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Abstract

We discuss the partnership formation problem introduced by Talman and
Yang (2011), which is a generalization the classical assignment game. We
show that the partnership formation problem can be reduced to the assign-
ment game in some sense; more precisely, we show that using an equilibrium
in a certain assignment game, we can find an equilibrium in the partnership
formation problem (if it exists). Based on this, we devise an algorithm to
compute an equilibrium of a partnership formation problem. We also show
that our algorithm can be seen as a generalization of the one by Andersson
et al. (2014a).

Keywords: Partnership formation; Equilibrium; Assignment game;
Adjustment process.

1. Introduction

In this paper we consider the partnership formation problem (Andersson
et al., 2014a; Talman and Yang, 2011); this problem is also called the one-
sided assignment problem (Klaus and Nichifor, 2010), and the roommate
problem/game with transferable utility (Chiappori et al., 2012; Eriksson
and Karlander, 2001). In the partnership formation problem, there is a
group of agents, and each agents either acts alone or seeks a partner for
cooperation. If an agent acts alone, then she generates a value for herself,
and if an agent work with a partner, then the agent and her partner gen-
erate a joint value, which is shared by them in an appropriate way. The
goal of the partnership formation problem is to find an equilibrium, where
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no agent has incentive to change her partner, to break up an existing part-
nership to become alone, or to form a new partnership. Typical instances
of the partnership formation problem can be found in the professional ten-
nis tournament, pair programming in software development, etc. (see, e.g.,
Andersson et al. (2014a); Eriksson and Karlander (2001); Talman and Yang
(2011)). Similar but different models of the partnership formation are also
discussed in Chiappori et al. (2012); Alkan and Tuncay (2013).

The partnership formation problem is deeply related to the classical
assignment game (Koopmans and Beckmann, 1957; Shapley and Shubik,
1971). The assignment game can be regarded as a special case of the part-
nership formation problem, where the set of agents is partitioned into two
groups, the one corresponding to buyers (or firms) and the other to sell-
ers (or workers), and any two agents in the same group cannot be a pair.
That is, every assignment game can be reduced to a partnership formation
problem (see Talman and Yang (2011, Theorem 3); see also Chiappori et
al. (2012)). It is known that an equilibrium always exists in the assign-
ment game (Koopmans and Beckmann, 1957; Shapley and Shubik, 1971),
and price adjustment processes for findings an equilibrium are proposed by
Crawford and Knoer (1981) and Demange et al. (1986).

In contrast to the assignment game, the partnership formation problem
may not have an equilibrium (see, e.g., Chiappori et al. (2012); Talman
and Yang (2011)). Various sufficient (and necessary) conditions for the
existence of equilibrium are provided by Eriksson and Karlander (2001) and
Talman and Yang (2011). While the existing price adjustment processes
for the assignment game cannot be applied to the partnership formation
problem, a novel price adjustment process for the partnership formation
problem is proposed by Andersson et al. (2014a), which can always either
find an equilibrium or disprove the existence of an equilibrium in a finite
number of iterations. In the price adjustment process by Andersson et al.
(2014a), a certain payoff vector is computed in a way similar to the one
by Demange et al. (1986), and using the payoff vector the existence of an
equilibrium is determined with the aid of a matching algorithm.

As mentioned above, the assignment game can be reduced to the part-
nership formation problem. The main aim of this paper is to show that the
converse is also true in some sense; more precisely, we show that using an
equilibrium in a certain assignment game, we can find an equilibrium in the
partnership formation problem (if it exists). For this, we define an assign-
ment game associated with a given partnership formation problem and show
the relationship with the partnership formation problem. We first prove
that an equilibrium of the partnership formation problem corresponds to a
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“symmetric” equilibrium of the associated assignment game (see Theorem
3.4). Then, it is shown that using an equilibrium payoff in the associated
assignment game, the problem of finding an equilibrium in the partnership
formation problem can be reduced to the problem of finding a matching
among the agents such that each agent is matched to one of her favorite
agents (see Theorem 3.5). Base on the theorems, we present an algorithm
for computing an equilibrium of the partnership formation problem.

