような、がんの見落としを減 らすため、我々は、AI 支援画像診断

システムを開発しています。AI 支援画像診断システムが本当に役立つためには、医師が見落とし易い病巣を検出する性能を持つ必要があります。我々は、医師が実際に見落とした、あるいは、見落とし易い病巣を含む画像を、認知的深層学習に学習させることにより、医師の見落とし易い陰影に強い AI 支援画像診断システムを開発します。

3. 仮想イメージング:深層学習による物理現象の仮想的獲得に基づく画像生成法

画像を学習する深層学習を応用すれば、物理現象により実現された技術を、仮想的にソフトウェアで実現できます。例えば我々は、X線を2回曝射することにより、骨成分と軟組織成分を分離した画像を作る、デュアルエネルギーイメージング(DE)法を、仮想的に実現する手法の

開発に世界で初めて成功しました。その原理は、骨と軟組織が重畳している通常の X 線画像を入力画像,DE 装置により得られた軟組織画像を教師画像とし、我々独自の深層学習を学習します。学習後は、通常の装置で撮影された X 線画像 1 枚から、軟組織画像を得ることができます。この技術は、米国の会社にライセンス供与、実用化され、米国 FDA の認可を受け、世界中の病院で使われています。同様の原理を用いれば、様々な物理現象をコンピュータ内に仮想的に獲得できます。例えば、低線量と高線量で撮像した X 線像を、我々の深層学習で学習すれば、低線量の X 線像から、仮想的な高線量 X 線像を作成でき、X 線被曝を大幅に低減できます。

<u>教員からのメッセージ</u>

本研究室は、シカゴ大などの一流の大学病院と連携し、一流の国際ジャーナルに論文を掲載させるだけでなく、それらを国内外の主要企業あるいはシリコンバレーのベンチャー企業と共同で実用化し、医療の現場で役に立つところまでを行います。我々の革新的な研究により、これまで不可能と信じられてきたことを可能に、見えなかったものを見えるようにし、学会に残る研究を行うだけでなく、私達の生活や人生を豊なものに大きく変えることを目指します。

- 1. Tajbakhsh N and Suzuki K: Comparing two classes of end-to-end learning machines for lung nodule detection and classification: MTANNs vs. CNNs. *Pattern Recognition* 63: 476–486, 2017
- 2. Suzuki K, Abe H, MacMahon H, and Doi K: Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). *IEEE Trans Medical Imaging* 25: 406–416, 2006.

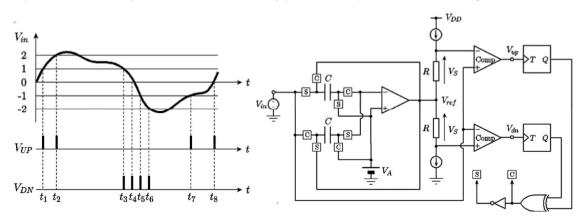
高機能アナログ信号処理回路の構成

教授 高木 茂孝

研究分野:電子回路、集積回路、回路理論

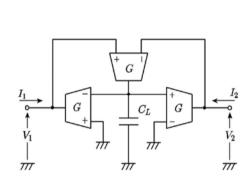
ホームページ: http://www.ec.ce.titech.ac.jp/~takagi/

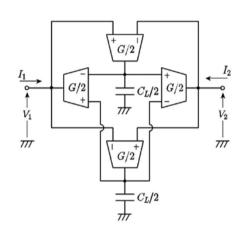
研究内容・目的


- (1) アナログ回路ブロックの高性能化に関する研究
- (2) 新しい信号処理回路の開発に関する研究
- (3) 低電源電圧で動作するアナログ回路の構成に関する研究

研究テーマ

1. レベルクロッシングアナログ-ディジタル変換回路


振動を検知する防犯用センサなどが出力する信号は通常は振幅の変化は微少で、振動が発生したときだけ振幅が大きく変化する信号です。一方で、センサは長寿命であることが望まれますので、消費電力の低減が重要な課題です。このような背景の下、センサの出力信号に大きな変化があったときだけ、信号処理することで消費電力を低減する手法があります。下の左図に示すように、センサからの信号 Vin が値「1」を上回った時刻 t_1 で V_{IP} 信号を出力し、さらに値「2」を上回った時刻 t_2 で再び V_{IP} 信号を出力し、次に値「1」を下回った時刻 t_3 では V_{IN} 信号を出力し、ある値を上回ったか、下回ったかということと、その時刻を送信すれば、もとの信号を再現することができます。一般にこれらの情報はディジタル信号として伝えます。このように信号処理をする回路をレベルクロッシングアナログーディジタル変換回路と呼びます。この回路は、信号に大きな変化があったときだけ動作するので、消費電力を大幅に低減できる可能性があります。


我々の研究室では、従来よりも低消費電力で動作する右図のレベルクロッシングアナログ-ディジタル変換回路を提案しました。ただ、この回路は信号が変化しないときも電力を消費するため、信号が大きく変化したときだけ電力を消費するように改良が求められます。

2. 高性能能動インダクタ回路の構成

インダクタはスパイラル形状にして集積回路上に実現されています。しかし、一般にインダクタは大面積を占め、実用となるのは約1GHz以上の周波数の信号に対してです。しかも、損失も大きく、理想的な特性とはがだいぶ異なります。高性能インダクタが1GHz以上の高い周波数帯域で使用できれば、受信機に欠かすことのできない低雑音増幅回路や発振回路、フィルタなどの特性改善が期待できます。下の左図はインダクタと等価な働きをする回路です。我々の研究室では、左図の回路の冗長な部分を排除し、回路的な工夫により右図の回路を導出しました。両図の台形は電圧制御電流源を表し、Gが伝達コンダクタンスです。伝達コンダクタンスが半分になりますと、消費電力も半分になりますので、提案回路は従来回路と比べて消費電力が約33%削減できます。この回路を1GHz以上の信号を処理する回路への応用が今後の課題です。

●教員からのメッセージ

人が認識する光や音などはアナログ信号であり、自然界と信号処理システムとのインタフェースとしてアナログ回路は不可欠です。また、同一の信号処理をアナログ回路とディジタル回路で行うと、物理現象を利用したアナログ回路のほうが遙かに高速です。さらに、ディジタル回路を高速に動作させると、信号波形が崩れ、1か0かの判別は至難の業です。この判別を精度良く行うのはアナログ回路技術です。アナログ回路技術は、システムLSIを支える基盤技術であり、我々の研究室では、特にアナログ信号処理回路の高機能化や高性能化を目的に研究を行っています。

●関連する業績、プロジェクトなど

論文等: 石川. 佐藤, 高木, "寄生容量の影響を低減したトラック&ホールド型レベルクロッシング A-D 変換器の構成", 電気学会研究会資料, ECT·15·019, pp.71·75, 2015. 佐藤, 高木, 藤井, "アクティブインダクタの対称構成による低消費電力化", 電気学会論文誌 C, Vol.129, No.8, pp.1534·1540, 2009.

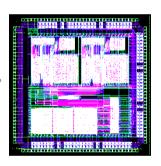
著 書: MOS アナログ電子回路, 昭晃堂 (1998), ディジタル集積回路入門, 昭晃堂 (2000), 線形回路理論, 昭晃堂 (2004), アナログ電子回路, 培風館 (2008), アナログ電子回路 入門, 理工学社 (2012)など

受 賞:電子情報通信学会論文賞 (1995, 2000), IP アワード開発奨励賞(2000), 電気学会電子情報・システム部門特別貢献賞 (2012), 電気学会フェロー (2013), 電気学会電子・情報・システム部門誌優秀論文賞 (2014)など

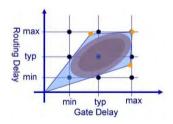
集積回路設計自動化

教授 高橋 篤司

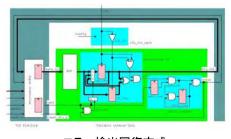
研究分野: EDA、物理設計、次世代リソグラフィホームページ: http://www.eda.ict.e.titech.ac.jp

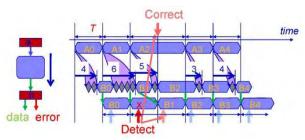

研究内容・目的

- (1) デジタル集積回路システムのナノテクノロジ時代に対応する設計方法論の確立
- (2) 不確実性の増大に対応する高性能集積回路の実現
- (3) 最先端テクノロジの要求に応え人手設計を凌駕する性能を持つ EDA アルゴリズムの開発

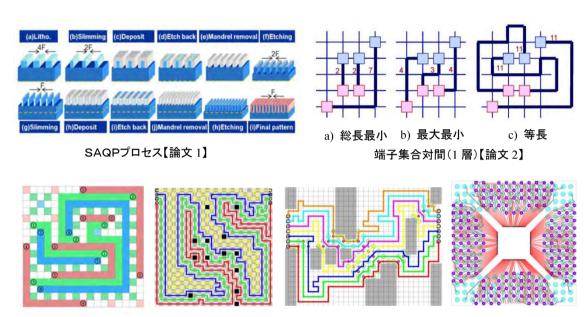

●研究テーマ

1. 一般同期方式に基づく可変レイテンシ回路


集積回路の多くは、大域的なクロック信号が集積回路全体に同 時に分配され、回路動作レベルでは各回路演算が1クロック周期 内で完了するなど、演算レイテンシを一定に保つことを前提とす る固定レイテンシ完全同期方式に基づき設計され実現されている。 このような設計方法は、集積回路を効率よく設計するための手段 として、特に意識されることなく広く一般に用いられてきた。し かし、回路素子の微細化、回路の高速化により、クロック信号の 集積回路全体への同時分配が困難になっただけではなく、遅延ば らつきの回路動作に与える影響が大きくなっている。回路動作の 正当性は想定されるすべての状況において保証されなければなら ない。しかし、最悪状況の平均的状況からの逸脱が大きい状況で は、クロック信号を集積回路全体へ同時に分配し演算レイテンシ を一定に保つことは、性能の向上の妨げとなっている。当研究室 では、クロック信号を集積回路の各部分に適切なタイミングで分 配するとともに演算レイテンシを状況に応じて変更する高性能な 可変レイテンシー般同期回路の実現を目指している。【論文3】


集積回路

遅延分布


エラー検出回復方式

タイミングチャート(可変レイテンシ)

2. 次世代高性能集積回路システムのための配線アルゴリズム開発

配線設計の自動化は配線資源に余裕がある状況や人手設計がほぼ不可能な大規模な問題では、 大いに進展し、自動配線は必要不可欠な技術として広く一般に用いられている。しかし、自動配 線の性能は、人手設計が可能な状況では人手に及ばない。また、集積回路の3次元化や次世代の 製造プロセスなど、新たな製造技術の登場などにともない様々な要求仕様への対応が求められて いる。当研究室では、次世代リソグラフィ技術、プリント基板設計、パッケージ設計などで求め られる製造容易化、最短、等長、指定長など様々な要求仕様を満たす配線を生成するための配線 アルゴリズムの開発を、配置設計との連携や全体の設計フローの構築を含めて進めている。

次世代リソ考慮1層【論文1】

プリント基板(1層指定長) 【論文 4.5】

2層 BGA 引出線付【論文 6】

◯教員からのメッセージ

目的を達成するための手段は多様で正解はありません。目的を達成するための手段を目的と見誤らないように、過去や現在の常識にとらわれずに、新たな常識を次々に創造していきましょう。

●関連する業績、プロジェクトなど

論文:

- 1. Kodama, et al. "Self-Aligned Double and Quadruple Patterning Aware Grid Routing Method." *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems (TCAD)*, Vol.34, No.5, pp.753-765, 2015.
- 2. Nakatani, Takahashi. "A Length Matching Routing Algorithm for Set-Pair Routing Problem." *IEICE Trans. Fundamentals*, Vol.E98-A, No.12, pp.2565-2571, 2015.
- 3. Kohira, Takahashi. "2-SAT based Linear Time Optimum Two-Domain Clock Skew Scheduling in General-Synchronous Framework." *IEICE Trans. Fundamentals*, Vol. E97-A, No.12, pp.2459-2466, 2014.
- 4. Shinoda, Kohira, Takahashi. "Single-Layer Trunk Routing Using Minimal 45-Degree Lines." *IEICE Trans. Fundamentals*, Vol.E94-A, No.12, pp.2510-2518, 2011.
- 5. Kohira, Takahashi. "CAFE router: A Fast Connectivity Aware Multiple Nets Routing Algorithm for Routing Grid with Obstacles." *IEICE Trans. Fundamentals*, Vol.E93-A, No.12, pp.2380-2388, 2010.
- 6. Tomioka, et al. "MILP-based Efficient Routing Method with Restricted Route Structure for 2-Layer Ball Grid Array Packages." *IEICE Trans. Fundamentals*, Vol.E92-A, No.12, pp.2998-3006, 2009.

著書:情報基礎数学 オーム社 (2014),情報とアルゴリズム 森北出版(2005)

言語のための数理的手法の開発

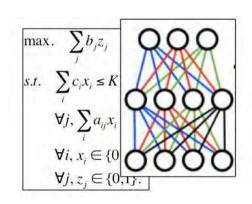
教授 高村 大也

研究分野:計算言語学、自然言語処理、機械学習

ホームページ: http://www.lr.pi.titech.ac.jp/~takamura/index_j.html

研究内容・目的

人間は、単なる記号の羅列でしかないテキストから、国の経済状況を把握したり、新発売の携帯電話についての意見を読み取ったり、友人の悩みに共感したり、物語に感動したりすることができます。逆に自分の知識、意見、感情を記号の羅列に変換して、相手に伝えることもできます。そこには、コンピュータが簡単に真似できない非常に高度な知識処理が行われているはずです。自然言語処理学は、その簡単に真似できないはずの非常に高度な知識処理を、コンピュータに行わせる技術を開発するという、とても挑戦的な学問です。自然言語処理には、機械翻訳、文書要約、意見分析など様々な応用があり、世の中で強く必要とされています。これらの応用は、記号の羅列から単語を見つける単語分割、単語や文の意味を理解する意味解析、文の構造を同定する構文解析など、多くの要素技術から成り立っています。私達の研究室では、要素技術から応用まで、自然言語処理における課題を幅広く研究しています。


実際に処理方法を開発し始めると、言語表現は多様でありかつ曖昧であるという事実と対面することになります。その細かな処理過程を人間が一つ一つコンピュータに教えてあげることは現実的ではありません。コンピュータ自身にデータから学んでもらうのが得策です。ここで登場するのが機械学習という技術です。私達の研究室では、線形分類器やトピックモデルから、発展途上にある深層学習まで様々な機械学習手法の中から問題に適したものを選択して利用し、必要に応じて手法を拡張して問題を解いています。

また、多様な情報をエンコードすることができる言語という体系がどのようなものであるか、 また人間の言語能力はどのような性質を持っているのか、といった疑問に対しても、計算的手法 を用いることで答えを探る研究をしています。

研究テーマ

1. 文書要約手法の開発

非常に長い文書、あるいは多数の文書が与えられた時、その内容を簡潔に表す短い文書(要約)を生成する文書要約手法を開発しています。特に、最適化問題による要約のモデル化や、機械学習による定式化に力を入れています。

2. 言語データを通して世界や社会を見る技術の開発

インターネット上、特にソーシャルメディア上には、人々の意見や感情が溢れています。製品やサービスに対する意見、政治に対する意見、世間のマナーに対する意見など、多くの意見が大量に存在し、貴重な情報源となっています。何に対するどういった意見がどれくらいあるのかを自動的に把握することができれば、製品、サービス、政治、マナーなどをより良い方向に向けるための手助けになるでしょう。そのための技術の開発も、私達の研究室の重要なテーマです。

3. 数理的アプローチによる言語研究

世界には、日本語のように手の指も足の指も「指」という一つの単語で表現される言語と、英語で「finger」と「toe」と呼ぶように別の単語を持つ言語があります。このように各言語は様々な特徴を持ち、思わぬところで違いがあったりします。語彙の構造など、各言語の特徴、あるいは言語間の差異、また言語一般に存在する性質なども研究対象です。

教員からのメッセージ

言語に興味のある方、言語で書かれた知識に興味のある方、電化製品を購入しようと思って製品レビューを大量に読んで時間を浪費してしまい、レビューを簡潔にまとめてほしいと思ったことがある方、などなど、ぜひ一緒に研究しましょう。

- 1. Hiroya Takamura, Ryo Nagata and Yoshifumi Kawasaki. "Discriminative Analysis of Linguistic Features for Typological Study" (to appear), In *Proceedings of the 10th International Conference on Language Resources and Evaluation*, 2016.
- 2. 菊池悠太, 平尾努, 高村大也, 奥村学, 永田昌明, "入れ子依存木の刈り込みによる単一文書要約手法", *言語処理学会論文誌 自然言語処理*, Vol. 22, No. 3, pp. 197-217, 2015.
- 3. Mitsumasa Kubo, Ryohei Sasano, Hiroya Takamura and Manabu Okumura, "Generating Live Sports Updates from Twitter by Finding Good Reporters", In *Proceedings of Conference on Web Intelligence*, pp. 527-534, 2013.
- 4. 高村大也, 奥村学, "施設配置問題による文書要約のモデル化", *人工知能学会論文誌*, Vol. 25, No. 1, pp. 174-182, 2010.
- 5. 高村大也, 奥村学, "最大被覆問題とその変種による文書要約モデル", *人工知能学会論文誌*, Vol. 23, No. 6, pp. 505-513, 2008.
- 6. 高村大也、"言語処理のための機械学習入門", コロナ社, 2010.

