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Abstract

Theoretical studies usually assume that all agents are self-interested. On the
other hand, we consider that there are some partially honest agents in the sense of
Dutta and Sen[8]. If all agents are self-interested, Maskin monotonicity and no veto
power are together sufficient for double implementation in Nash equilibria and un-
dominated Nash equilibria (Jackson et al.[16], Tatamitani[39], and Yamato [42][43]).
We show that if at least one agent is partially honest, no veto power is sufficient for
double implementation with partially honest agents. Therefore, we no longer need
Maskin monotonicity as a necessary condition of double implementability. More-
over, we show that if at least two agents are partially honest, unanimity is sufficient
for double implementation with partially honest agents.

JEL Classification: C72, D71, D78
Key words: Partial honesty, double implementation, Unanimity, No veto power,

Social choice correspondence

1 Introduction

The theory of mechanism design aims to identify a mechanism achieving a socially goal
across a domain of agents’ preferences. Theoretical studies usually assume that all agents
are self-interested: an agent is self-interested if she only cares about the outcome(s)
obtained from the mechanism.

On the other hand, experimental studies observe that some agents have intrinsic pref-
erences for honesty. A bunch of studies discuss the issue of implementation when agents
have intrinsic preferences for honesty.1 Dutta and Sen [8] construct a mechanism in which
each agent reports a preference profile and an outcome. Under their mechanism, Dutta
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1See for example, Diss et al. [3], Doghmi [4], Doghmi and Ziad [5] [6], Dutta and Sen [8], Hagiwara et
al.[11], Kartik et al. [19], Kimya [21], Korpela [22], Lombardi and Yoshihara [25] [26] [27] [28], Matsushima
[29] [30], Mukherjee and Muto [32], Núñes and Laslier[33], Ortner [34], and Saporiti [37].
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and Sen [8] assume that at least one agent is partially honest: an agent is partially hon-
est whenever, if the outcomes obtained from the mechanism are indifferent, she prefers
reporting the true preference profile; otherwise, she prefers reporting a message inducing
more preferred outcome. They prove that if there are at least three agents and at least
one agent is partially honest, then every social choice correspondence (SCC) satisfying no
veto power can be implemented in Nash equilibria with partially honest agents by their
mechanism.2 Also, Kimya [21] establishes that if there are at least three agents and all
agents are partially honest, then every SCC satisfying unanimity can be implemented in
Nash equilibria with partially honest agents by Dutta and Sen’s mechanism. He mentions
that his result is still valid if at least two agents are partially honest.

However, for Dutta and Sen’s mechanism, the set of undominated Nash equilibrium
outcomes may be strictly smaller than the set of Nash equilibrium outcomes.3 Thus, Dutta
and Sen’s mechanism may not implement an SCC with partially honest agents if agents
do not use weakly dominated strategies. Then, is it sufficient to design a mechanism
that implements an SCC in undominated Nash equilibria with partially honest agents?
Our answer is negative because laboratory evidence casts doubt on the assumption that
agents adopt dominant strategies. In pivotal mechanism experiments in which for each
agent, telling her true value is a dominant strategy, Attiyeh et al. [1] and Kawagoe and
Mori [20] observed that less than half of subjects adopted dominant strategies. Moreover,
in second price auction experiments in which for each agent, bidding her true value is a
dominant strategy, Kagel et al. [18], Kagel and Levin [17], and Harstad [12] observed
that most bids did not reveal true values. It was not obvious whether or not each agent
adopted dominant strategies. Thus, it is desirable to construct mechanisms that are
applicable not only when agents use dominant strategies but also when they do not. As
Cason et al. [2] point out, on the other hand, the high rate of the observed non-dominant
strategy outcomes were Nash equilibria in their experiments. Therefore, although subjects
frequently played Nash equilibria, there was no guarantee that they did not use weakly
dominated strategies. Then, we are concerned with the design of a mechanism that doubly
implements an SCC in Nash equilibria and undominated Nash equilibria with partially
honest agents.

Previous studies show that if there are at least three agents and all agents are self-
interested, Maskin monotonicity and no veto power are together sufficient for double
implementation (Jackson et al.[16], Tatamitani[39], and Yamato [42][43]). On the other
hand, we consider that there are some partially honest agents in the sense of Dutta and
Sen [8]. We show that if there are at least three agents and at least one agent is partially
honest in the sense of Dutta and Sen [8], no veto power is still sufficient for double
implementation with partially honest agents (Theorem 2). Therefore, we no longer need
Maskin monotonicity as a necessary condition of double implementability. Moreover, we
show that if there are at least three agents and at least two agents are partially honest
in the sense of Dutta and Sen [8], unanimity is still sufficient for double implementation

2Lombardi and Yoshihara [26] provide a characterization of implementation in Nash equilibria with
partially honest agents if there are at least three agents and at least one agent is partially honest.

3Yamato[43] provides an example that in a mechanism used by Maskin[31], the set of undominated
Nash equilibrium outcomes may be strictly smaller than the set of Nash equilibrium outcomes. Also, we
can easily show that, in Dutta and Sen’s mechanism, the set of undominated Nash equilibrium outcomes
with partially honest agents may be strictly smaller than the set of Nash equilibrium outcomes with
partially honest agents even if two agents are partially honest. See Yamato[43] and Example 4.
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with partially honest agents (Theorem 3). Hence, more social choice correspondences can
be doubly implemented with partially honest agents if at least two agents are partially
honest since unanimity is weaker than no veto power. As described above, we show that
the results of Dutta and Sen [8] and Kimya [21] are still valid for double implementation
with partially honest agents.

To show the practical value of our main results, we examine the implementability in
problems of allocating an infinitely divisible resource, coalitional games, general problems
of one-to-one matching, and voting games. Since all SCCs considered here violate Maskin
monotonicity, the SCCs cannot be doubly implemented in the standard setting. But the
SCCs can be doubly implemented with partially honest agents.

This paper is organized as follows. Section 2 presents the theoretical framework and
outlines the basic model. Section 3 includes assumptions on partially honest agents.
Section 4 reports our main results about double implementation with partially honest
agents. Section 5 discusses implications. Section 6 provides concluding remarks. Appendix
includes the proof of Theorem 2 and Theorem 3.