It is observed that our algorithm is similar to the price adjustment pro-
cess by Andersson et al. (2014a). Indeed, the starting point of our current
research is to understand the behavior of the price adjustment process by
Andersson et al. (2014a). We discuss its connection to our algorithm, and
show that a special implementation of our algorithm exactly coincides with
the price adjustment process by Andersson et al. (2014a).

Finally, it should be mentioned that Chiappori et al. (2012) also use
an assignment game associated with the partnership formation problem,
which is the same as ours, but for a different purpose. Chiappori et al.
(2012) mainly consider the situation where each i ∈ N is regarded as a type
of agents and there are multiple agents in each type, i.e., their model of
the partnership formation is different from ours. By using the connection
between the partnership formation problem and the associated assignment
game, Chiappori et al. (2012) show (i) the existence of an equilibrium match-
ing in the case where there are even number of agents in each type, and (ii)
the existence of a near-equilibrium matching (they call it a quasi-stable
matching) in the case where the number of agents in each type is sufficiently
large. In contrast, we focus on the case where there is a single agent in
each type, and demonstrate how the associated assignment game is useful
in computing an equilibrium in the partnership formation problem.

2. Preliminaries

We review the definitions and fundamental properties of the partnership
formation problem and the assignment game.

2.1. Partnership Formation Problem

We denote by N = {1, 2, . . . , n} a set of agents, where n is a positive
integer. A partnership formation problem is represented by the pair (N, v)
of a set of agents N and values v = (vij | i, j ∈ N) satisfying vij = vji. For
distinct i, j ∈ N , vij = vji ∈ R denotes the (joint) value generated by the
agents i and j. For each i ∈ N , vii ∈ R denotes the value generated by the
single agent i; we assume, without loss of generality, that vii = 0.
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The concept of equilibrium in the partnership formation problem is de-
fined as follows. A matching is a function µ : N → N such that for i, j ∈ N ,
we have µ(i) = j if and only if µ(j) = i. That is, a matching corresponds
to a partition of N into pairs of agents and/or single agents. A vector
p = (p1, p2, . . . , pn) ∈ RN is called a payoff. A pair of a matching µ and a
payoff p is called an equilibrium of the partnership formation problem (N, v)
if the following conditions hold:

pi + pj ≥ vij (∀i, j ∈ N),
pi + pj = vij (if µ(i) = j and i ̸= j),
pi ≥ 0 (∀i ∈ N),
pi = 0 (if µ(i) = i).

 (2.1)

An equilibrium of a partnership formation problem may not exist (see, e.g.,
Chiappori et al. (2012); Talman and Yang (2011)). For example, it is not
difficult to see that the partnership formation problem with n = 3, vij = 1
for distinct i, j, and vii = 0 for i = 1, 2, 3 has no equilibrium.

A matching (resp., a payoff) in an equilibrium is called an equilibrium
matching (resp., an equilibrium payoff ). It should be noted that if vij < 0
for some distinct agents i, j ∈ N , then the agents i, j cannot be a pair in
any equilibrium matching.

Below we review some fundamental facts on equilibria of the partnership
formation problem. For an agent i ∈ N and a payoff p ∈ RN , we define the
demand set Di(p) ⊆ N by

Di(p) = argmax{vij − pj | j ∈ N}.

The conditions in (2.1) for an equilibrium can be rewritten using demand
sets as follows.

Proposition 2.1. For a matching µ : N → N and a payoff p ∈ RN , the
tuple (µ, p) is an equilibrium if and only if

µ(i) ∈ Di(p), pi = max{vij − pj | j ∈ N} ≥ 0 (∀i ∈ N). (2.2)

A necessary and sufficient condition for the existence of an equilibrium
can be also given by using the following dual pair of linear programming
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problems:

(P) Maximize
∑

i,j∈N,i<j

vijxij

subject to
∑

j∈N,j>i

xij +
∑

j∈N,j<i

xji ≤ 1 (∀i ∈ N),

xij ≥ 0 (∀i, j ∈ N, i < j),

(D) Minimize
∑
i∈N

pi

subject to pi + pj ≥ vij (∀i, j ∈ N, i < j),
pi ≥ 0 (∀i ∈ N).