高度医療画像診断、農作物の 高精度管理、社会インフラの安全

・安心に貢献する波動応用計測

准教授 田原 麻梨江

研究分野:生体計測工学、農業計測工学、医用工学、波動工学

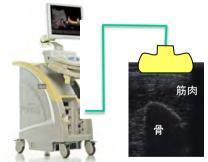
ホームページ: http://tbr.first.iir.titech.ac.jp/

- 研究内容・目的

近年、病気の早期発見、健康長寿、安全・安心などの 関心が高まっています。本研究室では、図1のコンセプト のもと、「硬い」「柔らかい」といった弾性特性をキーワー ドにした計測システムの確立と、それを医療、農業分野、 社会インフラへ応用することを目的としています。

波動理論や生体工学などの基礎知識を深めながら、計測 用デバイスの製作、計測システムの構築、数値解析や画像 処理などの計測技術について学びます。また、青果工場へ

図1:研究コンセプト


フィールド調査に行ったり、医師や農業従事者・企業との連携を推進しています。

●研究テーマ

■生体リアルタイムモニタと医療診断

QOL (Quality of Life)の向上や健康寿命を延ばすことへの関心が高まっています。そのため、日頃のトレーニングを効率よく行うための動きセンサや、健康状態をリアルタイムで監視して異常を早期に発見するためのセンサが普及し始めています。筋肉の動きのモニタに関しては、筋電位センサが広く用いられています。

一方、筋肉の形態を画像化することができ、硬さや血流 情報などの高機能な情報がセンシングできる超音波セン サへの期待も高まっています。従来は医療診断のみで使わ れていた超音波センサですが、最近、体に貼り付けられる ウェアラブルなセンサが開発されており、その用途が模索

Hitachi-Aroka Medical

図2:超音波診断装置 と筋肉断層像

されています。本研究室では、ウェアラブル超音波センサを用いて筋肉状態をモニタリングして無線で情報を伝送するリアルタイムモニタシステムの実現を目標にして、筋肉の動きや硬さ検出法について基礎研究を行っています(**図 2**)。

生体組織の硬さ(しこり)は病変化の指標でもあります。これまでは、医師が触診で硬さを診断し、組織を切り出して病気の良悪性を判断してきました。近年、医師の技量に左右されずに硬

さを判定するための診断方法 (エラストグラフィ) が開発され臨床応用され始めています。本研究室では体表の組織を観察できる光干渉断層像 (図3) や高い周波数の超音波画像との比較などから、疾患の早期発見へ向けた研究を行っています。

■青果物の完熟度・糖度の自動判定

農家や青果物工場における高精度管理のため、果物の収穫時期や完熟度・糖度を測定し、自動判定するシステムの需要が高まっています。特に、食品に関しては果物に触れずに測定したいというニーズがありますが、広く普及している一般的な計測器は接触式です。

そこで、果物に触れずに柔らかさを測定する方法を考案しました(**図4**)。音波を果物に照射すると、ごくわずかに果物が振動します。この振動を検出して特徴を解析すると柔らかさの情報が得られます。四季折々、単価の高い果物を中心に柔らかさと完熟度や糖度の関係について調べています。

■戸挟み検出システム

最近、ベビーカ・鞄・紐が電車の扉に挟まれ、引きずられる戸挟み事故が社会的な問題になっています。現在の戸挟み検出法では薄い鞄やベビーカの車輪を検出することが困難です。また、検出感度を上げようとすると戸先ゴムを硬くしなければならず、挟まったものが抜けずにかえって危険となるといった問題があります。

戸挟み事故の撲滅のため、戸先ゴム内の音響特性から 柔らかさと感度を両立したセンサを提案しています(**図 5**)。まず、ゴム内部に音を伝搬させます。ゴムに圧力 が加わると内部の音響特性が変化します。音響特性の信 号解析からゴムへの圧力を検出することができます。ベ ビーカの車輪などを瞬時に検出するシステムについて 検討しています。

図3:光干渉断層像と網膜の断層像 (santec)

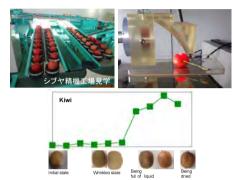


図4:選果の様子,実験様子,柔らか さの経時変化

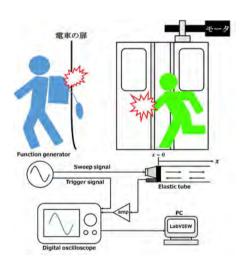


図5:戸挟みおよび検出システム

<u> ◆教員からのメッセージ</u>

「医療や農業に関心がある」、「社会インフラに関心がある」という方、一緒に研究をしましょう。音波を利用すると、外からは見ることのできない生体の内部の情報を非侵襲的に見ることができたり、果物に触らずに熟し度合いを知ることが可能になります。*Every failure is a stepping stone to success!* 失敗することを恐れずに、興味のあることにどんどんチャレンジしましょう。

●関連する業績、プロジェクトなど


・山口 他, "光干渉断層法による皮下近傍の弾性計測, 第3回次世代がん治療推進専門家養成プランシンポジウム, 2015.

脳に学ぶ画像処理の科学と技術

准教授 永井 岳大

研究分野: 色彩工学、質感科学、視覚心理物理学

ホームページ:

人間の脳は、目に入った光から生存に必要な情報をうまく取り出す優れた情報処理の仕組みを 持っています。一方、機械学習・人工知能の分野では画像物体認識や画像処理技術が著しく発展 していますが、その特性は脳による視覚情報処理特性と必ずしも合致しません。

そこで本研究室では「人間ならでは」の情報処理に焦点を当てて、主として心理物理学的手法を最大限に活用し、色や質感など様々な視覚情報を処理する人間の脳の仕組みを解明することを目的として研究を行っています。これらの研究活動から明らかになった脳の仕組みは、画像処理技術へと応用できるのみならず、「人に見せる」技術の根源的な知見をもたらします。例えば、色覚異常の方々に優しい色表現であるカラーユニバーサルデザインやヒトの評価と一致する画像評価技術などは、人間の情報処理の仕組みを学ばないことには成立しません。

一研究テーマ

1. 色彩の科学

色は脳が光から作り出す感覚であり、人間にとって最も基本的な視覚情報の一つです。その知覚特性については昔から精力的に研究が続けられ、 色覚の理論も体系化されてきました。しかし、例

図1 ハイライトは色知覚に強く影響する

えばカメラのホワイトバランスの結果が実世界で人間の見る色とは正確には対応しないことからわかるように、色を見る仕組みは基本的な部分以外はまだまだ未知であるといっても過言ではありません。そこで、脳・神経系の色情報処理の仕組みを様々な情報処理レベルで検討しています。例えば、色を単に見分ける場合と色によって形を判断する場合では脳内の異なる色表現が関わること、脳は自然シーンが持つ統計的法則に適合した色情報処理を持つことなどが、明らかになってきました。このような色を見る仕組みは、普段我々はほとんど意識しないにも関わらず、色情報を利用する視覚デバイスの根源原理として極めて重要です。このような、ある意味で「見過ごされている問題」を解決していくことを目指しています。

2. 質感の科学

目に入射する視覚像は、照明光、物体の反射特性、物体形状の複雑な相互作用により生み出されます。その視覚像から感じられる質感とは、光沢感や透明感など物体の反射特性に対応する感覚と考えられます。視覚像は複雑な光学プロセスによって生じるにも関わらず、人間はそこから

いともたやすく質感を知覚します。この際、脳が視覚像生成に関わる光学プロセスをすべて考慮に入れて計算しているとは考えにくいため、脳は何らかの経験則に基づいて計算を簡素化する戦略を持っている可能性が指摘されています。そこで、この脳の戦略を明らかにすることを目的とした研究を行なっています。例えば、光沢感や透明感の知覚には思った以上にシンプルな画像情報が寄与している可能性も示されてきています。

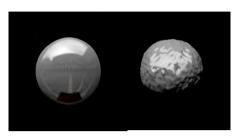


図2 光沢感に寄与する様々な 画像手がかりが存在する

3. 人間の視覚特性に基づいた画像表示技術

上述したような視覚特性に関する基礎研究の知見を積み重ねることで、人間に視覚情報を提示するデバイスの設計指針へとつながっていきます。そこで、それらのデバイスや画像処理技術に人間の視覚特性を組み込むことにより、その原理の発展を目指しています。例えば、色覚異常の人々の色の見え方に関する未知の特性を見出すことにより、カラーユニバーサルデザインの新たな設計原理を提案できます。同様に、シンプルな経験則によって人間が質感を知覚していることがわかれば、単純な画像情報操作だけで所望の質感を再現できる画像処理技術が実現できるようになります。

教員からのメッセージ

「当たり前」を疑うことから画期的な知見や技術が生まれます。皆さんが当たり前だと思いこんでいる視覚世界の常識を疑うことから、様々な画像処理技術の根本を覆していきましょう。

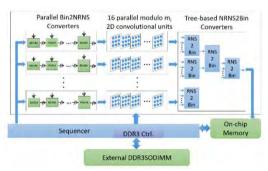
- 1. T. Nagai, S. Kaneko, Y. Kawashima, & Y. Yamauchi: Do specular highlights and the daylight locus act as cues for estimating illumination color from a single object? *Optical Review*, 24(1), 47-61, 2017.
- 2. T. Sato, T. Nagai, I. Kuriki, & S. Nakauchi: Dissociation of equilibrium points for color-discrimination and color-appearance mechanisms in incomplete chromatic adaptation. *Journal of the Optical Society of America A*, 33(3), A150-A163, 2016.
- 3. T. Nagai, T. Matsushima, K. Koida, Y. Tani, M. Kitazaki, & S. Nakauchi: Temporal properties of material categorization and material rating: visual vs non-visual material features. *Vision Research*, 115(PartB), 259-270, 2015.
- 4. T. Nagai, Y. Ono, Y. Tani, K. Koida, M. Kitazaki, & S. Nakauchi: Image regions contributing to perceptual translucency: A psychophysical reverse correlation study. *i-Perception*, 4(6), 407-428, 2013.

リコンフィギャラブル コンピューティングとその応用

准教授 中原 啓貴

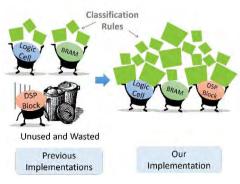
研究分野:コンピュータアーキテクチャ, FPGA, 多値論理

ホームページ: http://www.hirokinakaharaoboe.net/


研究内容・目的

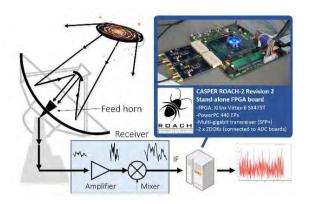
リコンフィギャラブルコンピューティングとは「後からでも回路の書き換えが可能なロジック・デバイスを用いた計算手法」であり、商用的にも FPGA (Field Programmable Gate Array) が成功を収めています。 FPGA は再プログラム可能な柔軟性に加え、近年のテクノロジーの進化により高集積化、高性能化、低消費電力化、低コスト化が進み、様々な電子機器で使用されるようになりました。本研究室では主に FPGA を使い、ネットワーク向けの低消費電力検索エンジン・電波望遠鏡向けの高性能信号処理装置・脳などの生体器官に基づく情報処理装置等の応用事例の研究開発を通じ、多値論理や剰余数系等の理論も応用しながら、ムーアの法則が終焉する時代以降のコンピューティングを提案することを目的としています。

研究テーマ


1. 脳などの生体器官に基づく情報処理装置

Web 普及によるビッグデータとコンピュータの進歩により、ディープニューラルネットワークによる情報処理が研究されています。人の目を実現するコンピュータビジョンシステムの研究開発をしています。 剰余数系(RNS: Residue Number System)という数学的なモデルを応用した高性能なハードウェアの改良に取組んでいます。

RNS を応用したディープニューラル ネットワーク用アクセラレータ


2. ネットワーク用パターンマッチング・アーキテクチャ

加算器を用いた検索エンジの概要

3. 電波望遠鏡用信号処理システム

電波望遠鏡は宇宙から受信した電波を 高速フーリエ変換(FFT)することで目 視できない天文現象を解析します。 かし、多輝線・高赤方変位天体・宇宙磁 場等の観測を行うには広帯域周波数領 域の解析が必要です。 狭帯域用にチュ ーニングされた既存の FFT 回路では、 入力信号に対し,2乗のオーダで増加 するハードウェア量が問題となります。 本研究では FFT の基数拡張と LUT カス ケードを用いた回転因子計算回路によ り、広帯域用 FFT 回路を研究開発して います。また、剰余数系を応用した FPGA 用に特化した広帯域・高分解能な FFT 回路の設計法を研究しています。 提案設計法を Matlab·Simulink のライ ブラリに移植し、電波望遠鏡用信号処理 システムの国際共同開発コミュニティ CASPER (Collaboration Astronomy Signal Processing and Electronics Research)に公開し、 界中の電波望遠鏡で使用してもらう計 画です。

電波望遠鏡用信号処理装置の概要

国立野辺山天文台 45m 電波望遠鏡

<u>○教員か</u>らのメッセージ

1960 年代にインテル社のムーアが提唱した「ムーアの法則」の終焉が近づいており、 LSI を微細化するビジネスモデルの見通しは暗く、日本の半導体業界も元気がない状況です。しかし、この状況は次の時代へ繋げるための研究開発をするチャンスでもあります。私と一緒に次世代コンピュータを作り上げましょう。皆さんと一緒に研究できることを楽しみにしています。

- 1. H. Nakahara and T. Sasao, "A deep convolutional neural network based on nested residue number system," 25th International Conference on Field-Programmable Logic and Applications (FPL 2015), 2015, pp.1-6.
- 2. H. Nakahara, T. Sasao, M. Matsuura, and H. Iwamoto, "LUT Cascades Based on Edge-Valued Multi-Valued Decision Diagrams: Application to Packet Classification," IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), to appear.
- 3. H. Nakahara, H. Nakanishi, and T. Sasao, "On a wideband fast Fourier transform for a radio telescope," ACM SIGARCH Computer Architecture News, Vol.40, No. 5, 2012, pp.46-51.