2 Notation

Let A be the arbitrary set of outcomes, and N = {1, ..., n} be the set of agents, with
generic element i. Let Ri be a preference ordering for agent i ∈ N over A and ℜi be
the set of all preference orderings for agent i ∈ N . Let Pi and Ii be the asymmetric and
symmetric components of Ri ∈ ℜi, respectively. Let R = (R1, ..., Rn) be a preference
profile and ℜ = ×i∈Nℜi be the set of all preference profiles. Let D = ×i∈NDi ⊆ ℜ where
Di ⊆ ℜi for each i ∈ N be a domain.

A social choice correspondence (SCC) is a mapping F : D ↠ A that specifies a non-
empty subset F (R) ⊆ A for each R ∈ D. Given an SCC F , an outcome a ∈ A is F -optimal
at R ∈ D if a ∈ F (R).

A mechanism Γ consists of a pair (M, g) where M = ×i∈NMi, Mi is the mes-
sage (or strategy) space of agent i ∈ N , and g : M −→ A is the outcome function
mapping each message profile m ∈ M into an outcome g(m) ∈ A. For each i ∈ N
and each m ∈ M, let m−i ∈ M−i = ×j ̸=iMj be the message profile except agent
i ∈ N . That is, m−i = (m1, ...,mi−1,mi+1, ...,mn). The message profile m ∈ M is
also written as (mi,m−i). Given m ∈ M and m′

i ∈ Mi, (m
′
i,m−i) is the message profile

(m1, ...,mi−1,m
′
i,mi+1, ...,mn) obtained after the replacement of mi ∈ Mi by m′

i ∈ Mi.

3 Assumptions on Partially Honest Agents

The literature on mechanism design usually assumes that each agent only cares about the
outcome(s) obtained from the mechanism. However, some recent studies assume that at
least some agents may have intrinsic preferences for honesty. Dutta and Sen [8] construct
a mechanism in which each agent reports a preference profile and an outcome. Under
their mechanism, Dutta and Sen [8] assume that at least one agent is partially honest: an
agent is partially honest whenever, if the outcomes obtained from the mechanism are in-
different, she prefers reporting the true preference profile; otherwise, she prefers reporting
a message inducing more preferred outcome. Lombardi and Yoshihara [26] extend Dutta
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and Sen’s notion of partially honesty by introducing a truth-telling correspondence for
any mechanism. We follow Lombardi and Yoshihara [26].

Let an SCC F be given. For each i ∈ N and each mechanism Γ, a truth-telling
correspondence T Γ

i is a mapping T Γ
i : D ↠ Mi that specifies a non-empty set of truth-

telling messages T Γ
i (R) ⊆ Mi for each R ∈ D. Given a mechanism Γ, a truth-telling

correspondence T Γ
i , and R ∈ D, we say that agent i ∈ N behaves truthfully at m ∈ M if

and only if mi ∈ T Γ
i (R).

We focus on following mechanisms and truth-telling correspondences.

Example 1. In this paper, we focus on mechanisms in which each agent reports a
preference profile and a supplemental message. For each i ∈ N , the message space of
agent i ∈ N consists of Mi = D× Si, where Si denotes the set of supplemental messages.

For each i ∈ N , mi = (Ri, si) is a truth-telling message if and only if Ri = R. Then,
a truth-telling correspondence is defined by T Γ

i (R) = {R} × Si for each i ∈ N and each
R ∈ D.

For each i ∈ N , each R ∈ D, each mechanism Γ, and each truth-telling correspondence
T Γ
i , agent i’s preference ordering ≿R

i over M at R ∈ D is defined below.4

Definition 1. An agent i ∈ N is partially honest if for eachR ∈ D and each (mi,m−i), (m
′
i,m−i) ∈

M , the following properties hold:
(1) If mi ∈ T Γ

i (R) and m′
i /∈ T Γ

i (R) and if g(mi,m−i)Rig(m
′
i,m−i), then (mi,m−i) ≻R

i

(m′
i,m−i).
(2) In all other cases, (mi,m−i) ≿R

i (m′
i,m−i) if and only if g(mi,m−i)Rig(m

′
i,m−i).

The first part of the definition captures the agent’s limited preference for honesty -
she strictly prefers (mi,m−i) to (m′

i,m−i) when she reports truthfully in (mi,m−i) but
not in (m′

i,m−i) if g(mi,m−i) is at least as good as g(m′
i,m−i).

5

Definition 2. An agent i ∈ N is self-interested if for eachR ∈ D and each (mi,m−i), (m
′
i,m−i) ∈

M ,
(mi,m−i) ≿R

i (m′
i,m−i) if and only if g(mi,m−i)Rig(m

′
i,m−i).

Since self-interested agents care only about the outcomes obtained from the mecha-
nism, their preference orderings over M are straightforward to define.

The traditional literature on mechanism design usually makes the following assump-
tion:

4Let ≻R
i and ∼R

i be the asymmetric and symmetric components of ≿R
i , respectively.

5There are other definitions of preferences for honesty. For instance, Matsushima [30] investigates a
mechanism in which each agent reports an outcome many times. Under his mechanism, Matsushima [30]
assumes that at least one agent is white lie averse: agent is white lie averse whenever, as long as her
lie does not influence the outcome choice and the monetary transfer to her, she likes telling a socially
desirable outcome as many times as possible. Moreover, Mukherjee and Muto [32] design a mechanism in
which each agent reports her own preference ordering many times. Under their mechanism, Mukherjee
and Muto [32] assume that all agents are partially honest: an agent is partially honest whenever, if the
outcomes obtained from the mechanism are indifferent, she prefers reporting her own true preference
ordering as many times as possible.
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Assumption 0. There is no partially honest agent in N . That is, all agents are self-
interested.

In contract to the traditional literature, Dutta and Sen [8] and Lombardi and Yoshihara
[23] [26] study the following assumption:

Assumption 1. There exists at least one partially honest agent in N . The mechanism
designer knows that there exists at least one partially honest agent in N , though she does
not know their identities or their exact number.

Moreover, Korpela [22] and Saporiti [37] introduce the following assumption:

Assumption n. There are n partially honest agents in N . That is, all agents are
partially honest.

Hagiwara et al.[11] consider the following assumption:

Assumption 2. There are at least two partially honest agents in N . The mechanism
designer knows that there are at least two partially honest agents in N , though she does
not know their identities or their exact number.