(P) is a linear programming relaxation for the problem of finding a maximum-
weight matching in (N, v), where the weight of a matching µ : N → N is
given by

∑
i∈N vi,µ(i).

Proposition 2.2 (Talman and Yang (2011)). For a partnership formation
problem (N, v), the following conditions are equivalent.
(a) There exists an equilibrium in (N, v).
(b) (P) has an integral optimal solution.
(c) The maximum weight of a matching in (N, v) is equal to the optimal
value of (D).

From Proposition 2.2, we can obtain the following properties.

Proposition 2.3 (cf. Talman and Yang (2011)). Suppose that there exists
an equilibrium in the partnership formation problem (N, v). Let µ : N → N
be a matching and p ∈ RN a payoff.
(i) µ is an equilibrium matching if and only if it is a maximum-weight match-
ing in (N, v).
(ii) p is an equilibrium payoff if and only if it is an optimal solution of the
linear programming problem (D).
(iii) If µ is an equilibrium matching and p is an equilibrium payoff, then
(µ, p) is an equilibrium.

The claim (iii) of Proposition 2.3 shows that a matching and a payoff in an
equilibrium can be chosen independently of each other.

2.2. Assignment Game

An assignment game is represented by the tuple (A,B,w), where A,B
are sets of agents corresponding to sellers and buyers, respectively, and w =
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(w(i, j) | i ∈ A, j ∈ B) (⊆ R) are (joint) values generated by pairs of agents
i ∈ A and j ∈ B. A matching in the assignment game (A,B,w) is a function
η : B → A∪{0} such that for each i ∈ A there exists at most one j ∈ B with
η(j) = i. Here, 0 denotes a dummy seller that has no value (i.e., w(0, j) = 0
for j ∈ B) and can be a pair with any number of buyers, i.e., there may
be distinct j, j′ ∈ B with η(j) = η(j′) = 0. Vectors q = (qi | i ∈ A) ∈ RA

and r = (rj | j ∈ B) ∈ RB are called sellers’ payoff and buyers’ payoff,
respectively; the pair (q, r) is simply called a payoff.

For a matching η : B → A ∪ {0}, sellers’ payoff q ∈ RA, and buyers’
payoff r ∈ RB, the tuple (η, q, r) is called an equilibrium if the following
conditions hold with q0 = 0:

qi + rj ≥ w(i, j) (∀i ∈ A, j ∈ B),
qη(j) + rj = w(η(j), j) (∀j ∈ B),

qi ≥ 0 (∀i ∈ A), rj ≥ 0 (∀j ∈ B),
qi = 0 (∀i ∈ A \ {η(j) | j ∈ B}).

 (2.3)

Every assignment game has an equilibrium (Shapley and Shubik, 1971),
while in the partnership formation problem an equilibrium may not exist.

We see from the definition that an equilibrium of an assignment game
(A,B,w) corresponds to an equilibrium of a partnership formation problem
(N, v) such that N = A ∪B and

vij =

{
w(i, j) (if i ∈ A, j ∈ B or j ∈ A, i ∈ B),
−γ (otherwise (i.e., i, j ∈ A or i, j ∈ B)),

where γ is an arbitrarily chosen positive number (see Talman and Yang
(2011, Theorem 3); see also Chiappori et al. (2012)). That is, the assignment
game can be reduced to the partnership formation problem.

A matching η and a payoff (q, r) in an equilibrium (η, q, r) are called an
equilibrium matching and an equilibrium payoff, respectively. Equilibrium
matching and payoff can be characterized as follows (see, e.g., Shapley and
Shubik (1971); Roth and Sotomayor (1990)).