超音波と光による ライフエンジニアリング

教授 中村健太郎

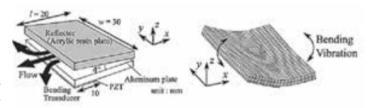
研究分野:超音波工学、光計測、光ファイバセンサホームページ: http://www.nakamura.pi.titech.ac.jp/

研究内容・目的

光波や弾性波などを用いることで、他の方法では実現し得ない特徴を有するデバイスや計測手法の研究を行っている。広い範囲に分布した量を瞬時に測定する手法やセンサ、そのようなセンサを組み込んだ構造体の開発を行う。また、アクチュエータと融合し、自ら動いて最適な測定を行えるセンサの実現をめざす。これらの技術を医用、健康、安心安全などのライフエンジニアリング分野に役立てることがミッションである。

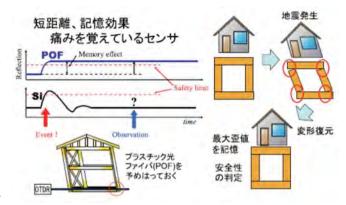
●研究テーマ

1. 液滴の非接触搬送システム


次世代新薬開発や新規材料研究では、何物にも触れずに微小な液滴を搬送、混合、評価する技術が求められている。これに対して、超音波音場の音圧の節に微小物体が浮上する現象に着目し、音場を制御することで液滴の非接触搬送、混合、滴下、分析などを

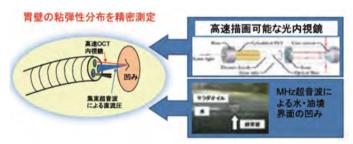
行うことを検討している。直径 1mm 程度の液滴の搬送や混合、滴下が可能になっている。さらに 高度な操作や分析の実現をめざしている。

2. 超音波アクチュエータ


超音波振動により摩擦駆動する 超音波モータの大幅な性能改善、 寿命改善をめざした研究を行って いる。摩擦駆動面に潤滑油を導入 し、超音波振動による圧力変動で

潤滑剤の動作モードを切り替えることでモータ効率を改善する。また、非接触浮上式ステージや 多自由度モータなどの新しい機構を研究テーマとしている。一方、超音波音場の非線形現象を活 用したポンプを開発している。超薄型形状で、ファンや弁を用いることなく気体や液体を移送す ることができる。大規模な数値計算による動作シミュレーションも行っている。

3. 記憶機能をもった光ファイバセンサ


建物やトンネルなどに光ファイバを 張り巡らし、光ファイバのどこにどれ だけの歪や温度変化が加わったのかを 知る技術が光ファイバセンサである。 従来のガラスファイバでは大きな歪で 断線してしまう上、常に測定を行い記 録する必要があった。当研究室では、 プラスチック光ファイバ(POF)の塑性

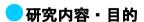
変形特性を使うことで、ファイバ自体が歪を記憶する光ファイバセンサを研究している。こうすると後から測定しても、それまでに加わった最大歪がわかる。また、POF のブリルアン散乱の観測に世界に先駆けて成功し、より高度な歪測定が可能になりつつある。

4. 光・超音波技術の医用応用

光と超音波を用いた内視鏡など、 医用応用の基礎研究を行っている。 光の干渉の性質を利用した光トモグ ラフィを内視鏡に利用するため光フ ァイバの振動を用いた小型スキャナ を開発した。また、生体組織に伝搬

させた弾性波動の伝搬速度を光学的手法で測定することで、生体組織の硬さも測定できる内視鏡の実現をめざしている。

●教員からのメッセージ


本研究室の研究テーマには実際に「動くもの」を扱います。すなわち、試作や実験が中心です。 今までに世の中に無かった新しい「からくり」(デバイスやシステム)を創り出す喜びを味わってもらいたいと考えています。そのためには、自分の「目で見て」「手で触って」「考える」ことが重要です。真にオリジナルなアイディアによる研究のコアの部分に高価な装置は必要ないものです。必要ないというより、そもそも無いのです。自作の実験セットは全てが自分の手の中にあります。一人ずつ独立したテーマで研究に励んでいますが、企業等との共同研究として行っているものと独自テーマとがあります。また、最近は留学生の割合も増え、学生同士はもちろん、海外や企業からの研究員との議論、国際会議発表などを通して得られるものも多いと思います。

- 1. "音のなんでも小辞典" 日本音響学会編 (分担), 講談社ブルーバックス, 1996, 東京.
- 2. "図解雑学・音のしくみ" ナツメ社, 1999, 東京.
- 3. "音響学入門" 音響入門シリーズ (分担), コロナ社, 2011, 東京.

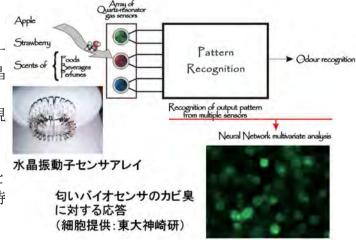
ヒューマン嗅覚インタフェース

教授 中本 高道研究分野:

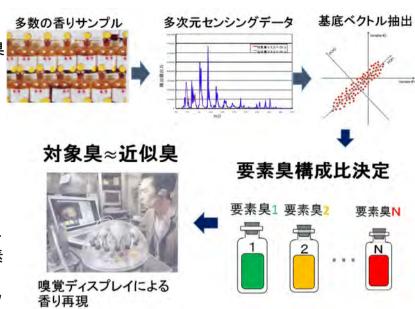
嗅覚ディスプレイ、感性情報センシング、匂いセンサ、組み込みシステムホームページ: http://silvia.mn.ee.titech.ac.jp

中本研究室では、感性情報のセンシング、情報処理、感性情報を再現するヒューマンインターフェースを目指し、その中でも嗅覚に注目して研究を行っています。視覚情報の場合ビデオカメラでキャプチャしてテレビ画面で情報再現を行うように、匂いセンサや嗅覚ディスプレイで嗅覚情報のセンシング、記録、再現を実現することを目指します。また、香る料理ゲーム等の嗅覚を利用したマルチメディアコンテンツも研究し、その実演も多く行います。さらに匂いバイオセンサやセンサ情報処理システム・アルゴリズムの研究も行っています。

研究テーマ


嗅覚ディスプレイ

多成分の香りを任意の比率で調合させることにより多様な香りを提示可能。ゲーム、ディジタルサイネージ用のコンテンツを作成し、国内だけでなら海外でもリサーチデモを行う。嗅覚VRはバーチャルリアリー・新聞取材も多い。



匂いセンシングシステム

多数のセンサの応答パターンをパターン認識することにより、句いの種類を識別する。センサ素子としては水晶振動子センサを多く用いるが、近年は嗅覚受容体を発現させた細胞をセンサ素子として用いる研究も行っることにより、生物に近い性能を持つセンサを実現できる可能性がある。

香り再現

多次元データ解析により計算した要素臭構成比にもとづき嗅覚ディスプレイで香りを調合することにより、様々な香りを近似的に作成することが可能になる。

教員からのメッセージ

この分野は境界領域で、情報エレクトロニクスだけでなく、生物、化学、環境計測、機械、制御、医学、歯学、芸術等の分野と関連があります。これらの情報・電気以外の分野の他大学や企業との共同研究も多いです。幅広くやってみたい人は、ぜひ当研究室にきてください。当研究室ではモノづくりをする機会が多く、計測や組み込みシステム、FPGAの知識、さらに感性情報処理、ヒューマンインターフェースの素養が身につきます。また、パターン認識や機械学習に関連する研究テーマもあります。さらに、国内外の学会発表の機会も豊富にありますが、国内だけでなく海外での research demo やテレビ取材など自分の研究を実演を通じてアピールする機会があります。海外との交流も多く、たくさんの留学生も研究に参加しています。

■関連する業績、プロジェクトなど

- 1. 都甲、中本、においと味を可視化する、フレグランスジャーナル社、2017.
- 2. T.Nakamoto, Ed., Essentials of machine olfaction and taste, Wiley, 2016.
- 3. T.Nakamoto, Ed., Human olfactory displays and interfaces, IGI-Global, 2013.
- 4. 中本、新版 電気・電子計測入門、実教出版、2012.
- 5. T.Nakamoto et al., Cooking up an interactive olfactory game display, IEEE CG & Applications, Jan./Feb., 2008, 75.78.
- 6. 中本編著、嗅覚ディスプレイ、フレグランスジャーナル社、2008.

受賞

- 2018, Honorable Mention, IEEE Virtual Reality, 2018.
- 2011, Honorable Mention, ICAT(International Conference on Artificial Reality and Teleexistence)
- $\boldsymbol{\cdot}$ 2011, Best papers at ISOEN (International Symposium on Olfaction and Electronic Noses)
- ・2010、におい・かおり環境協会技術賞
- ・2009, 電気学会学術振興賞

人間情報処理、教育工学

教授 中山 実

研究分野:視覚情報処理、知覚認知、学習評価、教育工学ホームページ: http://www.nk.ict.e.titech.ac.jp

研究内容・目的

教育やコミュニケーションにおけるヒューマンファクタ、学習理解・認知特性を調べ、学習効果などを最大化するための方法検討や、それに必要なシステムの構築を目指す。

- (1) 眼球運動、瞳孔応答、脳波など生体情報による学習理解、作業行動の評価
- (2) 視覚情報の特徴とその知覚、認知過程の分析
- (3) e-Learning などの教育・コミュニケーションシステムにおける活動分析と評価

研究テーマ

1. 眼球運動や瞳孔による行動分析評価

眼球運動や瞳孔は、表示画像の物理的特徴だけでなく、観察者の興味、理解、心的負荷などの心理的要因によって変化する。図 1 は、画像特徴による注視可能性を示した顕著性マップである。これらについて以下のような研究を行ってきた。

- ・ 眼球運動による文章理解、回答選択における確信度評価: 眼球運動の特徴量から、文章や表現内容の理解度を予測、 回答選択肢間の眼球運動パタンから回答確信度の推定した 事例を図2に示す。
- ・ 注視対象物の大きさ推定:眼球運動、瞳孔の注視における調節機能に着目し、ユーザ支援の方法を検討。
- ・ 瞳孔応答によるユーザビリティ評価:瞳孔による心的負荷 評価によって、インターフェース評価の実施。
- ・ 瞳孔応答による診断:疲労度評価、眼疾患検出の検討。

(a) (b)

図 1. 画像(a)の特徴に基づく顕著性マップ(b)

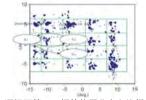


図2. 選択回答での視線位置分布と注視パタン

2. 人間の情報処理過程の分析

知覚される情報の違いをどのように識別しているのか について、実験的に検討してきた。

- ・ 漢字とシンボルの知覚過程:文字の知覚過程を脳波である事象関連電位(ERP)で比較し、頭皮電極の文字間での時系列的な変化の違いから検討した。さらに、ERP波形から知覚文字種の推定可能性を検討。
- ・ 快画像と不快画像の比較: ERP による知覚過程比較から情意的反応評価への応用を検討。
- ・ 高速逐次提示における見落しと画像特徴との関係:漢字を連続的に提示した場合に、標的とした漢字の見落しが、画像間の輝度差や類似度の変化に関係していることを示した。

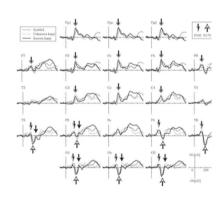


図3. 文字種による ERP 波形の違い

3. e-Learning における学習活動評価

オンライン学習と対面授業を組み合わせたブレンディッド学習、オンラインだけのフルオンライン学習などにおける学習活動と学習成果との関係を分析している。

・ 学習者特性との関係:学習者の特性(性格、 情報リテラシー能力など)と学習成果との関 係分析。

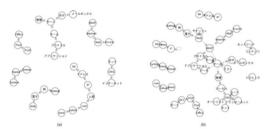


図 4. 教員の提示情報(a)と学習者の記録(b)

- ・ ノート記録分析による学習活動の評価: 教員 や教材が提示する情報をどの程度ノート記録に再現されているかを、単語の共起情報を用い て比較して、グラフ表現したものが図4である。評価や学習成果の予測に適用。
- ・ ソーシャルメディア利用の効果: オンライン学習に掲示板などのソーシャルメディアを用いた効果を検討。

他テーマ

眼球運動などの生体情報に関する信号処理やその応用:

- ・ 眼球運動に関する予測モデルの検討: 眼球運動の予測、あるいは眼球運動データを用いた行動予測の検討
- ・ 脳波データの信号処理に関する検討
- ・ 画像特徴量に基づく画質評価と主観評価の関係分析

教育学習支援システムの開発と評価:個別の学習課題に関するシステム試作など 教育、学習情報の分析

学習や認知を含めた人間の情報処理は、情報特徴への適応によって獲得されると考えると、研究対象も広がります。上記のテーマ以外でも、研究室の資源で取り組める研究については、希望に応じて積極的に実施したいと考えています。例えば、聴覚刺激や学習指導方法などに関する研究に取り組んだ学生もいます。

- 1. M.Nakayama, Y.Hayashi, Prediction of recall accuracy in contextual understanding tasks using features of oculo-motors, Universal Access in the Information Society, 13(1), 175-190, 2014.
- 2. M.Nakayama, M.Katsukura, Development of a system usability assessment procedure using oculo-motors for input operation, Universal Access in the Information Society, 10(1), 51-68, 2011.
- 3. M.Nakayama, M.Fujimoto, Features of Oculo-motors and their chronological changes in response to varying sizes of visual stimuli, Multimedia Tools and Applications, 74(8), 2841-2859, 2015.
- 4. M.Nakayama, H.Abe, Performance of Single-trial Classifications of Viewed Characters using EEG Waveforms, IJ.Cognitive Biometrics, 1(1), 10-25, 2012.
- 5. M.Nakayama, K.Mutsuura, H.Yamamoto, Impact of learner's characteristics and learning behaviour on learning performance during a fully online course, EJEL, 12(4), 394-408, 2014.