Clearly, Assumption 2 is stronger than Assumption 1, but significantly weaker than
Assumption n.

We introduce our formal definitions of double implementation with partially honest
agents under Assumption k ∈ {1, 2, n}. For each k ∈ {1, 2, n}, let Hk = {S ⊆ N
| |S| ≥ k}. For each R ∈ D and each H ∈ Hk, let ≿R,H= (≿R,H

1 , ...,≿R,H
n ) be the

preference profile over M such that for each i ∈ H, ≿R,H
i is defined by Definition 1 and

for each i ∈ N\H, ≿R,H
i is defined by Definition 2.

Let (Γ, (T Γ
i )i∈N ,≿R,H) be a game with partially honest agents induced by a mech-

anism Γ, a truth-telling correspondence T Γ
i for each i ∈ N , and a preference profile

≿R,H . A message profile m ∈ M is a Nash equilibrium with partially honest agents in
(Γ, (T Γ

i )i∈N ,≿R,H) if for each i ∈ N and each m′
i ∈ Mi, (mi,m−i) ≿R,H

i (m′
i,m−i). The

set of Nash equilibria with partially honest agents in (Γ, (T Γ
i )i∈N ,≿R,H) is denoted by

NE(Γ, (T Γ
i )i∈N ,≿R,H). Also, the set of Nash equilibrium outcomes with partially hon-

est agents in (Γ, (T Γ
i )i∈N ,≿R,H) is denoted by NEA(Γ, (T

Γ
i )i∈N ,≿R,H) = {a ∈ A|∃m ∈

NE(Γ, (T Γ
i )i∈N ,≿R,H) with g(m) = a}.

A message mi ∈ Mi is weakly dominated by m̃i ∈ Mi at ≿R,H
i if (m̃i,m−i) ≿R,H

i

(mi,m−i) for each m−i ∈ M−i and (m̃i,m−i) ≻R,H
i (mi,m−i) for some m−i ∈ M−i. A

message mi ∈ Mi is undominated at ≿R,H
i if it is not weakly dominated by any message in

Mi at ≿R,H
i . A message profile m ∈ M is an undominated Nash equilibrium with partially

honest agents in (Γ, (T Γ
i )i∈N ,≿R,H) if for each i ∈ N ,mi ∈ Mi is undominated at≿R,H

i and
m ∈ M is a Nash equilibrium with partially honest agents in (Γ, (T Γ

i )i∈N ,≿R,H). The set of
undominated Nash equilibria with partially honest agents in (Γ, (T Γ

i )i∈N ,≿R,H) is denoted
by UNE(Γ, (T Γ

i )i∈N ,≿R,H). Note that UNE(Γ, (T Γ
i )i∈N ,≿R,H) ⊆ NE(Γ, (T Γ

i )i∈N ,≿R,H).
Also, the set of undominated Nash equilibrium outcomes with partially honest agents in
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(Γ, (T Γ
i )i∈N ,≿R,H) is denoted by UNEA(Γ, (T

Γ
i )i∈N ,≿R,H) = {a ∈ A|∃m ∈ UNE(Γ, (T Γ

i )i∈N ,≿R,H

) with g(m) = a}.
Under Assumption 1 or Assumption 2, the mechanism designer knows that there

are partially honest agents in N but does not know who these agents are. Hence, the
mechanism designer needs to cover all feasible cases of partially honest agents to her
knowledge. To enable the mechanism designer to implement an SCC with partially honest
agents, we amend the standard definition of implementation as follows:

Definition 3. Under Assumption k ∈ {1, 2, n}, a mechanism Γ partially honest doubly
implements an SCC F in Nash equilibria and undominated Nash equilibria if for each
R ∈ D and each H ∈ Hk, F (R) = NEA(Γ, (T

Γ
i )i∈N ,≿R,H) = UNEA(Γ, (T

Γ
i )i∈N ,≿R,H).

4 Main Results

First, we review a previous result on double implementation under Assumption 0. Maskin
[31] introduces the following properties of SCC’s.

For each i ∈ N , each Ri ∈ Di, and each a ∈ A, let L(Ri, a) = {b ∈ A | aRib} be the
lower contour set of a ∈ A for i ∈ N at Ri ∈ Di.

An SCC F satisfies Maskin monotonicity if for each R, R′ ∈ D and each a ∈ F (R),
if for each i ∈ N , L(Ri, a) ⊆ L(R′

i, a), then a ∈ F (R′). Maskin monotonicity requires
that if an outcome a ∈ A is F -optimal at some preference profile and the profile is then
altered so that, in each agent’s ordering, the outcome a does not fall below any outcome
that was not below before, then the outcome a remains F -optimal at the new profile.

Definition 4. An SCC F satisfies no veto power if for each i ∈ N , each R ∈ D, and each
a ∈ A if for each j ̸= i, L(Rj, a) = A, then a ∈ F (R).

No veto power says that if an outcome a ∈ A is at the top of (n−1) agents’ preference
orderings, then the last agent cannot prevent the outcome a from being F -optimal at the
preference profile.

Previous studies show that Maskin monotonicity and no veto power are together suf-
ficient for double implementation under Assumption 0.

Theorem 1. (Jackson et al.[16], Tatamitani[39], and Yamato [42][43]) Let n ≥ 3 and
suppose Assumption 0 holds. Then, every SCC F satisfying Maskin monotonicity and no
veto power can be doubly implemented.

We show that no veto power is sufficient for partially honest double implementation
under Assumption 1.

Theorem 2. Let n ≥ 3 and suppose Assumption 1 holds. Then, every SCC F satisfying
no veto power can be partially honest doubly implemented.

The proof of Theorem 2 is given in Appendix
The following property is important for partially honest double implementation under

Assumption 2.
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Definition 5. An SCC F satisfies unanimity if for each R ∈ D and each a ∈ A, if for
each i ∈ N , L(Ri, a) = A, then a ∈ F (R).

Unanimity says that if an outcome a ∈ A is at the top of all agents’ preference
orderings, then the outcome a is F -optimal at the preference profile.

Our main result is that unanimity is sufficient for partially honest double implemen-
tation under Assumption 2.

Theorem 3. Let n ≥ 3 and suppose Assumption 2 holds. Then, every SCC F satisfying
unanimity can be partially honest doubly implemented.

The proof of Theorem 3 is given in Appendix..