体験を作り出す技術とその応用

准教授 長谷川 晶一

研究分野:バーチャルリアリティ、シミュレーション、ヒューマンインタフェース

ホームページ: http://haselab.net/

研究内容・目的

バーチャルリアリティや拡張現実は、体験を作り出し、拡張します。体験は、一人称視点で本人だけが感じる主観的な直接的な経験であり、人の知識の基本です。文章、図画、映像等のメディアを通して得た知識や他者の体験の伝聞とは異なります。体験を作り出すためには、体験内容(=バーチャル世界)と、体験のためのヒューマンインタフェースが必要です。応用としては、感覚や存在感の伝達、人間同士の対話に近い自然な情報伝達といったコミュニケーションと、愛着や情動をひきだすことや、ゲーム、スポーツ、音楽等の体験など、楽しみを作り出すことに注目しています。

研究テーマ

1. 基盤技術 1: シミュレーションとモデリング

バーチャルリアリティ世界の中身のデータを用意するのがモデリング、データを時間とともに変化させるのがシミュレーションです。体験に必要な物体の属性を、シミュレーションや提示に都合よい形式でデータ化し、データを法則に従って変化させます。これにより体験者の行動が変化に反映され、体験者はバーチャル世界を自分の体験とすることができます。物理法則のように解明済みの法則だけでなく、バーチャル世界に登場する動物や人の運動や行動のように法則が解明されていない対象についても、法則を探りながらシミュレーション手法を研究します。

2. 基盤技術2:ヒューマンインタフェース

感覚提示と運動計測によりバーチャル世界を主観的に体験できるようにするのがヒューマンインタフェースです。体験に必要な情報の授受をいかに最小限の装置で賄うかが腕の見せどころ

になり、提示内容と感覚特性を注意深く考えた設計が求められます。作業ロボット等とは要求が異なるため、機構や回路にも独自に工夫できる点が多くあります。また、拡張現実では、生活の中で使用するため、邪魔にならず自然に利用できるかどうかも重要になります。

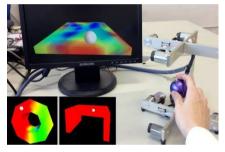
3. キャラクタモーション

従来のゲーム等のキャラクタの動きは、役者の演技やアニメータ作った動きの再生によるもので、状況に応じて多

様に動くことは困難でした。そこで、人の感覚運動系や行動をシミュレーションすることで、利用者の動きに応じた動作をその場で作り出すことを研究しています。視線や動作での自然な対話や発話のタイミングなど会話の非言語部分を作り出し、ゲームなどのエンタテインメントに加え、コミュニケーションのためのエージェントやロボットへの応用も目指しています。

4. ぬいぐるみロボット

柔らかい触り心地は、愛着や安心感を引き出します。 そこで、人との触れ合いを含むコミュニケーションロボットの機構として、触感が良く多自由度の動きや力制御が可能なぬいぐるみロボットを研究しています。糸を通しモータで引くことで様々な動きが実現できています。今後は負荷による変形を考慮した制御や、悪印象を与えない静粛なアクチュエータのといった要素技術と、対話やテレプレゼンスへの応用を研究したいと考えています。


5. 力触覚インタラクション

バーチャル世界の物体操作は意外に難しいのですが、原因の一つは触感が手に加わらないことです。力触覚インタフェースは大型複雑化しやすく、力触覚の解明と提示計測の工夫の両面からの研究が必要です。力触覚が関わる体験は他にもあるので、体験を作り出す技術により感覚特性と体験での役割を研究し、新たな応用も探りたいと考えています。

教員からのメッセージ

体験を作り出すバーチャルリアリティは、人の主観に直接働きかける面白い研究対象です。 日々の生活を構成する体験について深く考え、体験を作る技術を研究したい方を歓迎します。

人間と実世界をコンピュータで扱うため、3次元世界と力学を扱う数学、リアルタイム性を持つ高度なプログラミングをはじめ、機構や回路の設計、心理学生理学等の人間についての知識、時には芸術文化社会についての知識が必要になることもあります。私を含め、最初から全てに通じた人はいませんので、研究を進めながら必要に応じて共に学びましょう。数学やプログラミング、機構や回路の設計なといったシステム作りの基本技術は習得に時間がかかるのでどれかに通じていることが望ましいです。

研究テーマは研究を進めながら考えていきます。テーマを持っている場合はぜひ話してください。最先端の研究状況や社会のニーズなども考えながらテーマを深めていきたいと思います。また、システム作りの体験として、IVRC(国際バーチャルリアリティコンテスト)への参加を推奨しています。

- 1. 物理エンジン Springhead, http://springhead.info
- 2. 多様な身体動作が可能な芯まで柔らかいぬいぐるみロボット、日本 VR 学会論文誌
- 3. Haptic Rendering based on Finite Element Simulation of Vibration, Haptics Symposium

次世代 IoT 組込みシステム設計

准教授 原 祐子

研究分野:アーキテクチャ,設計自動化 (CAD), IoT

ホームページ: http://www.cad.ict.e.titech.ac.jp/

研究内容・目的

- (1) IoT を加速するエッジコンピューティング向けアーキテクチャ
- (2) 次世代 IoT ニューラルネットワークアーキテクチャ
- (3) 新たなコンピューティングパラダイム:積極的な近似計算

研究テーマ

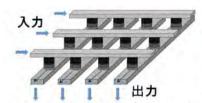
1. IoT を加速するエッジコンピューティング向けアーキテクチャ

エッジデバイス(クラウドの外にあり、我々の生活により身近なデバイス)上でデータを効率良く管理・処理することで、モノのインターネット(Internet-of-Things; IoT)技術の高度化・普及を更に加速し、我々の生活をより安全・豊かにすることができます。これまでのコンピュータアーキテクチャは、多様化するアプリケーションを網羅できるように多機能化し、機能や複雑さ(製造コスト)が膨れあがってきています。本研究室では、新たな IoT 技術を牽引するエッジコンピューティング向けのアーキテクチャが持つべき機能を再考し複雑さを抑えられる設計手法に取り組み、超小型・省エネで画期的なアーキテクチャの研究・開発を行っています(図1、図2)。コンピュータアーキテクチャ(ハードウェア設計)と、そのメリットを最大化するソフトウェア開発の両面からアプローチしています(論文[3][4]等)。

2. 次世代 IoT ニューラルネットワークアーキテクチャ

近年は、様々な方法でソフトウェア (アプリケーション) を処理する方法 (アーキテクチャ) があり、それらを活用した多面的なアプローチで、ニューラルネットワーク向けアーキテクチャ・ソフトウェア開発に取り組んでいます。①近年活発に研究・開発されている省エネメモリは、メモリでありながら行列の積和演算を効率的に処理できるという特徴を

持っています。本研究室では、その特徴を応用し、超省エネメモリベースのニューラルネットワークアーキテクチャを開発しています(図3、論文[2])。②複数台の安価なマイコン(Arduino等)を用いた並列分散



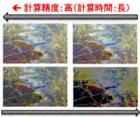

図3:クロスバー構造メモリを応用したニューラルネットワーク

図4:小型マイコンArduinoを用いた並列分散ニューラルネットワーク

型ニューラルネットワークアーキテクチャを実現することで、製造コストを劇的に抑えられます。これにより、より多様なシステムを人工知能(AI)化し、様々な社会問題を解決することを目指しています(図4)。その他、FPGA(再構成可能デバイス)やスマートフォン等も用い、ハードウェアだけでなく、ソフトウェア(アプリケーション)の研究・開発も行っています。

3. 新たなコンピューティングパラダイム: 積極的な近似計算

積極的な近似計算とは、人が知覚できないぐらいの計算誤差を積極的に取り入れる代わりに高速にアプリケーション実行する新たなコンピューティングパラダイムとして、学術研究だけでなく、産業界においても注目されている技術です(図5)。また、近年は、日本が強化すべき技術として、国の技術ロードマップにも組み込まれています。本研究室では、この技術を組込みシステムに応用することで、これまでのアーキテクチャ設計の問題を解決してきました(論文[1][5]等)。

計算精度:低(計算時間:短)→ 図5:画像処理の例

新たなアーキテクチャ設計手法・ソフトウェア開発手法の確立を目指します。

教員からのメッセージ

IoT の発展により、新たなアプリケーション (新たな問題) が日々創出されていますが、それらの多くは我々の身の回りに既にある解法を違った視点で応用することで、解決することができます。また、私たちは国内外の産学官との共同研究や意見交換を重視し、積極的に活動しています。柔軟な視点と斬新な発想で、一緒に新たな道を切り開いていきましょう。

- [1] H. Hsiao, J. H. Anderson, and Y. Hara-Azumi, "Generating Stochastic Bitstreams," Stochastic Computing: Techniques and Applications, Springer, 2019.
- [2] P. Achararit et al., "Structural Exploration of Stochastic Neural Networks for Severely-Constrained 3D Memristive Devices," *IEICE Trans. on Nonlinear Theory and Its Applications*, vol. E9-N, No. 4, pp. 466-478, Oct. 2018.
- [3] K. Saso and Y. Hara-Azumi, "Simple Instruction-Set Computer for Area and Energy-Sensitive IoT Edge Devices," Int'l Conf. on Application-specific Systems, Architectures and Processors, pp. 93-96, 2018.
- [4] N. Sakamoto et al., "Subleq_θ: An Area-Efficient Two-Instruction-Set Computer," *IEEE Embedded Systems Letters*, vol. 9, Issue 2, pp. 33-36, Jun. 2017.
- [5] H. Osawa and Y. Hara-Azumi, "Approximate Data Reuse-based Processor: A Case Study on Image Compression," Symp. on Embedded Systems for Real-Time Multimedia, pp. 32-40, 2017.
- 受賞: 情報処理学会山下記念研究賞 (2011), 情報処理学会優秀学生賞 (2008, 2012, 2013)

高速・高信頼無線伝送技術の研究

教授 府川 和彦

研究分野:無線通信、ディジタル信号処理、適応フィルタ、無線ネットワークホームページ: http://www.radio.ce.titech.ac.jp

一研究内容・目的

無線通信において10 Gbps を超える高速・高信頼伝送を実現するため,以下を主に研究している。

- (1) 無線通信用変復調技術: PSK, QAM, DS-CDMA, OFDM などの変復調技術
- (2) 適応信号処理技術:統計的信号処理に基づく信号検出とチャネル推定
- (3) 適応干渉キャンセル技術: MIMO, 時空間処理による干渉キャンセル技術
- (4) 無線ネットワーク: 高速・低遅延伝送を可能とする無線ネットワーク技術
- (5) ソフトウェア無線信号処理: FPGA による信号処理系の構築

●研究テーマ

1. MIMO の低演算量・信号検出アルゴリズム

MIMO の最適受信方式として最尤検出が知られているが、その演算量は送信アンテナ数や変調 多値数に関して指数関数的に増大し、回路規模が膨大になるという問題がある。一方、演算量が アンテナ数のほぼ 2 乗に比例する線形受信方式では、雑音強調による平均ビット誤り率特性の劣 化が生じる。これらの問題に対し、図 1 に示すような 1 次元探索アルゴリズムを提案した。詳しく述べると、線形受信の結果を初期値とし、これを雑音強調の方向に移動させ、それらの硬判定 により得られた複数の送信信号候補の中で最も尤度の大きい候補を選ぶことによりビット誤り率を改善し、最尤検出より演算量を大幅に削減できる。

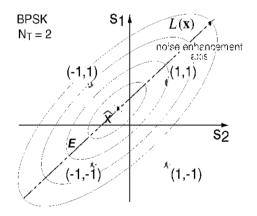
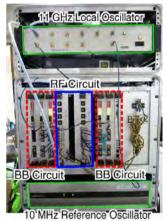


図1. 雑音強調の方向への1次元探索


2. MIMO-OFDM 移動通信における EM アルゴリズムに基づく逐次受信

MIMO-OFDM 移動通信が高速フェージング条件下でも良好な伝送特性を維持できるよう、EM アル

ゴリズムに基づいてチャネル推定と信号検出を交互に行う逐次受信処理が検討されている。この 逐次受信処理をさらに改善するため、ファクターグラフ上でのメッセージ・パッシングアルゴリ ズムを考察することで、空間リムーバル処理を行う信号検出を提案した。空間リムーバル処理で は、各受信アンテナのチャネル推定を行う際に、当該アンテナを除く他のアンテナの受信信号に よって判定した検出信号を用いる。これにより、信頼度の低い受信信号を、信号検出とチャネル 推定に連続して繰り返し使用することを回避する。

3. 11 GHz 帯超高速ビットレート移動通信システムの伝送実験

移動通信において伝送速度が $10~{\rm Gbps}$ を超えられることを実証するため、 $11~{\rm GHz}$ 帯における $400~{\rm MHz}$ 帯域の $8\times16~{\rm MIMO}-{\rm OFDM}$ 伝送実験系を製作し、屋内及び屋外伝送実験を行った。送受信機筐体を図 $2~{\rm Ck}$ に示す。なお、受信側は $2~{\rm Ek}$ 筐体使用して $8\times16~{\rm MIMO}$ 伝送を実現している。

BB Circuit BB Circuit 11 GHz Local Oscillator

図 2 (a) 8 素子アンテナ用送信機筐体

(b) 8 素子アンテナ用受信機筐体

<u> ◆教員からのメッセージ</u>

当研究室では、無線通信の理論からハードウェアまで幅広い研究ができます。例えば、無線信号処理のアルゴリズム検討、その性能評価のためのシミューションプログラム作成や理論解析、無線ネットワークの方式検討並びにシミューション、FPGAへの信号処理インストール等です。

関連する業績、プロジェクトなど

- 1. 論文: K. Muraoka, <u>K. Fukawa</u>, H. Suzuki, and S. Suyama, "Signal Detection for EM-Based Iterative Receivers in MIMO-OFDM Mobile Communications," *IEICE Trans. Commun.*, vol. E97-B, No.11, pp.2480-2490, Nov. 2014.
 - <u>K. Fukawa</u>, H. Suzuki, and Y. Tateishi, "Packet error rate analysis using Markov models of signal-to-interference ratio for mobile packet systems," *IEEE Trans. Veh. Technol.* vol. 61, no. 6, pp. 2517-2530, July 2012.
 - L. Zheng, <u>K. Fukawa</u>, H. Suzuki, and S. Suyama. "Near-optimal signal detection based on the MMSE detection using multi-dimensional search for correlated MIMO channels," *IEICE Trans. Commun.*, vol. E94-B, no. 08, pp.2346-2356, Aug. 2011.
- 2. 受賞:電子情報通信学会論文賞 (1995, 2007, 2009, 2012), European Wireless Technology Conf. Best Paper Award (2009),電子情報通信学会業績賞(2009)
- 3. 総務省プロジェクト: ミリ波関連(2007-2016), セルラー高速伝送関連(2009-2012) 企業との共同研究: MIMO マルチユーザ検出に関するもの 6 件, その他 18 件

Data Science

Specially Appointed Associate Professor Berrar Daniel Research: Data science, machine learning, bioinformatics

Homepage: http://www.berrar.com

Research Purpose and Content

Data science is a relatively young discipline that focuses on intelligent data analysis and knowledge extraction from data. Data science is inherently interdisciplinary, drawing on theories and methods from statistics, mathematics, and computer science, particularly machine learning, artificial intelligence, data warehousing, and high performance computing. The scope of data science is similar to that of the closely related fields of data mining and knowledge discovery from databases. Data science is concerned with the analysis of extremely complex, noisy, and heterogeneous data, particularly big data, which cannot be readily analyzed with standard desktop computers anymore. Indeed, data science as an independent discipline is closely linked to the emergence of big data. My research focuses on the development, evaluation, and application of machine learning and statistical methods for the analysis of such data, specifically in the context of the life sciences.

Research Themes

1. Bioinformatics

Modern biotechnologies are becoming more and more sophisticated. At the same time, the costs of generating life science data are plummeting, so that even relatively small laboratories can now generate data at a massive scale. Today, the challenge is no longer the generation of such data, but their processing, integration, and intelligent analysis. A key problem is the fact that life science data are often extremely noisy and incomplete. Machine learning and statistical techniques play a pivotal role for the intelligent data analysis in the life sciences [5]. In an ongoing research project with the Parasitology and Epidemiology Group, Aberystwyth University, UK, we are using RNA sequencing and methylated DNA immunoprecipitation to investigate the pathogenic blood fluke *Schistosoma mansoni*. This parasite causes schistosomiasis, a neglected tropical affecting millions of people worldwide. Our research will give new systems-level insights into the complex interplay of the gene regulatory networks and methylation machinery of this parasite and might ultimately lead to the discovery of novel drug targets.

2. Knowledge extraction from life science data

Knowledge extraction refers to the creation of knowledge from structured data (e.g., data organized in databases), unstructured data (e.g., natural language text), and semi-structured data (e.g., unstructured data annotated with meta-data). Knowledge extraction presents considerable challenges in terms of data management, as it is necessary to organize and store data from diverse sources, including pre-processed data and meta-data. In a joint research project with the Children's Memorial Research Center, USA, we used text mining and statistical techniques for knowledge extraction from full-text scientific articles [4]. We we interested in the invasiveness of glioblastoma, which is a type of aggressive brain cancer. To elucidate the effect of sphingosine-1-phosphate (S1P, a signaling sphingolipid) on the malignancy of glioblastoma, we used DNA microarrays to investigate gene expression as a response to S1P administration *in vitro*. We identified a set of candidate genes that were significantly differently expressed as a unique response to S1P. To elucidate the interplay between these genes, we then used text mining and extracted gene-gene interaction patterns from approximately

120,000 full-text scientific articles on cancer research. We developed a data warehouse to integrate the wet lab experimental data with the text mining results. Then, we devised a new algorithm to construct gene-gene interaction networks from the extracted interaction patterns and the gene expression data. Thereby, we could identify a novel pathway linking S1P to the invasive phenotype of glioblastoma.

3. Machine learning for sports data analysis

Soccer is a fast-growing multibillion dollar industry that nowadays employs methods from data science to improve the performance of players, equipment, marketing, scouting, etc. In a joint research project with the Sport and Exercise Science Department, University of Evry-Val d'Essonne, France, we created a database of over 200,000 international soccer matches and are currently investigating to

which extend the outcome of future soccer matches can be predicted. This project involves data integration and fusion, feature engineering, and predictive modeling.

4. Performance evaluation of machine learning algorithms

Evaluating the performance and robustness of predictive models is a crucial element of machine learning. A major focus of my research is the analysis and development of performance metrics performance visualization specifically tools, for the statistical comparison classifiers [1,2].

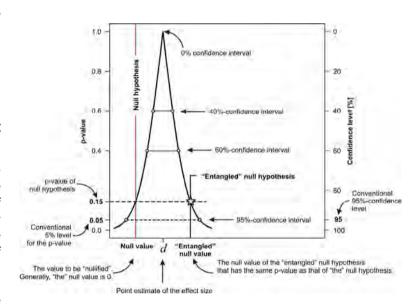


Figure 3: Confidence curve [1].

Message to students

My laboratory is actively collaborating with overseas research institutes. All students with a keen interest in data science (and some programming skills) are welcome to join.

Selected publications

- [1] Berrar D. (2016) Confidence curves: an alternative to null hypothesis significance testing for the comparison of classifiers. *Machine Learning* doi:10.1007/s10994-016-5612-6.
- [2] Oentaryo R., Lim E.P., Finegold M., Lo D., Zhu F., Phua C., Cheu E.Y., Yap G.E., Sim K., Nguyen M.N., Perera K., Neupane B., Faisal M., Aung Z., Woon W.L., Chen W., Patel D., and Berrar D. (2014) Detecting click fraud in online advertising: a data mining approach. *Journal of Machine Learning Research* 15:99–140.
- [3] Berrar D. and Flach P. (2012) Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). *Briefings in Bioinformatics* 13(1):83–97.
- [4] Natarajan J., Berrar D., Dubitzky W., Hack K., Zhang Y., Van Brocklyn J.R., and Bremer E. (2006) Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line. *BMC Bioinformatics* 7:373.
- [5] Berrar D., Dubitzky W., Granzow M. (eds.) A Practical Approach to Microarray Data Analysis, Springer, Dordrecht/Heidelberg/London, 384 pages, 2002.

Network science

Specially Appointed Professor Petter Holme

Research: Network science, computational social science, digital epidemiology

Homepage: http://petterhol.me

Research Purpose and Content

To understand how a large, complex system works as a whole, you need to zoom out and look from a distance. The society itself is just such a complex system built by people and organizations with different abilities, interests and objectives. Our bodies are another example. Genes code proteins, proteins build cells, cells build tissues, tissues build organs—that seems fairly simple and hierarchical—if it wasn't that the proteins interact with each other, so do cells, etc. and to understand such lateral connections, we need to find the right level of modeling (or the right distance to look at the elephant). The bigger datasets we can gather, the more important it will be to simplify the right amount. Representing a system as a network is one way of consistently discarding some details, to simplify and zoom out, while still being able to see how the whole system hangs together. Network science can be theoretical—to develop methods for the data analysis outlined above or simulating such networked systems. It can also be applied, using existing network methods to answer domain specific questions.

Research Themes

1. Network epidemiology

I am interested in how infectious diseases spread in populations. These processes are all affected by the structure of the underlying contact patterns. As a simple example, any types of networks between people have heavy-tailed distributions of the number of neighbors of people (the degree). This is known to speed up disease spreading, but it also makes it easier to stop an epidemic outbreak (provided one identify the high-degree people and vaccinate them, or otherwise lower their ability to spread the disease). Structures both in the wiring of the networks and the time of contacts affects spreading phenomena. This project thus overlaps with the previous in some ways, but it is more about adding knowledge to a rich existing theory than creating a new. In summary, my research is about relating the contact structure and spreading dynamics, and how to exploit these insights to mitigate or facilitate spreading.

2. Interaction between diseases and behavior

Infectious diseases are a constant threat to public health. Globally they cause around 20% of deaths, while developed countries like Japan are susceptible to outbreaks of new pathogens (like recently SARS or MERS in neighboring countries). To understand infectious disease dynamics with the ultimate goal to create effective interventions for mitigating infectious outbreaks is thus extremely valuable for

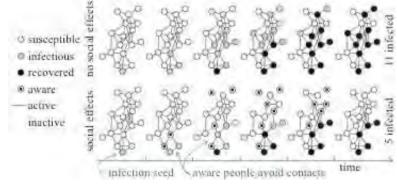


Figure 1. How social effects can change predictions in epidemic modeling.

the society. This is also a question where theoretical science is making continuous contributions to medical science—several concepts, and policies public health practitioners use, come from the type of research we propose.

There is an increasing amount of evidence that social influence impacts people's health decisions, such as vaccination or condom use. Such peer influence thus spreads behavior as a social contagion similar to the infectious contagion. This forms a feedback loop between epidemic and behavioral spreading (Fig. 1). In response to perceived risks and social influence, people may take preventative measures such getting vaccinated. These behavioral responses will, in turn, modify the infection spreading and cannot be ignored in a comprehensive theory of epidemic spreading. Our key question is thus: How does social spreading of behavior influence epidemic spreading?

3. Urban science

The study of the structure of cities and the movement of people within them is another research topic combining modern data-science approaches and theory. My current research has focused on how traveling patterns are influenced by the spatial structure of the city: how they can be predicted and used to understand the functional organization of a city. For the future, I am interested in temporal patterns of activity in cities, basically to understand how the shape of cities affect the timing of peoples' movements. A first step would be to make a time-resolved version of out "inness" metric, proposed in Ref. [1] (that captures the propensity of moving towards the center and then outwards when travelling between peripheral locations in a city).

4. Group dynamics in crime

Crime is a universal social phenomenon. In almost every modern nation and many old civilizations, there has been a legal system and a notion of crime. It is also a very well documented social phenomenon. Indeed, almost all countries have a police authority whose purpose is not only to find and apprehend criminals but also to document crimes in many aspects—the time, location, type and data about the suspects age, gender and identity are almost universally recorded. This information is usually reported as averages or trends, and occasionally regression analysis, but still rarely analyzed with the modern tools of computational social science. Our project will use new tools and new data to advance the understanding of why, when and where crime is committed.

As a starting point, this work uses a large dataset—unique for academic research—from the Swedish police. It covers all crimes committed in Sweden over 20 years, involving 1.2 million suspects, recording anonymized id-numbers of the suspects, time, location and type of the crimes. We will focus on questions about criminal careers and collaborations:

- Can we see knowledge transfer between criminals who committed crimes together (co-offenders)?
- When a group of co-offenders before do it again, how and why do they recruit new members.
- Are there any statistical laws in the data?
- Can we predict and categorize criminal careers?

Message to students

My laboratory is actively collaborating with overseas research institutes. All students with a keen interest in network science (and some programming skills) are welcome to contact me.

Selected publications

- [1] M Lee, H Barbosa, H Youn, P Holme, G Ghoshal, Morphology of travel routes and the organization of cities, *Nature Communications* 8, 2229 (2017).
- [2] P Holme, Three faces of node importance in network epidemiology, Phys. Rev. E 96, 062305 (2017).
- [3] LEC Rocha, N Masuda, P Holme, Sampling of temporal networks: Methods and biases, *Phys. Rev. E* 96, 052302 (2017).
- [4] P Holme, N Litvak, Cost-efficient vaccination protocols for network epidemiology, *PLOS Comp. Biol.* 13, e1005696 (2017).

情報通信の基礎研究

准教授 松本 降太郎

研究分野:量子情報理論、ネットワーク符号化、情報理論的セキュリティ

ホームページ: http://www.rmatsumoto.org/research.html

一研究内容・目的

より高い効率を有する量子暗号プロトコルの構成

- (1) ネットワーク符号化によるコンピュータネットワークの高速化
- (2) ネットワーク符号化による通信デバイスの省電力化

研究テーマ

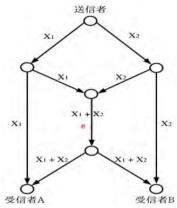
1. 暗号の情報理論的な安全性

インターネットなどで現在よく使われている RSA などの暗号方式は、大きな整数の素因数分解などのいくつかの計算問題を短い時間で解く方法が知られていないことに安全性の根拠を置いている。このような安全性を計算量的安全性と呼ぶが、もし素因数分解などを高速に解く方法が発見されれば計算量的安全性にもとづく暗号方式は使用できなくなってしまう。一方、秘密にしたい情報と悪意を持つ第三者が持つ情報が統計的に独立であれば、悪意を持つ第三者がいかに強力な計算機を持っているとしても秘密にしたい情報を当てずっぽうに推測するよりも正確に知ることはできない。秘密にしたい情報の統計的独立性を保証することによって得られる安全性を情報理論的安全性と呼び、本研究室では情報理論的安全性を保証できる以下のような暗号方式の研究を行っている。

1-1. 量子暗号(量子鍵配送(QKD)プロトコル)

量子暗号の中の代表的な方式である量子鍵配送(QKD)プロトコルは、情報理論的に安全な暗号方式でもある。QKDプロトコルの目的は Alice と Bob と呼ばれる正規ユーザーの間で Eve と呼ばれる盗聴者に知られないように乱数列を共有することである。共有乱数列は Alice から Bob に秘密裏に情報を伝えるために用いることができる。乱数列を共有するために、Alice は Bob に単一光子の偏光などの量子力学の性質が強く現れる物理媒体を送る。もし Eve がこの物理媒体を測定すると、量子力学の原理により測定された物理媒体の状態が変化してしまう。 Alice と Bob は送受信状態の変化から Eve が得た情報量を推定し、送受信情報を適切に短くすることによって Eve が得た情報と統計的に独立な乱数列を生成する。送受信状態の変化の仕方を推定することを通信路推定と呼ぶ。本研究室では、通信路推定に従来は捨てられていたデータを用いるとより正確に通信路推定が可能になるため共有できる乱数の量が増加することを明らかにし(文献[1])、提案した通信路推定法に合わせて物理媒体の送信方法を変えるとさらに共有できる乱数が増加する

ことを示した(文献[2])。


1-2. 雑音を用いた乱数の共有

前述の量子鍵配送プロトコルの実現には今のところ高価なデバイスを用意する必要がある。情報理論的に安全な鍵共有を比較的安価に実現するために自然界に存在する雑音を利用した鍵共有法がMaurerによって提案されている。Maurerの方法では前述のAlice、Bob、Eveが共通の雑音源(天体や無線LANなどなんでもよい)から信号を受信しているときに、Eveが盗聴することができる公開通信路を用いてAliceとBobが対話をすることによってEveに知られていない乱数を共有する。実際に受信する雑音は電波などの連続量であるが、Maurerの方法は雑音が離散的なディジタル情報である場合に対してしか検討が行われていなかった。そこで本研究室では文献[3]において雑音源が連続量であるときにEveに知られずに共有できる乱数の量を評価し、また連続的な雑音源を量子化したのちに従来のMaurerの方法を用いる場合にくらべて、より多くの乱数を共有できる方式を開発した。

2. ネットワーク符号化

従来のコンピュータネットワークでは情報の中継ノードでは、 隣接したノードから受け取る情報を別のノードにそのまま転送 することしか許されていなかった。しかし、中継ノードにおい て複数の隣接ノードから受け取った情報を加工してから転送す ることを許すと、通信速度や消費電力が向上することが近年明 らかにされた。

例えば、右図のように、送信者が受信者 A と受信者 B に同一のデータを送信したいとする。中継ノードが受信情報をそのまま転送しなければいけない場合は、情報 X1 と X2 の両方を受信者 A と B に届けることはできない。しかしながら、リンク e に

送出する情報を X1 と X2 の和 (正確には排他的論理和) とすることにより、送信者 A は X1 と X1+X2 を受け取り、それらから送信情報である X1 と X2 を復元することができる。このように中継ノードに複数の隣接ノードからの情報を加工して転送することを許す方式をネットワーク符号化と呼ぶ。

教員からのメッセージ

粘り強く取り組める論理的思考が好きな学生をお待ちしています。

●関連する業績、プロジェクトなど

論文:

- [1] S. Watanabe, R. Matsumoto, and T. Uyematsu, "Tomography increases key rates of quantum-key-distribution protocols," Physical Review A, vol. 78, no. 4, p. 042316, October 2008.
- [2] R. Matsumoto and S. Watanabe, "Narrow basis angle doubles secret key in the BB84 protocol," Journal of Physics A: Mathematical and Theoretical, to be published, April 2010.
- [3] M. Naito, S. Watanabe, R. Matsumoto, T. Uyematsu, "Secret key agreement by soft-decision of signals in Gaussian Maurer's model," IEICE Transactions on Fundamentals, vol.E92-A, no.2, pp.525-534, February 2009.
- 受賞: 電子情報通信学会論文賞 (2001, 2008, 2011, 2014), 電子情報通信学会喜安善市賞(2008, 2014), 丹羽保次郎記 念論文賞(2003)

AI コンピューティング アーキテクチャの研究

教授 本村 真人

研究分野:リコンフィギュラブルハードウェア、 ディープラーニングプロセッサ、アニーリングマシン、等

●研究目的・内容

深層ニューラルネット(DNN)技術の勃興とともに、 人工知能(AI)コンピューティングの分野が大きく進展しています。従来型のコンピューティングが「手続き型」であるのに対し、AI コンピューティングの分野は「構造型」であることを大きな特徴としています。その違いをアーキテクチャ(=処理方式)の革新に活かすことで、これまでよりも大幅にエネルギー効率や処理速度が高いコンピューティングシステムの実現が可能となります(図 1)。このような観点から世界中でアーキテクチャ変革の大規模競争が始まっており、我々はその中で独創的なアイデアで革新的なアーキテクチャを産み出す研究を続けています。

この領域の研究にはソフトウェアとハードウェアの間の接点を最適化する発想が重要です。この観点から、我々は「システムアウェアなハードウェア」というキーワードを標榜し、AI コンピューティング分野を広くカバーする共通アーキテクチャプラットフォームの確立を目指して研究しています(図 2)。