Remark. The strong Pareto correspondence SP satisfies unanimity but violates Maskin
monotonicity and no veto power for some domain:

Strong Pareto correspondence (SP): SP(R) = {a ∈ A|∄b ∈ A such that for each
i ∈ N , bRia, and for some i ∈ N, bPia}

The following example represents that the strong Pareto correspondence SP violates
Maskin monotonicity and no veto power.

Example 2. Consider the following example. There are three agents, N = {1, 2, 3}, two
outcomes, A = {a, b}, and two possible preference profiles, D = {R,R′}. Preferences are
given by :

R1 R2 R3

a, b a, b a, b
R′

1 R′
2 R′

3

a, b a, b a
b

The strong Pareto correspondence SP evaluated at these two states is SP(R) = {a, b},
and SP(R′) = {a}. However, Maskin monotonicity and no veto power imply that we
must have b ∈SP(R′).■

Previous studies provide a necessary condition for double implementation under As-
sumption 0 (Maskin [31] and Yamato [43]).

Theorem 4. (Maskin [31], Yamato [43]) Let n ≥ 3 and suppose Assumption 0 holds. If
an SCC F does not satisfy Maskin monotonicity, it cannot be doubly implemented.

By Theorem 4, the strong Pareto correspondence SP cannot be doubly implemented
under Assumption 0. On the other hand, since the strong Pareto correspondence SP
satisfies unanimity, the strong Pareto correspondence SP can be partially honest doubly
implemented under Assumption 2.■

We summarize sufficient conditions for partially honest double implementation under
Assumption k ∈ {0, 1, 2} in Figure 1 below.
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Assumption 0 → Assumption 1 → Assumption 2
Nash Maskin [31] Dutta and Sen [8] Kimya [21]

Implementation Maskin monotonicity no veto power unanimity
no veto power

↓
Jackson et al.[16] This paper This paper

Double Tatamitani[39] (Theorem 2) (Theorem 3)
Implementation Yamato [42][43]

Maskin monotonicity no veto power unanimity
no veto power

Figure 1

Following Dutta and Sen [8], we consider a truth-telling with regard to a preference
profile. On the other hand, motivated by some experiments (Gneezy[10], Hurkens and
Kartik[13]), Hagiwara et al.[11] consider a truth-telling with regard to an outcome.

Example 3. In contrast to Example 1, Hagiwara et al.[11] construct a mechanism ΓO =
(M, g), which is called an outcome mechanism by them. For each i ∈ N , the message
space of agent i ∈ N consists of Mi = A×N . Denote an element of Mi by mi = (ai, ki).
The outcome function g : M −→ A is defined as follows:

Rule 1 : If there is i ∈ N such that for each j ̸= i, mj = (a, kj), then g(m) = a.
Rule 2 : In all other cases, g(m) = ai

∗
, where i∗ = (Σi∈Nk

i)(mod n) + 1.

They define a truth-telling correspondence by T ΓO

i (R) = F (R)× N for each i ∈ N
and each R ∈ D.■

We give an example to show that in their outcome mechanism, even if two agents are
partially honest, there may be Nash equilibrium outcomes with partially honest agents
in which agents use weakly dominated messages, and hence the set of undominated Nash
equilibrium outcomes with partially honest agents may be a proper subset of the set
of Nash equilibrium outcomes with partially honest agents. On the other hand, if we
suppose Assumption n holds, we succeed in strategy space reduction with respect to
double implementation.6 Although Assumption n is stronger, their outcome mechanism
solves some problems with respect to Maskin’s canonical mechanisms, self-relevancy and
the assumption of complete information.7

6For discussions of strategy space reduction for Nash implementation, see Saijo[35] and Lombardi and
Yoshihara[24].

7Hurwicz[14] imposes self-relevancy on a mechanism: each agent must emit information related only
to her own characteristics. In the general environment, a typical self-relevant mechanism is a direct rev-
elation mechanism where each agent announces her own preference only. On the other hand, Tatamitani
[40][41] additionally requires each agent to announce an outcome, which could be regarded as self-relevant
information in the general environment because preference revelation alone is too restrictive (see Dasgupta
et al. [7]). Saijo et al.[36] regard quantity and price-quantity mechanisms as self-relevant mechanism in
the exchange economics.
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Example 4.8 Consider the following example. There are three agents, N = {1, 2, 3}
such that agent 1 is only self-interested, i.e., H = {2, 3}, three outcomes, A = {a, b.c},
and two admissible preference profiles, D = {R,R′}. Preferences are given by :

R1 R2 R3

a c c
b b b
c a a

R′
1 R′

2 R′
3

a c c
b a b
c b a

Define the SCC F as follows: F (R) = {c}, and F (R′) = {a}. Note that the SCC
F satisfies unanimity, so that the SCC can be partially honest implemented in Nash
equilibria by their outcome mechanism under Assumption 2.

There exists a unique Nash equilibrium outcome with partially honest agents in
(ΓO, (T ΓO

i )i∈N ,≿R,H), c. If mi = (c, ki) for each i ∈ N , m ∈ NE(ΓO, (T ΓO

i )i∈N ,≿R,H)
and it is easy to see that the message m2 and m3 is not weakly dominated by any message
in M2 and M3 at ≿R,H

2 and ≿R,H
3 , respectively. On the other hand, it is easy to see that

m1 = (c, k1) is weakly dominated by m′
1 = (a, k1) at ≿R,H

1 .
On the other hand, suppose agent 1 is partially honest, and if m2 = m3, then

(m1,m−1) ≻R,H
1 (m′

1,m−1). In addition, it is easy to see that the message m1 = (c, k1) is
not weakly dominated by any message in M1 at ≿R,H

1 . That is, if we suppose Assumption
n holds, F (R) = NEA(Γ

O, (T ΓO

i )i∈N ,≿R,H) = UNEA(Γ
O, (T ΓO

i )i∈N ,≿R,H) = {c}.■

5 Implications

In this section, we derive a number of corollaries in problems of allocating an infinitely
divisible resource, coalitional games, general problems of one-to-one matching, and voting
games. Since all SCCs considered here violate Maskin monotonicity, the SCCs cannot be
doubly implemented under Assumption 0 by Theorem 4. But the SCCs can be doubly
implemented with partially honest agents.