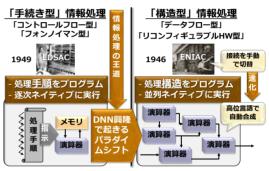


図 1. AI コンピューティング時代の 情報処理パラダイムの変革

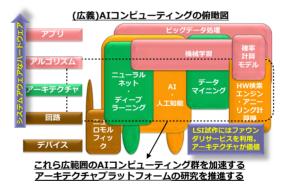


図 2. 研究コンセプト

研究テーマ

1. DNN アクセラレータの研究

DNN を支える深層学習(ディープラーニング)の世界では、量子化、枝刈、強化学習、転移学習、人間の脳に学んだ新しい学習手法など、日進月歩でアルゴリズムの進化が続いています。その応用範囲も、データセンター内のビッグデータ処理だけには留まらず、車やスマートフォンなどの身の回りのリアルな機器のスマート化へと急速に広がりを見せており、DNN 処理の低電力化・高速化するアクセラレータの研究が求められています。

我々は、バイナリ DNN アルゴリズム(DNN の重み係数や活性化値を 2 値で表現)に一早く注目して LSI アーキテクチャの研究を進め、2017 年に世界初のバイナリ DNN 推論エンジン LSI を発表し、大きな注目を集めました(図 3)。またバイナリから対数量子化(2 のべき乗表現の重み係数/ニューロン値の指数を量子化)までカバーする 3 次元積層リコンフィギュラブル型 DNN 処理エンジンを 2018 年に世界

で初めて発表し、いくつもの賞を受賞しました(図 4)。現在は、これらの成果をベースにして更に学習アルゴリズムとアーキテクチャの協創に踏み込んだ DNN アクセラレータの研究を続けています。

2. アニーリングマシンの研究

スマート化が進む社会においては、様々な制約が存在する中で、溢れ出るデータを活かして常に最適な判断や制御を続けていくことが求められます(交通、社会インフラ、農業、等)。このような問題は、数学的な枠組みとしては「組合せ最適化問題」として知られており、物理的な「エネルギー最小化原理」を活かしたアニーリング処理の考え方で解くことができることが知られています。いわゆる量子アニーリングマシンもその一つのアプローチですが、我々はDNNの学習プロセスとアニーリングによる求解プロセスの類似性に着目し、両者に共通に適用できる構造型のアーキテクチャプラットフォームとそのLSI実証の研究を進めています。

3. 動的再構成ハードウェア技術の研究

構造型の情報処理を支える基本技術が、「柔らかいハードウェア」を実現するための動的再構成技術です。この技術のパイオニアとして AI コンピューティング分野への応用展開と技術革新を進めています。

教員からのメッセージ

2018 年度まで北海道大学 大学院情報科学研究科でこの 分野の活動を続けてきました。2019 年度からは科学技術創成研究院(すずかけ台)に「AIコンピューティング」研究ユニットを新設し、日本の中核研究拠点となることを目指して活動を広げていきます。新しい「構造」を考えることが好きな人、「設計」が好きな人、ソフトとハードの両方をわかりたい人、情報処理の変革に自ら携わりたい人など、何かを創り出すこと

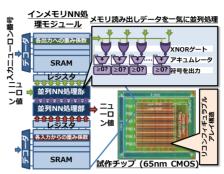


図 3. バイナリ DNN 推論チップ (2017 年)

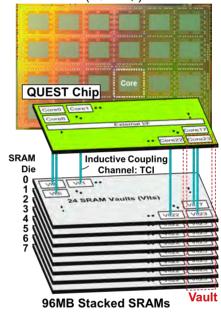


図 4.3 次元積層・対数量子化 DNN チップ(2018 年)

への情熱を持った学生の皆さんを歓迎します。国家プロジェクトへの参画、企業共同研究、海外研究機関との協力等も積極的に行っており、一線級の国際会議で研究成果を発表する機会を提供できます。

●関連する業績、プロジェクトなど

- 1. NEDO セミナー講演: 「AI コンピューティングがアーキテクチャにもたらすもの」 (2018/10/31) https://www.nedo.go.jp/content/100885737.pdf
- 2. CRDS シンポジウム講演: 「AI 応用がもたらすプロセッサ LSI のゲームチェンジ」(2017/03/07) https://www.jst.go.jp/crds/sympo/20170307/pdf/20170307 06.pdf
- 3. 北海道大学ネットジャーナル:「やわらかいハードウェアで高速かつ低電力を実現」(2014/10/27) https://www.ist.hokudai.ac.jp/netjournal/net_34_1.html
- 4. http://lalsie.ist.hokudai.ac.jp/jp/

受賞 92 年 IEEE JSSC Best Paper Award、99 年 IPSJ 年間最優秀論文、11 年 IEICE 業績賞、18 年 ISSCC Silkroad Award(指導学生)、19 年 JSPS 育志賞(指導学生)、等

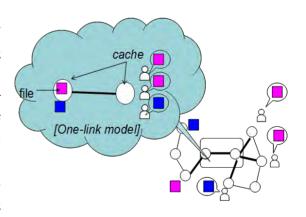
情報通信ネットワークの制御技術

教授 山岡 克式(やまおか かつのり) 研究分野:情報通信ネットワーク

(インターネット、電話網、新世代ネットワーク)

ホームページ: http://www.net.ce.titech.ac.jp

研究内容・目的

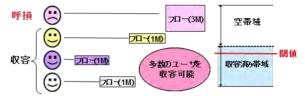

- 様々な通信の混在する環境で通信品質を維持向上させる網制御方式に関する研究
- コンテンツの効率的なユーザへの配送を実現する制御アルゴリズムに関する研究
- リアルタイムストリームの通信品質向上を目的としたプロトコル中継処理に関する研究など、電話網やインターネット、次世代新世代ネットワークなど情報通信ネットワーク一般を対象として、 ネットワーク制御技術、および通信用マルチメディア処理技術を、理論と実装の両面から研究しています。

現在から近未来にわたる様々な段階で通信網に生じるであろう問題の解決を目指して研究を 行うとともに、それを通じて、社会で活躍していくうえで必要な様々な能力を学生に身につけさ せるのが、山岡研究室の目的です。

●研究テーマ

1. ホップ・バイ・ホップファイル配送システムにおける効率的なコンテンツ配送アルゴリズムの研究

キャッシュ技術を用いて負荷分散を行う方式として、ユーザ要求によりファイルをユーザに配送する際に、その配送経路上のノードのキャッシュにファイルの複製を保存する方式が。 P2PではFreenet やWinny等、また、Web サーバプロキシーシステムやCDNでは、トランスペ



アレントプロキシシステム、昨今では CCN など、多く実装、研究されている。この方式を用いたファイル配送システムを、本研究ではホップ・バイ・ホップファイル配送システムと定義する。このシステムにおいて、ユーザの満足度を向上するためには、ファイル型のコンテンツは全データの取得が完了して初めて実行処理が可能なため、ユーザがリクエストを送信してから、全データを受信するまでの時間であるサービス時間の平均値を小さくする必要がある。また、リクエストが殺到するノードの上りリンクはボトルネックリンクとなる。本研究では、ボトルネックとなる One-link に着目し、サービス時間の平均値を低減することを目的とする。

本研究では、リクエスト数/ファイル長が降順にファイルを送信した場合に、次のリクエスト

到着までの間の局所最適解を得るという定理を発見し、正しいことを証明し、これをもとに、ホップ・バイ・ホップファイル配送システム特有の性質を考慮したスケジューリング方式を提案し、最適解に極めて近い性能を出すことに成功した。

2. ユーザ間対等に基づく全ユーザ満 足度向上を目標とした多元トラヒック 受付制御方式に関する研究

受付制御方式は、従来、資源の帯域利用

効率向上が主目的となっていたが、帯域が通信の価値をそのまま表すとは限らない昨今では、従来方式を用いると、個々のユーザに対して大きな不満を生じさせる問題が生じる。本研究では、このユーザ満足度に着目し、網が現在おかれている状況を考慮しながら、全ユーザ満足度の向上を目的とした新しい受付制御方式を提案する。

本研究では基礎検討として、異なる要求帯域(広帯域フローと狭帯域フロー二種類に限定)に対し、収容時に同じ満足度を得る(対等)と仮定し、この考えの基、全ユーザ満足度を向上させるために、網内へのトータルで呼損となる確率(トータル呼損率)を最小にする新しい受付制御方式を提案した。この受付制御方式では、新規フロー到着時に、その時点での収容済み帯域が、制御パラメータである閾値より大きい場合、到着フローが広帯域フローの場合に呼損として取り扱うことで、トータル呼損を低減するため、適切な閾値設定が必要となる。

そこで、待ち行列理論 M1M2/M1M2/S/S 即時システムによるモデル化から理論式を立式し、数値計算により最適な閾値を導出し、その最適閾値を利用することにより、提案手法を用いない場合のトータル呼損率 (rnon) より大幅な減少、かつトータル呼損の最小化を実現した。

<u>─教員か</u>らのメッセージ

学生の自主性を重んじる指導方針で、研究活動を通じて、物事の本質を見抜く洞察力と論理的 思考力、計画性、コミュニケーション能力、さらにはマネジメント能力を、学生に身につけさせ ます。決して楽な研究室ではないと思いますが、力を付けたい学生さんをお待ちしています。

当研究室を志望する学生は、必ず事前に研究室見学に来ることを、強くお勧めします。

●関連する業績、プロジェクトなど

- 論文: "Local Optimal File Delivery Scheduling in a Hop by Hop File Delivery System on a One Link Model", Hiromi Tsurumi, Takamichi Miyata, Katsunori Yamaoka, Yoshinori Sakai, IEICE Transactions on Communications, Vol. E92-B, No.1, pp.34-45 (2009)
- "Single-Fiber Access/Metro WDM Ring Architecture for Asymmetric Traffic Applications in Next Generation Networks", Mitsumasa Okada, Katsunori Yamaoka, Yoshinori Sakai, IEEE/OSA Journal of Lightwave Technology, Vol. 27. No.9. pp. 1181-1196 (2009)
- "Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users", Sumiko Miyata, Katsunori Yamaoka, Hirotsugu Kinoshita, IEICE Transactions on Communications, Vol. E97-B, No. 12, pp. 2706-2719 (2014)

著書:ディジタル情報流通システム, 東京電機大学出版会 (2005)

受賞: 情報ネットワーク研究賞(2016), 電子情報通信学会論文賞(2014), 情報ネットワーク研究賞(2011), IEEE CQR2009 Best Paper Award(2009), 国際コミュニケーション基金優秀研究賞(2007), 東工大挑戦的研究賞(2006), など

光技術と画像処理の融合

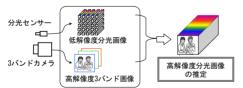
Optical Imaging & Display Group

教授 山口 雅浩

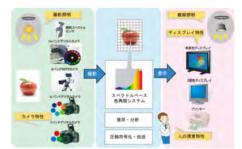
研究分野:光工学、画像工学、ホログラフィー、分光画像

ホームページ: http://www-oid.ip.titech.ac.jp

研究内容・目的


光と画像処理技術を融合した新しい情報システムの実現を目指して、マルチスペクトルイメージング、色再現、多原色ディスプレイ、医用画像、3次元画像、ホログラフィーなどの研究を行っています。また、医療など世の中に貢献する応用技術の研究も積極的に行っています。 「ライフエンジニアリングコース」と「情報通信コース」を担当しています。

●研究テーマ


1. 実物の色や質感をリアリティー高く再現する: 分光イメージングとディスプレイ 従来の映像システムでは、ディスプレイ上に表示される映像は、実物とは異なる色になって しまいます。本研究では、実物の色や質感を忠実に、リアリティー高く再現する映像システ ムを実現することを目的として、RGB 3 原色だけではなく、「マルチスペクトル」「多原色」 に基づく映像技術の開発を行っています。

【研究テーマの例】

- ◆ 効率的なマルチスペクトル画像(分光画像)入力技術の開発
- ◆ 高質感映像ディスプレイの視覚的評価
- ◆ 分光画像解析の応用技術

複合解像度型分光イメージングによる効率的な マルチスペクトル画像入力手法

スペクトルに基づく色再現システムの概念図

2. 「定量的病理診断」のための画像解析技術

病理診断は、病変部の組織を顕微鏡で観察して良性/悪性の判定や悪性度等を判定するもので、がん等の治療方針を決めるにあたって重要な役割を果たします。本研究では、「デジタルスライド」技術に基づいて得られるデジタル病理画像に対してパターン解析・画像認識技術を適用し、「定量的」「高精度」な病理診断の実現を目指しています。

【研究テーマの例】

- 細胞や組織構造などの画像パターン認識技術
- 画像解析による診断に有用な指標の算出
- 画像解析・認識における色や画質のばらつきの補正

「デジタル病理学」に向けた色情報処理・画像解析技術

3. ホログラフィーによる立体像表示技術

ホログラフィーは、光の干渉と回折の現象を利用して光を波動として記録・再生する技術 で、高精度な計測や光学デバイス、セキュリティー印刷、ホログラム光学素子などに利用さ れています。波動として光を再現することで、あたかもそこに実物体があるかのように立体 像を表示することができます。本研究室では、デジタルの三次元画像データからリアリティ ーの高い立体像のディスプレイを行う技術の研究を行っています。またホログラム光学素 子をヒューマンインタフェースの高度化に応用する試みも進めています。

【研究テーマの例】

- 光線と波面の相互変換に基づく高品質ホログラム計算技術
- 超高密度ライトフィールド入力・処理・表示技術
- 「立体像に触る」ユーザインタフェース
- ホログラム光学素子を用いた「透明カメラ」

「立体像に触る」ユーザインタフェース

多視点画像入力システム

4. コンピュテーショナルイメージングによるレンズレスカメラ・プロジェクター技術

コンピュテーショナルイメージングはレンズの結像作用を計算に置き換えるイメージング 技術で、カメラ・プロジェクターにおけるサイズ・視野・被写界深度などの物理的性能限界 の打破に応用することができます。本研究では、この技術に基づくレンズレスカメラ・プロ ジェクターの開発を行っています。

【研究テーマの例】

レンズレスイメージングのための光学系・信号処 理系の最適設計

レンズレスイメージング概念図

教員からのメッセージ

実際にシステムを作り上げて目に見える形にすることを目標にしています。インパクトのある デモンストレーションによって新たな技術を社会にアピールしましょう。

質問等は電子メール: yamaguchi.m.aa@m.titech.ac.jp にお願いします。

●関連する業績、プロジェクトなど

- M. Yamaguchi, "Full-Parallax Holographic Light-Field 3-D Displays and Interactive 3-D Touch," Proceedings of the IEEE, Vol. 105, 5, pp. 947-959, (2017).
- CIE 223:2017, "Multispectral Image Formats," International Commission on Illumination, 2017. See http://www.multispectral.org

信号処理・機械学習・最適化・ 逆問題のアルゴリズムの創造と応用

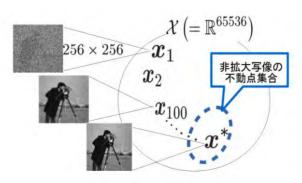
教授 山田 功

研究分野:信号処理,機械学習,最適化,逆問題

ホームページ: http://www.sp.ce.titech.ac.jp/

一研究内容・目的

- (1) データサイエンスや機械学習の諸問題を解決する普遍的アルゴリズムの創造と体系化
- (2) 不動点理論や計算代数に基づく信号処理・機械学習・最適化の革新的アルゴリズム開発
- (3) 信号処理・最適化アルゴリズムの画像・音響・通信・物理探査分野等の逆問題への応用


研究テーマ

1. 信号処理の諸問題を解決する普遍的アルゴリズムの創造と体系化

今日のICTを支えている信号処理技術は、ガウスの「最小二乗推定」やフーリエの「直交関数展開」の戦略を踏襲しており、「(線形代数で学んだ)部分空間を用いた情報表現」と「直交射影定理(ヒルベルト空間に拡張されたピタゴラスの定理)」を共通の土台としています。私たちは「部分空間では表現できない情報を精密表現する数理」と「最適化のための数理」の融合が生む相乗効果こそが信号処理を飛躍的に進化させる鍵となることを確信し、この方針を土台に据えた普遍的アルゴリズムの開発を進めています。研究成果の多くは、既に多方面に応用され、大きなインパクトを与え、新時代の信号処理分野を牽引しています(特に特徴的な研究事例に絞って概要を以下に紹介します).