5.1 Problems of Allocating an Infinitely Divisible Resource

In this subsection, we consider a problem of allocating an infinitely divisible resource
among a group of agents. A problem of allocating an infinitely divisible resource is a
triple (N,A(M), R). The first component N = {1, ..., n} with n ≥ 3 is a set of agents
among whom an amount M ∈ R++ of an infinitely divisible resource has to be allocated.
Note that we do not assume that the resource can be disposed of. Given M ∈ R++, an
allocation for M is a list a ∈ RN

+ such that Σi∈Nai = M . The second component A(M) =
{a ∈ RN

+ |Σi∈Nai = M} is the set of allocations. The third component R = (R1, ..., Rn)
where Ri is a preference ordering for agent i ∈ N over A is a preference profile. Let
Pi and Ii be the asymmetric and symmetric components of Ri, respectively. We assume
that preferences are continuous; that is, for each ai ∈ R+, the sets {bi ∈ R+|biRiai} and
{bi ∈ R+|aiRibi} are closed. Let ℜ̃i be the set of all continuous preference orderings for

8Yamato[43] uses this example in which for Maskin’s mechanism, the set of undominated Nash equi-
librium outcomes may be strictly smaller than the set of Nash equilibrium outcomes.
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agent i ∈ N . Let ℜ̃ = ×i∈N ℜ̃i. Let D = ×i∈NDi ⊆ ℜ̃ where Di ⊆ ℜ̃i for each i ∈ N be a
domain.

We consider a situation in which the mechanism designer does not know agents’ pref-
erences. This situation is modeled by the triple (N,A,D), which we refer to as a division
problem environment of an infinitely divisible resource.

In addition to a domain D = ℜ̃, we focus on domains satisfying the following restric-
tions:

Single-plateaued preferences. Given (Ri,M) ∈ ℜ̃i × R++, let T (Ri,M) = {a ∈
[0,M ]|aRib for each b ∈ [0,M ]} be the top set for (Ri,M). Note that since Ri is contin-
uous, T (Ri,M) = ϕ for each (Ri,M) ∈ ℜ̃i × R++. Let T̄(Ri,M) = max T (Ri,M) and
T
¯
(Ri,M) = min T (Ri,M). A preference ordering Ri ∈ ℜ̃i is single-plateaued on [0,M ]

if there is an interval [T
¯
(Ri,M), T̄ (Ri,M)] ⊆ [0,M ] such that for each a, b ∈ [0,M ], if

b < a ≤T
¯
(Ri,M) or T̄(Ri,M) ≤ a < b, then aPib; if T

¯
(Ri,M) ≤ a ≤ b ≤ T̄ (Ri,M),

then aIib. Note that T (Ri,M) = [T
¯
(Ri,M), T̄ (Ri,M)]. Let DSPL

i be the set of single-
plateaued preference orderings on [0,M ] for agent i ∈ N and DSPL = ×i∈NDSPL

i be the
single-plateaued domain on [0,M ].

Single-dipped preferences. A preference ordering Ri ∈ ℜ̃i is single-dipped on [0,M ]
if there is a point d(Ri) ∈ [0,M ] such that for each a, b ∈ [0,M ], if a < b ≤ d(Ri) or
d(Ri) ≤ b < a, then aPib. Let DSD

i be the set of single-dipped preference orderings on
[0,M ] for agent i ∈ N and DSD = ×i∈NDSD

i be the single-dipped domain on [0,M ].

Let us give an example of an SCC.

Strong Pareto correspondence (SP): SP(R) = {a ∈ A(M)|∄b ∈ A(M) such that for
each i ∈ N , biRiai, and for some i ∈ N, biPiai}

If D = ℜ or DSPL, it is well-known that the strong Pareto correspondence SP violates
Maskin monotonicity. If D = DSD, Inoue and Yamamura[15] show that any selection from
the strong Pareto correspondence SP does not satisfy Maskin monotonicity. By Theorem
4, if D = ℜ, DSPL, or DSD, the strong Pareto correspondence SP cannot be doubly
implemented under Assumption 0.

On the other hand, it is well-known that the strong Pareto correspondence SP satisfies
unanimity but violates no veto power. We conclude that by changing Assumption 0
into Assumption 2, the strong Pareto correspondence SP can be partially honest doubly
implemented.

Corollary 1. Let n ≥ 3 and D = ℜ, DSPL, or DSD. Suppose Assumption 2 holds. Let
(N,A(M),D) be a division problem environment of an infinitely divisible resource. Then,
the strong Pareto correspondence SP can be partially honest doubly implemented.

5.2 Coalitional Games

In this subsection, we consider a coalitional game. A coalitional game (N,A,R, v) contains
a finite set of agents N with n ≥ 3, a non-empty set of outcomes A, a preference profile
R ∈ D, and a characteristic function v : 2N\{ϕ} → 2A, which assigns for each coalition
S ∈ 2N\{ϕ} a subset of outcomes. Given a coalitional game (N,A,R, v), an outcome
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a ∈ A is weakly blocked by S if there is b ∈ v(S) such that bRia for each i ∈ S, and bPia
for some i ∈ S.

We consider a situation in which the mechanism designer knows what is feasible for
each coalition, that is, the characteristic function v, but she does not know agents’ pref-
erences. This situation is modeled by the four-tuple (N,A,D, v), which we refer to as a
coalitional game environment.

Let us give an example of an SCC.

Strong core correspondence(SC): SC(R) = {a ∈ v(N) — a is not weakly blocked by
any coalition S}

We say that (N,A,D, v) is a coalitional game environment with non-empty strong core
if SC(R) ̸= ϕ for each R ∈ D.

Lombardi and Yoshihara[26] show that the strong core correspondence SC does not
satisfy Maskin monotonicity.9 By Theorem 4, the strong core correspondence SC cannot
be doubly implemented under Assumption 0.

On the other hand, it is well-known that the strong core correspondence SC satisfies
unanimity but violates no veto power. We conclude that by changing Assumption 0 into
Assumption 2, SC can be partially honest doubly implemented.

Corollary 2. Let n ≥ 3 and suppose Assumption 2 holds. Let (N,A,D, v) be a coalitional
game environment with non-empty strong core. Then, the strong core correspondence SC
can be partially honest doubly implemented.