2. 不動点集合上の凸最適化問題の革新的アルゴリズムの開発と応用に関する研究

凸解析学の目覚ましい進化のおかげで、「表現の困難さ故に、信号処理や機械学習や逆問題の分野で効果的に活用できていなかった重要な情報」の多くが、実は「非拡大写像の不動点集合(全ての不動点からなる集合)」として統一表現できることが解ってきました。本研究室で誕生した「ハイブリッド最急降下法」は、「不動点理論の数理」と「凸最適化の数理」の融合の賜物であり、世界で初めて「非拡大写像の不動点集合上の凸最適化問題」の解決に成功したアルゴリズムです。ハイブリッド最急降下法は、長年人類が解決不能と信じてきた「階層構造を持つ凸最適化問題」の強力な解法に

 $x_{n+1} = T(x_n) - \lambda_n \nabla \Theta\left(T(x_n)\right)$ (ハイブリッド最急降下法)

図1.非拡大写像の無限個の不動点から最適な選択を実現

直結しており、信号処理や機械学習や逆問題に限らず、工学と数学の垣根を超えて無限の応用を持っています(図 1). 更に、本研究室では、このアイディアを大胆に拡張することにより、「適応射影劣勾配法(2003)」を開発し、「凸関数列の漸近的最小化問題」を解決することにも成功しています。適応射影劣勾配法は、オンライン機械学習問題、無線通信システム等に広く応用され、極めて優れた性能が実証されています(2015には信号処理分野のトップジャーナルIEEE Signal Processing Magazine の最優秀論文賞[1件/年]を日本人で初めて受賞しました).

3. 代数的位相アンラップとその応用に関する研究

複素数の位相(偏角ともよばれる)には 2π の整数倍の任意性がありますが、リモートセンシングや 医用画像処理では、2 次元平面上の各点に位相値が対応付けられた連続関数(位相曲面)が必要となるため、「 $mod 2\pi$ の任意性」を解消しなければなりません。最小の変動量を持つ位相曲面を決定する問題(2 次元位相アンラップ問題)は難攻不落の逆問題とされ、理論的保証のない解法のみが知ら

れていました.最近,私たちは「位相曲面の推定問題」が「ベクトル場の推定問題」に帰着できることを示すと共に,2次元スプライン関数によって表現された最適なベクトル場に「代数的位相アンラップ(1998年に本研究室で誕生)」を応用することにより,2次元位相アンラップ問題の理想的解決に成功しました.この解法には代数・解析・幾何・最適化に跨った多彩な数理が駆使されています(図 2).

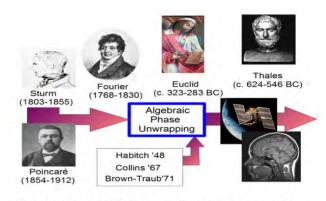


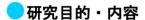
図 2. 難攻不落の逆問題は、代数的位相アンラップとポアンカレの補題の融合によって解決されました。

●教員からのメッセージ

信号処理や機械学習は工学と数学に大きなインパクトを持つ分野として注目され、世界中で天才が続々参入しています。みなさんも自由な発想で普遍的価値を創造し、人類の知の最前線を一緒に開拓しましょう。

●関連する業績、プロジェクトなど

- 1. I. Yamada, "The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings," Stud. Comp. Math, 8, pp. 473-504, 2001.
- 2. I. Yamada, M. Yukawa, M. Yamagishi, "Minimizing the Moreau envelope of nonsmooth convex functions over the fixed point set of certain quasi-nonexpansive mappings," In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.343-388, Springer, 2011.
- 3. M. Yamagishi, I. Yamada, "Nonexpansiveness of Linearlized Augmented Lagrangian operator for hierarchical convex optimization," Inverse Problems, 33(4), 044003 (35pp), 2017.
- 4. S. Gandy, B. Recht, I. Yamada, "Tensor completion and low-n-rank tensor recovery via convex optimization," Inverse Problems, 27(2), 025010 (19pp), 2011.
- 5. S. Theodoridis, K. Slavakis, I. Yamada, "Adaptive learning in a world of projections: a unifying framework for linear and nonlinear classification and regression tasks," IEEE Signal Process. Mag., 21(1), pp.97-123, 2011.
- 6. P. L. Combettes, I. Yamada, "Compositions and convex combinations of averaged nonexpansive operators," J. Mathematical Analysis and Applications, 425 (1), pp.55-70, 2015.
- 7. D. Kitahara, I. Yamada, "Algebraic phase unwrapping based on two-dimensional spline smoothing over triangles," IEEE Trans. Signal Process., 64(8), pp.2103-2118, 2016.
- 8. I. Yamada, "Do androids dream of Henri Poincaré with hierarchical optimization?," APSIPA 10th Anniversary Magazine, pp.121-122, 2018.


著書:工学のための関数解析(2009)/受賞:ドコモ・モバイルサイエンス賞[基礎科学部門](2005),電子情報通信学会[論文賞(5回)・業績賞(2009)・フェロー(2015)], IEEE Signal Process. Mag. Best Paper Award (2015), IEEE Fellow(2015),文科大臣表彰科学技術賞[研究部門](2016)等/その他:工学と数学の分野で IEICE Trans. Fundam.編集長(2013-2015),IEEE Trans. Signal Process.,Numer.Funct.Anal.and Optim.等,国際学術誌の Editorial Board を歴任.

Al コンピューティング アーキテクチャの研究

准教授 劉 載勲

研究分野:機械学習、コンピュータビジョン、

ディープラーニングプロセッサ、ハードウェアアクセラレータ等

深層ニューラルネット(DNN)技術の勃興とともに、 人工知能(AI)コンピューティングの分野が大きく進展しています。従来型のコンピューティングが「手続き型」であるのに対し、AI コンピューティングの分野は「構造型」であることを大きな特徴としています。その違いをアーキテクチャ(=処理方式)の革新に活かすことで、これまでよりも大幅にエネルギー効率や処理速度が高いコンピューティングシステムの実現が可能となります(図 1)。このような観点から世界中でアーキテクチャ変革の大規模競争が始まっています。

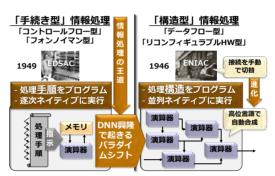


図 1. Al コンピューティング時代の 情報処理パラダイムの変革

劉研究室では、その流れを先導するために本村研究室と一体となって、科学技術創成研究院 AI コンピューティング研究ユニットを構成しています。アルゴリズム、アーキテクチャ、回路の協調性に注目した機械学習のためのソフトウェア・ハードウェア協調システムの実現を目指します。

研究テーマ

1. DNN アクセラレータの研究

DNN は高い学習能力と推論精度のため、多くの分野における応用が期待されていますが、その代償として多くの計算量を要求します。そのため、現在実用化されている DNN はクラウドサーバーがその処理を担う場合がほとんどと言えます。 DNN の膨大な計算量は結果としてネットワーク環境の安定性が保証できないドローンやロボット、車などの自立型の組込みシステムにおいてその実用化を妨げる大きな原因となっています。

我々は、組込みシステムにおける処理時間、消費電力、計算資源の制約下で DNN の実用化を達成するべく、量子化、枝刈り、蒸留などの様々な近似コンピューティングを用いた DNN の効率的な実装アルゴリズムについて研究を行うと同時に、それに基づく低電力かつ高速な DNN 処理を支援するハードウェアアーキテクチャの研究を行います。アルゴリズムとハードウェアの設計段階からシステム全体の効率的な構成を考えることによって既存研究では実現できなかった DNN に対する高い処理性能と低電力化の実現を目指します。

2. DNN の知見を活かした既存機械学習の性能向上と実用化の研究

現在 DNN を支える深層学習はその学習対象をニューラルネットワークとする場合がほとんどです。しかし、深層学習そのものは非線形変換の繰り返しによって機械学習の表現力を向上させるための学習概

念であり、その応用先をニューラルネットワークに限ったものではありません。機械学習にはニューラルネットワーク以外にも、サポートベクターマシン(SVM)、ランダムフォーレスト(RF)、ブースティング決定木(BDT)など様々な手法が存在し、少ない計算量で高い表現力を実現することが可能です。これらの機械学習手法が持つ主な問題は、その表現能力を活かすために必要な学習能力の不在と言えます。

我々は DNN のテクニックの中で小規模ネットワークの学習能力不足を補う蒸留と呼ばれる手法をSVM、RF、BDT などの非ニューラルネットワークの機械学習に適用することで、DNN では実現が困難な低計算量化を実現します。また今までの研究で蓄積した既存機械学習手法のFPGA実装方式の知見を活用(図2、3)し、機械学習アクセラレータにおける新たなブレークスルーを目指します。

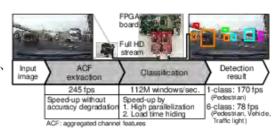


図 2. BDT による物体検出 HW

図 3. BDT による歩行者検出 HW デモ

3. ニューロモルフィックコンピューティングによる学習・推論の研究

人間の脳は情報を処理するニューロンとニューロン間を接続するシナプスで構成されています。各ニューロン間ではディジタルの 2 値信号に似た電気的スパイクの有無を用いて情報伝達が行われ、伝達されたスパイクが各ニューロンの膜電位の変化と発火を引き起こすことで情報処理が行われます。DNNで代表される人工ニューラルネットワークは人間の脳を模倣していると言われますが、実数値の積和演算を用いる点や信号の時間的ズレを用いない点で生体脳とは大きく異なり、エネルギー効率の面で人間の脳に比べて大きく劣ります。我々は生体脳の特徴をより正確に再現したニューロモルフィックコンピューティングに基づく新たな学習・推論アルゴリズムの研究とその実装方式の研究に取り組みます。

教員からのメッセージ

2019 年度 9 月まで大阪大学 情報科学研究科にて主にコンピュータービジョンを対象に機械学習とパターン認識、そしてそのためシステムアーキテクチャ設計の研究を行ってきました。2019 年度 10 月から科学技術創成研究院(すずかけ台)の AI コンピューティング研究ユニットに参加し、日本の中核研究拠点を作ることを目指して活動しています。本村研究室と劉研究室に配属される学生の指導は AI コンピューティング研究ユニットとして、本村研究室と劉研究室の区別なく、一体となって行います。AI コンピューティング研究ユニットの HP を参照してください。

http://www.artic.iir.titech.ac.jp

●関連する業績、プロジェクトなど

- 1. 基盤(B) 近似コンピューティングを活用した深層ニューラルネットワークアクセラレータの開発
- 2.8件の特許出願(https://www.j-platpat.inpit.go.jp/で「劉 載勲」「ユ ジェフン」を検索)
- 3. http://www-iseloistoosaka-uoacojp/

受賞 18年 T-SLDM Best Paper Award、16年 SISA Student Best Paper Award (指導学生)、 15年 IEEE 関西支部学生研究奨励賞、14年 画像電子学会優秀論文賞、13年 ITC-CSCC Best Paper Award、12年 スマートインフォメディアシステム研究会若手研究優秀賞

脳活動情報の解読による脳機能解明とシステム開発

准教授 吉村 奈津江

研究分野:脳活動信号処理、ブレイン・マシン・インタフェース

ホームページ: http://www.cns.pi.titech.ac.jp/

研究内容・目的

近年、脳波や機能的核磁気共鳴画像法(fMRI)など、脳を傷つけることのない非侵襲的な脳活動信号計測技術が大きく進歩しています(図1)。それに伴い、脳機能を調べるために動物ではなく人間の脳を直接計測することができるようになり、更にコンピューターの処理能力向上に伴い、大量の脳活動データから脳情報を解読できるようになりつつあります。吉村研究室では、これらの非侵襲的脳活動計測手法とコンピューターによる信号処理技術を用いて運動や言語、感情などに関する脳活動情報を解読することでそれらにまつわる脳機能を解明し、解読した情報を元に人に役立つシステムの開発を目指しています。

図1. 脳波実験(左)とfMRI実験(右)の様子

一研究テーマ

1. ブレイン・マシン・インタフェース

ブレイン・マシン・インタフェース (BMI) またはブレイン・コンピュータ・インタフェース (BCI) とは、手足を使わず頭で考えるだけで機械やコンピューターを動かすことができるシステムのことです。この研究は、事故や疾患など手足の運動が困難となった方を対象としたリハビリテーションや生活に役立つシステムはもちろんのこと、一般のユーザーに対しても便利なシステムとして近年注目されています。これまで様々な BMI/BCI が発表されている中で、吉村研究室では現在、主に"運動"、"言語"、"感情"の3つを対象にし、人間の意思を読み取ろうとしています。例えば運動に関する BMI/BCI では、一般に運動しようという意思を読み取る手法が多く発表されているのに対して、本研究室では、運動の際に脳から筋肉に伝えられた電気信号(筋電信号)を直接再現することを試みています。これが実現すれば、筋電信号を使って体の動きをアシストするような既存のロボットスーツに BMI/BCI を適用できるという利点があります(図2)。

図2. 手首のロボットスーツを実測(左)および推定(右)した筋電信号で動かした例

2. 脳情報解読による脳機能解明

人間の脳内における脳活動に伴う電気信号を捉える脳波、あるいは脳活動に伴う血流の変化を捉える fMRI を用いた研究に現在取り組んでいます。時間分解能が高い"脳波"と空間分解能が高い"fMRI"、それぞれの特色を活かし、これまで解読できなかったような詳細な情報の解読を運動や言語を対象として試みています。例えば運動に関する1つ1つの筋肉の制御を司る脳領域を特定し(図3)、その領域から計測される信号を用いて各筋肉のタイミングや強度情報を解読します。更に運動を行う際の運動指令が脳内をどのように伝達されるかを可視化できれば、一部の脳機能解明にもつながります。このような技術は運動に限らず、人間が言葉を発するしくみの解明にも応用できます。また、これらの研究で得られた成果をBMIの制御アルゴリズムに組み込むことにより、あたかも自分の身体の一部のように制御できるBMIを構築することが期待できます。

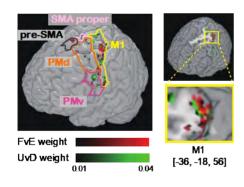
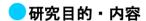


図3. 筋肉運動に寄与度の高い領域(赤)と 運動方向に寄与度の高い領域(緑)

教員からのメッセージ

脳の情報を非侵襲的にどこまで解読できるかに挑戦し、そしてその成果を人に役立つシステムとして形にしていくことにやりがいを感じる学生さんが来てくれることを期待しています。研究内容が近い小池研究室と共に研究室を運営している他、外部組織との共同研究も多いため、自ら進んで積極的に学ぶ姿勢を身につけて欲しいと思っています。脳研究は歴史が浅く現在急速に発展している領域で、世界中で日々新たな発見がされています。共に学び、発見していきましょう。

●関連する業績、プロジェクトなど


- 1 . Yoshimura N., et al., Dissociable neural representation of wrist motor coordinate frames in human motor cortices, *Neuroimage*, 97, pp. 53-61 (2014)
- 2. Yoshimura N., et al., Reconstruction of flexor and extensor muscle activities from electro- encephalography cortical currents, *Neuroimage*, 59, pp. 1324-1337 (2012)