5.3 General Problems of one-to-one Matching

In this subsection, we consider a general problem of one-to-one matching (Sönmez [38],
Ehlers [9]). A generalized matching problem is a triple (N,S,R). The first component N is
a finite set of agents with n ≥ 3. The second component S = (Si)i∈N is a profile of subsets
of N with i ∈ Si for each i ∈ N . Here, Si represents the set of possible assignments for
agent i. The last component R = (R1, ..., Rn) where Ri is a preference ordering for agent
i ∈ N over Si is a preference profile. Let Pi and Ii be the asymmetric and symmetric
components of Ri, respectively. Let ℜi be the set of all preference orderings for agent
i ∈ N and ℜ = ×i∈Nℜi be the set of all preference profiles. Given i ∈ N , let ℜ̄i denote
the set of all preference orderings for agent i under which agent i is indifferent between at
most two distinct assignments. Let ℜ̃ = ×i∈N ℜ̃i. Throughout the paper, we fix a domain
D = ×i∈NDi where Di for each i ∈ N such that ℜ̃ ⊆ D ⊆ ℜ.

A matching is a bijection µ : N → N such that each agent’s assignment belongs to his
set of possible assignments, i.e., for each i ∈ N , µ(i) ∈ Si. Given T ⊆ N , let µ(T ) denote
the set of assignments of the agents in T at µ, i.e., µ(T ) = {µ(i)|i ∈ T}. Let M denote
the set of all matchings. Let µI denote the matching such that for each i ∈ N , µ(i) = i.
We specify a subset Mf of M as the set of feasible matchings. We always require that
µI ∈ Mf and for each i ∈ N , Si = {µ(i)|µ ∈ Mf}. In the context of matching problems,
the set of allocations A is the set of feasible matchings Mf .

9Moreover, Lombardia and Yoshihara[26] show that the strong core correspondence can not be partially
honest implemented in Nash equilibria under Assumption 1.
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We consider a situation in which the mechanism designer does not know agents’ pref-
erences. This situation is modeled by the triple (N,Mf ,D), which we refer to as a
generalized matching problem environment.

Since N , S, and Mf remain fixed, a generalized matching problem is simply a pref-
erence profile R ∈ D. Given a preference ordering Ri of an agent i ∈ N , initially defined
over Si, we extend it to the set of feasible matchings Mf in the following natural way:
agent i prefers the matching µ to the matching µ′ if and only if he prefers his assignment
under µ to his assignment under µ′. Slightly abusing notation, we use the same symbols
to denote preferences over possible assignments and preferences over feasible matchings.

An SCC is a mapping F : D ↠ Mf that specifies a non-empty subset F (R) ⊆ Mf for
each R ∈ D. For each R ∈ D, each matching µ ∈ F (R) is interpreted to be desirable when
the preference profile is R ∈ D. An SCC F is non-empty if for each R ∈ D, F (R) ̸= ϕ.
We allow solutions to be empty.

We consider situations in which only certain coalitions can coordinate their actions. A
coalition structure is a set of coalitions. In particular, each agent “voluntarily” participates
in the matching. Formally, a coalition structure is a set T ⊆ 2N\{ϕ} such that for each
i ∈ N , {i} ∈ T . Given R ∈ D, T ∈ T , and µ ∈ Mf , we say that coalition T blocks µ
under R if for some µ̃ ∈ Mf , (1) µ̃(T ) = T , (2) for each i ∈ T , µ̃(i)Riµ(i), and (3) for
some j ∈ T , µ̃(i)Piµ(i).

Let us give an example of an SCC.

Strong T -core correspondence (SCT ): SCT (R) = {µ ∈ Mf | there is no T ∈ T that
blocks µ under R}.

The strong T -core correspondence chooses the feasible matchings that are not blocked
by any coalition in T for each R ∈ D. Throughout this paper, we assume that N , S, and
Mf are such that the strong T -core is non-empty for each preference profile.

Ehlers [9] shows that the strong T -core correspondence SCT does not satisfy Maskin
monotonicity. By Theorem 4, the strong T -core correspondence SCT cannot be doubly
implemented under Assumption 0.

On the other hand, it is well-known that the strong T -core correspondence SCT sat-
isfies unanimity but violates no veto power. We conclude that by changing Assumption 0
into Assumption 2, the strong T -core correspondence SCT can be partially honest doubly
implemented.

Corollary 3. Let n ≥ 3 and suppose Assumption 2 holds. Let (N,Mf ,D) be a gener-
alized matching problem environment. Then, strong T -core correspondence SCT can be
partially honest doubly implemented.

5.4 Voting Games

In this subsection, we consider a voting game. A voting game (N,A,R) contains a finite
set of agents N with n ≥ 3, a non-empty finite set of outcomes A, and a preference profile
R ∈ D.

We consider a situation in which the mechanism designer does not know agents’ pref-
erences. This situation is modeled by the triple (N,A,D), which we refer to as a voting
game environment.

12



For each R ∈ D and each a, b ∈ A, we write aD(R)b if a strict majority of agents prefer
a to b. For each R ∈ D, let Bi(a,R) = k if a ∈ A is the k′th most preferred outcome.

We consider the following interesting SCCs, the top-cycle correspondence and the
Borda correspondence.

Top-cycle correspondence (tc): tc(R) = ∩{B ⊆ A — a ∈ B, b /∈ B implies aD(R)b}.

The top-cycle correspondence tc at R ∈ D is the smallest subset of A with the property
that nothing outside the set is preferred by a strict majority to anything in the set.

Palfley and Srivastava [?] show that the top-cycle correspondence tc does not satisfy
Maskin monotonicity. By Theorem 4, the top-cycle correspondence tc cannot be doubly
implemented under Assumption 0.

On the other hand, it is well-known that the top-cycle correspondence tc satisfies no
veto power. We conclude that by changing Assumption 0 into Assumption 2, top-cycle
correspondence tc can be partially honest doubly implemented.

Corollary 4. Let n ≥ 3 and suppose Assumption 1 holds. Let (N,A,D) be a voting
game environment. Then, the top-cycle correspondence tc can be partially honest doubly
implemented.

Borda correspondence (FB): FB(R) = {a ∈ A|Σi∈NB
i(a,R) ≤ Σi∈NB

i(b, R) for each
b ∈ A}.

The following example represents that the Borda correspondence violates Maskin
monotonicity and no veto power.

Example 5. Consider the following example. There are three agents, N = {1, 2, 3}, two
outcomes, A = {a, b, c}, and two possible preference profiles, D = {R,R′}. Preferences
are given by :

R1 R2 R3

a b c
b c b
c a a

R′
1 R′

2 R′
3

a a, b, c c
b, c b

a

The Borda correspondence FB evaluated at these two preference profiles is FB(R) = {b},
and FB(R

′) = {c}. However, Maskin monotonicity and no veto power imply that we must
have b ∈ FB(R

′) and a ∈ FB(R
′), respectively.■

By Theorem 4, the Borda correspondence FB cannot be doubly implemented under
Assumption 0.

On the other hand, it is well-known that the Borda correspondence FB satisfies una-
nimity. We conclude that by changing Assumption 0 into Assumption 2, the Borda
correspondence FB can be partially honest doubly implemented.

Corollary 5. Let n ≥ 3 and suppose Assumption 2 holds. Let (N,A,D) be a voting
game environment. Then, the Borda correspondence FB can be partially honest doubly
implemented.
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6 Concluding Remarks

In this paper, we are concerned with the design of a mechanism that doubly implements
an SCC with partially honest agents. We show that if there are at least three agents and
at least one agent is partially honest, no veto power is sufficient for double implemen-
tation with partially honest agents (Theorem 2). Therefore, we no longer need Maskin
monotonicity as a necessary condition of double implementability. Moreover, we show
that if there are at least three agents and at least two agents are partially honest, una-
nimity is sufficient for double implementation with partially honest agents (Theorem 3).
Hence, more social choice correspondences can be doubly implemented with partially hon-
est agents if at least two agents are partially honest since unanimity is weaker than no
veto power.

Our results provide positive implications for some problems under Assumption 1 or
Assumption 2. However, our results are silent with respect to double implementability of
SCCs that do not satisfy no veto power under Assumption 1. Therefore, as Lombardi and
Yoshihara[26] provide, we need to study a full characterization of doubly implementable
social choice correspondences under Assumption 1 and investigate whether the SCCs can
be doubly implemented under Assumption 1.

7 Appendix

Proof of Theorem 2: Let F be an SCC satisfying no veto power. We construct a
mechanism Γ = (M, g). For each i ∈ N , the message space of agent i ∈ N consists of
Mi = D×A×A×{−n, ...,−1, 0, 1, ..., n}. Denote an element of Mi by mi = (Ri, ai, bi, ki).
For each i ∈ N and each Ri ∈ Di, define b̄(Ri) and b

¯
(Ri) as follows: (1) if there exist

b, c ∈ A such that bPic, then let b̄(Ri) = b and b
¯
(Ri) = c; (2) otherwise, pick any b, c ∈ A

with b ̸= c, let b̄(Ri) = b and b
¯
(Ri) = c. The outcome function g : M −→ A is defined as

follows:
Rule 1 : If for some i ∈ N , mj = (R, a, ·, j) such that a ∈ F (R) for each j ̸= i, then

g(m) = a.

Rule 2 : If for some i ∈ N , mj = (R, a, ·,−i) such that a ∈ F (R) for each j ̸= i, then

g(m) =

{
b̄(Ri) if mi = (R, a, b̄(Ri), i)

b
¯
(Ri) if mi ̸= (R, a, b̄(Ri), i) with ki ≤ 0 or ki = i.

Rule 3 : In all other cases, g(m) = ai∗ , where i∗ = (Σi∈N max{0, ki})(mod n) + 1.

For each i ∈ N and each R ∈ D, a truth-telling correspondence is defined by
T Γ
i (R,F ) = {R} × A× A× {−n, ...,−1, 0, 1, ..., n}.
The proof consists of three lemmata.

Lemma 1. Let R ∈ D, H ∈ H1, and a ∈ F (R) be given. If for each i ∈ N ,
mi = (R, a,b̄(Ri), i), then m ∈ NE(Γ, (T Γ

i )i∈N ,≿R,H).

Proof: For each i ∈ N , let mi = (R, a,b̄(Ri), i). By Rule 1, g(m) = a. No uni-
lateral deviation can change the outcome and mi ∈ T Γ

i (R) for each i ∈ N . Hence,
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m ∈ NE(Γ, (T Γ
i )i∈N ,≿R,H).■

Lemma 2. Let R ∈ D, H ∈ H1, and a ∈ F (R) be given. If for each i ∈ N ,
mi = (R, a, b̄(Ri), i) is undominated at ≿R,H

i .

Proof: First, suppose that there exist b, c ∈ A with bPic. Then, b̄(Ri)Pib
¯
(Ri). We show

that for each m̃i ̸= mi, there exists m̃−i ∈ M−i such that (mi, m̃−i) ≻R,H
i (m̃i, m̃−i). There

are two cases to consider.
case 1. k̃i ≤ 0 or k̃i = i.
Let m̃j = (R, a, ·,−i) for each j ̸= i. By Rule 2, g(mi, m̃−i) =b̄(Ri) and g(m̃i, m̃−i) =b

¯
(Ri),

so that (mi, m̃−i) ≻R,H
i (m̃i, m̃−i).

case 2. k̃i > 0 and k̃i ̸= i.
Define m̃−i ∈ M−i as follows: for some j ̸= i, m̃j = (R′, a′,b

¯
(Ri), j − 1), for some

h ̸= i, j, m̃h = (R′′, a′′,b
¯
(Ri), k̃

h), and for any other ℓ, m̃ℓ = (·, ·,b
¯
(Rℓ), k̃

ℓ), where (R, a) ̸=
(R′, a′) ̸= (R′′, a′′) and (Σh̸=i,j k̃

h + i+ j − 1)(mod n) + 1 = i with k̃h ≥ 0 for h ̸= i, j. By

Rule 3, g(mi, m̃−i) =b̄(Ri) and g(m̃i, m̃−i) =b
¯
(Ri), so that (mi, m̃−i) ≻R,H

i (m̃i, m̃−i).
Next, suppose that for each b, c ∈ A, bIic. Obviously, mi is undominated at ≿R,H

i .■

Lemma 3. For each R ∈ D and each H ∈ H1, NEA(Γ, (T
Γ
i )i∈N ,≿R,H) ⊆ F (R).