実世界の把握・保存・拡張

准教授 渡辺 義浩

研究分野: コンピュータビジョン、拡張現実、デジタルアーカイブ、インタラクション

ホームページ: http://www.vision.ict.e.titech.ac.jp/

人間とコンピュータ、現実と仮想、現在と過去。本来ならば共存しないはずのものをテクノロジーでつなぎ、新しい実世界を再構築する。さらに先進的なテクノロジーが実世界に溶け込むグランドデザインを明らかにする。この構想の下、我々は「ビジョン(視覚)」と「スピード(速度)」を軸に、応用・原理・デバイスの設計を同時並行的に行い、最適なシステムを生み出す実践的な研究を行っています。

具体的には、実世界を瞬時に把握するビジョン技術、実世界を完全に保存するアーカイブ技術、 実世界と非現実を融合して拡張するインタラクション技術の3つのテーマを進めています。

研究テーマ

1. 知的情報処理と計測技術を融合する高速実世界センシング

秒間 1,000 回の速度で実世界情報を捉える ビジョン技術の実現に取り組みます。具体的 には、運動・変形する物体の形状・運動・質 感を人間の眼を超えるスピードと精度で捉え る技術の実現を目指します。本技術は、ロボ ティクス、自動車、ユーザインタフェース、 検査、エンターテイメントの各種分野を劇的 に変える力があると期待できます。デバイス 技術を駆使することで 1 枚の画像にいかに情 報を埋め込めるか。計測技術と情報技術の融

図 1 1000fps 形状センシング

合によっていかに瞬時に情報を復元できるか。これらの構想のもと、対象がダイナミックに変化するハードな実環境で真に動作する高速実世界センシングを構築します。

2. 実世界のダイナミックデジタルアーカイブ

大規模な天災被害を背景として、失われるリスクが再評価され、デジタルアーカイブが重要視されています。現在求められているのは、実世界の全てを、将来に再生可能なレベルで電子化するパラダイムへのシフトです。そのためには、超高速なデジタルアーカイブ技術を日常生活に実

装することが必要です。本テーマでは、高速 実世界センシングをベースに、動いているも のをそのまま止めずに電子化するというシ ンプルかつ強力な「ダイナミックデジタルア ーカイブ」の実現に着手します。具体的には、 数十年以上を要すると見積もられている世 界中の膨大な数の美術品、工芸品、書籍のデ ジタルアーカイブの作業を短縮するととも に、生き物を含む運動体もアーカイブの対象 として広げることにチャレンジします。

図 2 高速書籍電子化システム

3. 超高速プロジェクタの進化と実世界拡張

現実とはなにで、非現実との境界はどこにあるのでしょうか。現実と非現実を眼の前で融合し、新しくて自然なリアリティを作り出すことはできるのでしょうか。本テーマは、この問いの答えを見つけるための研究です。そのための鍵は光です。視覚による認識が、光/モノ/ダイナミ

クス/知覚の4者の相互作用からなると考えたとき、その根源たる光を操作すれば、人間が見る実世界を大きく変化させることができると考えられます。この構想の下、光を人間の知覚限界を超えた領域で操り、実世界を拡張する研究に取り組みます。具体的には、高速なビジョン技術によって実世界を捉え、そこに調和する非現実を高速プロジェクタによって再現する技術の実現にチャレンジします。

図 3 ダイナミックプロジェクションマッピング

教員からのメッセージ

いままで見たことのないテクノロジーを、シンプルなアイデアと、パワフルなハード・ソフトで実現し、世界を驚かせる研究をぜひ一緒にやりましょう。

●関連する業績、プロジェクトなど

- 1. 野口翔平, 溜井美帆, 山田雅宏, 渡辺義浩, 石川正俊: 自動めくり機を搭載する適応的撮像型の高速書籍電子化システム, 電子情報通信学会論文誌 D, Vol.J96-D, No.10, pp.2590-2602, 2013.
- 2. 田畑智志, 野口翔平, 渡辺義浩, 石川正俊: 3 視点拘束に基づくセグメントパターン投影型高速 3 次元計測, 計測自動制御学会論文集, Vol.52, No.3, pp.141-151, 2016.
- 3. Gaku Narita, Yoshihiro Watanabe, and Masatoshi Ishikawa: Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker, IEEE Transactions on Visualization and Computer Graphics, Vol.23, No.3, pp.1235-1248, 2017.

卒業生紹介 (教員旧所属専攻修了生を含む)

鷲澤 史歩 WASHIZAWA, Shiho

(就職先)株式会社富士通研究所 2011 年度 修士課程修了

私は人間の能力の不思議さに魅了され、大学院では聴覚 における知覚や情動の神経基盤の解明を目指す研究室を 選びました。柏野教授がNTTからの連携教授ということで、 2年間のほとんどを厚木にある NTT コミュニケーション科 学基礎研究所で過ごしました。常に世界の最先端に位置す ることを義務付けられた研究者と接することができる環

境はとても魅力的で、心理物理実験を実施するための手続 きや実験結果の分析という具体的な研究の進め方のみな らず、研究に対する姿勢など多くのことを学びました。企 業の研究所に職を得た今、これらの多くが、今の自分の推 進力になっていると感じます。修士課程の2年間で3度の 学会発表を行いましたが、特に最後の年に参加した国際学 会がとても良い経験になりました。主張を簡潔に効果的に 表現することが研究者に常に求められるスキルであるこ とを、実感させてくれたからです。大学院は研究者として の進む方向を見極めるためにとても重要です。自分の強み と弱みを知り、それを社会に生かす術を学び取るのは私た ち自身です。

永沢 槙子 NAGASAWA, Makiko

就職先 NHK

2012 年度 修士課程修了

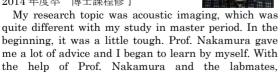
修士課程では、研究、留学、課外活動と充実した学生生 活を送ることができました。幅広い分野にわたる講義や国 際学会を含めた学会での研究発表などを通して、専門分野 とその周辺領域の知識の習得に加えて、問題を設定してそ の解決に取り組むプロセスの経験や自分の考えをアウト プットする訓練を積むことができたと思います。また私は

修士1年の冬から1年間、大学の制度を利用してオースト ラリアのメルボルン大学へ交換留学に行きました。修士課 程で留学することで、自分の軸を持った上で海外の文化に 触れることができ、学問の面でもそれ以外の面でも、多面 的な視野で物事を見られるようになったと感じています。 他にも課外活動として、Robogals Tokyo という学生団体 に所属していました。他の専攻・学年の学生や地域・企業 の方とのつながりができ、様々な刺激が得られる機会とな りました。大学院生活を楽しみ、その中で成長していきた いという方にとって、それを実現できる環境が整っている と思います。

涌波 光喜 WAKUNAMI, Kouki

就職先 独立行政法人 情報通信研究機構 2012 年度 博士課程修了

私の5年間の研究生活は"楽しかった"の一言につきま す。スターウォーズに出てくるような立体像表示技術を自 分の手で実現したいと思い、電子ホログラフィを研究する ために本専攻の山口教授の門を叩きました。入学後は先生 のご指導のもと、スムーズに研究をスタートさせることが でき、それからは結果を出しては国内外の学会で発表した


り学術雑誌への論文を執筆したりと忙しくも非常に充実 した5年間でした。博士課程在学時には米国の大学に留学 することもでき、またこれまでの研究成果が評価され、日 本光学会より奨励賞を頂くことも出来ました。現在も外部 の研究所で引き続き電子ホログラフィの実現に向けた研 究に取り組んでいます。研究に対する熱意があれば、本専 攻にはそれを強力にサポートしてくださる著名な先生方 が揃っています。すずかけ台から世界へ自分の研究を発信 する環境も整っています。最先端の研究に没頭したい、次 世代の技術を自分の手で創り出したいという方はぜひ本 専攻への入学を考えてみて下さい。

新華 GUO. Xinhua

Wuhan University of Technology, China

2014 年度卒 博士課程修了

everything was on the right track soon. I spent three

years in this lab and the days were busy and meaningful. I learnt a lot on how to do research on the lab's research seminar and got very well with my labmates, they helped me a lot. Also, I got the chance to present my research in domestic and international conferences and received my PHD degree smoothly. Besides study, we also had wonderful lab activities, such as sports, camp and lab travel, which helped us to know each other more and gave us a lot of fun.

As an international student, I feel so lucky to be able to study in Nakamura-Tabaru Lab and will lead the students here in my current career following Prof. Nakamura's spirit: caring for students, being responsible for their study and letting students grow by themselves

博多屋 涼 HAKATAYA. Rvo

就職先株式会社野村総合研究所 2015 年度卒 修士課程修了

私は学部時代から3年間、雑音が混在する音声から聴き たい音声のみを取り出す「音源分離」の研究を行いました。 音声の研究を選んだのは「音楽」や「声優」が好きだから という安直な理由だったため、勉強と発見の日々でした。 学生とはいえ年齢的には既に社会人ですから、自分の研究 は自分の手で進めなければいけません。計画を立て、

実験し、考察を行い、修正する。この PDCA サイクルを 繰り返す中で、先生方の温かいご指導もあり少しずつです が自らの成長を感じました。

ところで、大学院生の本分はもちろん研究です。この3 年間、成果を出すため自らの研究に全力を注ぎました。し かし同時に、私は修了まで塾講師のアルバイトを続けまし た。また、趣味のライブ鑑賞にも月に3、4回は足を運び ました。これらの活動で得た経験も私にとっては研究生活 で得たものと同じくらい大切です。繰り返しますが大学院 生は既に社会人としての一歩を踏み出しています。限られ た時間をどのように使うのか。自らの責任でよく考え、悔 いのない大学院生活を過ごしてください。

森谷 崇史 MORIYA, Takafumi

就職先日本電信電話株式会社 (NTT 研究所)

2015 年度 修士課程修了

私はスマートフォンの音声検索システムやテレビのリ アルタイムにおける字幕放送をみて、「どのように機械が 人の話す言葉を理解し、検索・字幕化しているのだろう?」 と思ったのが研究をしたいと思うようになるきっかけで した。私が所属した篠崎研究室ではこれらの技術の主要素 である音声認識において、雑音下で目標となる音声のみを

抽出する音源分離、入力音声がどんな文字かを推測する音 響モデル、単語の並びを推測する言語モデルについての研 究を行っています。私自身は高精度な認識処理を実現する ために音響モデルのパラメタを人手によらず自動で最適 化を行うための研究をしていました。この研究に関して修 士課程では5度の発表を行いましたが、なかでも国際会議 に参加したことは様々な面で今後研究者として何が必要 かを考えさせられ非常に良い経験となりました。他大学か ら来て音声工学の知識がなかった私がここまで成果を出 せたのも自分の熱意に終始応えていただいた先生、共同研 究者の皆様及び研究室メンバーの強力なサポートがあっ たからこそだと強く感じています。

山田 健斗 YAMADA, Kento

シスコシステムズ合同会社 (Cisco Systems G.K.)

2015 年度 修士課程修了

私は大学院から東京工業大学へ進学したのですが、東工 大の学びの環境と学生の意識の高さには驚かされました。 在籍した通信情報工学専攻の植松・松本研究室では自分主 体で研究を進めていく文化があり、研究のテーマを設定し 研究活動を行うことで自分で考える力を身につけること ができます。私は量子暗号を研究対象として設定したので

すが、量子力学と情報理論の両方の基礎知識が必要とされ この分野の研究はハードなものでした。しかし先生方の熱 心なご指導のおかげで一定の成果を上げることができ、私 の大学院での研究活動は充実したものとなりました。学内 での活動以外にもインターンシップなどにも参加し、授業 で学んだことを実際にアウトプットできる環境に身を置 くことで自分の知識・技術のレベルを向上させることを意 識し活動できました。私がこのように行動できたのも、東 工大の友人達に負けられないという良質な対抗意識の賜 物であると感じています。自分の好きな分野を学び、知 識・技術を磨いていきたいという意欲のある方は東工大の 大学院で充実した生活を送ってもらいたいと思います。

佐宗 馨 SASO, Kaoru

2018 年度 修士課程修了

私は計算機を実現する命令セットアーキテクチャへの興 味から、原研究室にて Internet of Things (IoT)社会に適応 できる小型で省エネルギーな計算機の研究を行いました。 研究に取り組む以前はものを作るための技術に目が向き がちでしたが、どのようなものが求められているか、また それをいかにアピールするかという観点も同じくらい重 要だと日々感じ、これを研究活動の中で考えるよう意識し てきました。3年間にわたり先生方に熱心にご指導いただ き、系の構想発表会で優秀賞を頂き、2度の国際会議で成 果を発表することができ貴重な経験を積むことができま した。

研究活動以外にも研究室に所属する多くの外国人学生 や交換留学生との交流を通じて国際的な感覚を養い、また 趣味の同人ゲーム制作では研究で得た知識を基に描画技 術を高めつつ今までにないジャンルにも挑戦することで、 より多くの人が楽しめるゲームを制作でき販売にまでこ ぎつけました。

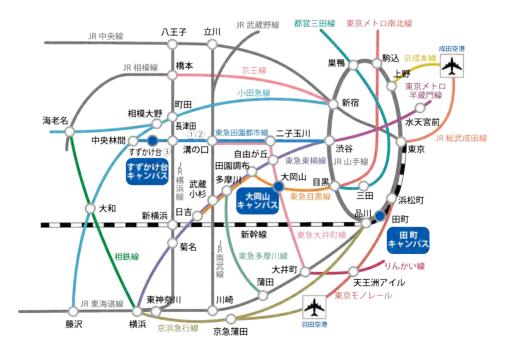
大学院では研究活動はもちろん自分自身の興味のある ことに力を注ぐことのできる環境が整っているため、様々 な経験を積み充実した生活を送ってください。

●大学院修了後の進路

多くの修士課程修了者が電気電子関係または情報通信関連企業へ進んでいます。それ以外にも、機械・ 自動車関連、化学・材料関連から金融・コンサルティングまで幅広い分野において卒業生が活躍してい ます。また博士後期課程修了者は、国内外の大学や民間の研究機関などにおいて活発な活動を展開して います。

平成30年度修士課程修了者の進路:

ACCESS、Fringe81、Hamee、IBM、KDDI、NHK、NTT 研究所、NTT コミュニケーションズ、NTT データ、NTT 東日本、SEGA ホールディングス、アカツキ、アクセンチュア、アマゾンウェブサービス ジャパン、エリクソンジャパン、オープンエイト、オリンパス、キヤノン、コーエーテクモゲームス、 シャープ、スクウェア・エニックス、セコムトラストシステムズ、総務省、ソニー、ソフトバンク、デ ジタルアドバタイジングコンソーシアム、東芝メモリ、トヨタ自動車、日本電気 (NEC)、日本電産、日 本ユニシス、野村総合研究所、日立製作所、フアーウェイジャパン、富士通、富士通アプリケーション ズ、三井住友銀行、三井物産、三菱電機、モルフォ、ヤフー、楽天、リクルート、リコー


キャンパスへのアクセス

大岡山キャンパス

東京急行大井町線・目黒線(大岡山駅下車徒歩1分) すずかけ台キャンパス 東京急行田園都市線(すずかけ台駅下車徒歩5分) JR 山手線·京浜東北線(田町駅下車徒歩2分)

- ① 松風留学生会館
- 梅が丘留学生会館
- 3 Tokyo Tech Nagatsuta House

●メモ欄	

ちがう未来を、見つめていく

●メモ欄	

ちがう未来を、見つめていく

2019年度版 第2版 情報通信コースパンフレット 東京工業大学工学院情報通信系 発行 2019年11月11日