Proof: There are two cases to consider.
Case 1. For each i ∈ N , mi = (R′, a, ·, i) such that R′ ̸= R and a ∈ F (R′).
We show that if g(m) /∈ F (R), then m /∈ NE(Γ, (T Γ

i )i∈N ,≿R,H). Under Assumption
2, there exists a partially honest agent h ∈ H. Let m′

h = (R, a′h, b
′h, k′h). By the

definition of the truth-telling correspondence, mh /∈ T Γ
h (R) and m′

h ∈ T Γ
h (R). By Rule 1,

g(m′
h,m−h) = a so that g(m′

h,m−h) = g(m). Since h ∈ H, (m′
h,m−h) ≻R,H

h (mh,m−h).
Hence, m /∈ NE(Γ, (T Γ

i )i∈N ,≿R,H).
Case 2. There are i, j ∈ N (i ̸= j) such that Ri ̸= Rj.
Let the outcome be some b ∈ A. Then, any one of (n − 1) agents can deviate,

precipitate the modulo game, and be the winner of the modulo game. Clearly, if the
original announcement is to be a Nash equilibrium with partially honest agents, then it
must be the case that L(Ri, b) = A for (n − 1) agents. Then since F satisfies no veto
power, b ∈ F (R).■

Proof of Theorem 3: Let F be an SCC satisfying unanimity. We construct a mechanism
Γ = (M, g). For each i ∈ N , the message space of agent i ∈ N consists of Mi =
D×A×A×{−n, ...,−1, 0, 1, ..., n}. Denote an element of Mi by mi = (Ri, ai, bi, ki). The
outcome function g : M −→ A is defined as follows:

Rule 1 : If for some i ∈ N , mj = (R, a, ·, j) such that a ∈ F (R) for each j ̸= i, then

g(m) = a.

Rule 2 : If for some i ∈ N , mj = (R, a, ·,−i) such that a ∈ F (R) for each j ̸= i, then

g(m) =

{
b̄(Ri) if mi = (R, a, b̄(Ri), i)

b
¯
(Ri) if mi ̸= (R, a, b̄(Ri), i) with ki ≤ 0 or ki = i.
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Rule 3 : In all other cases, g(m) = ai∗ , where i∗ = (Σi∈N max{0, ki})(mod n) + 1.

For each i ∈ N and each R ∈ D, a truth-telling correspondence is defined by T Γ
i (R) =

{R} × A× A× {−n, ...,−1, 0, 1, ..., n}.
The proof consists of three lemmata.

Lemma 4. Let R ∈ D, H ∈ H2, and a ∈ F (R) be given. If for each i ∈ N , mi =
(R, a,b̄(Ri), i), then m ∈ NE(Γ, (T Γ

i )i∈N ,≿R,H).

Lemma 5. Let R ∈ D, H ∈ H2, and a ∈ F (R) be given. If for each i ∈ N , mi =
(R, a, b̄(Ri), i) is undominated at ≿R,H

i .

The proof of Lemma 4 and Lemma 5 are omitted. It follows from the same reasoning
as Lemma 1 and Lemma 2, respectively.

Lemma 6. For each R ∈ D and each H ∈ H2, NEA(Γ, (T
Γ
i )i∈N ,≿R,H) ⊆ F (R).

Proof: We show that if g(m) /∈ F (R), then m /∈ NE(Γ, (T Γ
i )i∈N ,≿R,H). There are four

cases to consider.
Case 1. For each i ∈ N , mi = (R′, a, ·, i) such that R′ ̸= R and a ∈ F (R′).
By the same argument as Case 1 of Lemma 3, m /∈ NE(Γ, (T Γ

i )i∈N ,≿R,H).
Case 2. There is i ∈ N such that for each j ̸= i, mj = (R′, a, ·, j) such that R′ ̸= R

and a ∈ F (R′), and mi ̸= (R′, a, ·, i).
By Rule 1, g(m) = a ∈ F (R′) such that R′ ̸= R. Under Assumption 2, since |H| ≥ 2

there exists a partially honest agent h ∈ H\{i}.10 Without loss of generality, let i = 1
and h = 2. Let m′

2 = (R, a′2, b
′2, k′2) be such that (Σj ̸=2k

j + k′2)(mod n) + 1 = 3. By the
definition of the truth-telling correspondence, m2 /∈ T Γ

2 (R) and m′
2 ∈ T Γ

2 (R). By Rule
3, g(m′

2,m−2) = a3 = a so that g(m′
2,m−2) = g(m). Since agent 2 is partially honest,

(m′
2,m−2) ≻R,H

2 (m2,m−2). Hence, m /∈ NE(Γ, (T Γ
i )i∈N ,≿R,H).

Case 3. Rule 2 is applied.
Suppose g(m) /∈ F (R). Since F satisfies unanimity, there is ℓ ∈ N and b ∈ A such

that bPℓg(m). Suppose ℓ = i. Let m′
i = (·, ·, b, i− 1) if i ̸= 1 and m′

i = (·, ·, b, n) if i = 1.
By Rule 3, g(m′

i,m−i) = b so that g(m′
i,m−i)Pig(m). Otherwise (i.e. ℓ ̸= i), if agent ℓ

deviate to m′
ℓ = (·, ·, b, k′ℓ) ̸= mℓ such that (Σj ̸=ℓk

j + k′ℓ)(mod n) + 1 = ℓ, then by Rule
3, g(m′

ℓ,m−ℓ) = b so that g(m′
ℓ,m−ℓ)Pℓg(m). Whether agent ℓ is partially honest or not,

(m′
ℓ,m−ℓ) ≻R,H

ℓ (mℓ,m−ℓ). Hence, m /∈ NE(Γ, (T Γ
i )i∈N ,≿R,H).

Case 4. Rule 3 is applied.
Suppose g(m) /∈ F (R). Since F satisfies unanimity, there is i ∈ N and b ∈ A such

that bPig(m). Let m′
i = (·, ·, b, k′i) ̸= mi be such that (Σj ̸=ik

j + k′i)(mod n) + 1 = i. By
Rule 3, g(m′

i,m−i) = b so that g(m′
i,m−i)Pig(m). Whether agent i is partially honest or

not, (m′
i,m−i) ≻R,H

i (mi,m−i). Hence, m /∈ NE(Γ, (T Γ
i )i∈N ,≿R,H).■

10Note that under Assumption 1, there is no partially honest agent in N\{i} when |H| = 1 and agent
i is partially honest.
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