Proposition 2.4. Let η : B → A ∪ {0} be a matching of the assignment
game (A,B,w), and (q, r) ∈ RA × RB be a payoff.
(i) η is an equilibrium matching if and only if it maximizes the weight∑

j∈B w(η(j), j) among all matchings.
(ii) (q, r) is an equilibrium payoff if and only if it is an optimal solution of
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the following linear programming problem:

Minimize
∑
i∈A

qi +
∑
j∈B

rj

subject to qi + rj ≥ w(i, j) (∀i ∈ A,∀j ∈ B),
qi ≥ 0 (∀i ∈ A), rj ≥ 0 (∀j ∈ B).

(iii) If η is an equilibrium matching and (q, r) is an equilibrium payoff, then
(η, q, r) is an equilibrium.

The claim (iii) of the proposition above shows that a matching and a payoff
in an equilibrium can be chosen independently of each other.

3. Reduction of Partnership Formation Problem to Assignment
Game

As mentioned in Section 2, the assignment game can be reduced to the
partnership formation problem. In this section, we show that the converse
is also true in some sense, i.e., using an equilibrium of the assignment game,
an equilibrium of the partnership formation problem can be obtained (if it
exists). In Section 3.1 we explain the assignment game associated with a
given partnership formation problem and show its fundamental properties.
In Section 3.2 we show the main theorems on the relationship between the
partnership formation problem and the associated assignment game. Base
on the theorems, we present an algorithm for computing an equilibrium of
the partnership formation problem.

3.1. Assignment Game Associated with Partnership Formation Problem

Given a partnership formation problem (N, v), we define an assignment
game (N,N ′, w) as follows:

N ′ = {i′ | i ∈ N}, where i′ is a copy of i,

for i ∈ N, j′ ∈ N ′ : w(i, j′) =

{
vij (if i ̸= j),
0 (if i = j).

 (3.1)

The assignment game defined above is essentially the same as the one in
Chiappori et al. (2012). In the following discussion, we often identify the
set N ′ with N through a natural one-to-one correspondence, and regard a
vector in RN ′

(resp., RN ) as a vector in RN (resp., RN ′
).

Due to the symmetric structure of the assignment game (N,N ′, w),
its equilibria have various nice properties. The next property shows that
(N,N ′, w) has an equilibrium matching in which no buyer in N ′ is assigned
to dummy item and every seller in N is assigned to some buyer in N ′.
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Proposition 3.1. There exists an equilibrium matching η : N ′ → N ∪ {0}
in (N,N ′, w) such that η is a bijection from N ′ to N .

Proof. We prove the claim by a graph-theoretic argument. Let us consider a
complete bipartite graph G = (N,N ′;N×N ′) on the vertex set N ∪N ′ with
edge weight given by w(i, j′) ((i, j′) ∈ N ×N ′). Recall that a matching in G
is a setM of edges such that for each vertex i there exists at most one edge in
M incident to i. It is easy to see that matchings in (N,N ′, w) have a natural
one-to-one correspondence with matchings in G; moreover, by Proposition
2.4 (i), a matching in (N,N ′, w) is an equilibrium matching if and only if its
corresponding matching in G is a maximum-weight matching in G. Hence,
it suffices to show that there exists a maximum-weight matching in G that
is a perfect matching (i.e., a matching that covers all vertices in G).

Let M ⊆ N ×N ′ be a maximum-weight matching in G. We may assume
that M is not a perfect matching. Since w(i, j′) = w(j, i′) holds for i, j ∈ N ,
the matching M ′ given by

M ′ = {(j, i′) ∈ N ×N ′ | (i, j′) ∈ M}

is also a maximum-weight matching in G.
Using the two matchings M and M ′, we define an edge set X as follows.

For a vertex i in the graph G, we denote by degX(i) the number of edges in
X incident to i. We initially set X = M ∪ M ′. Then, we have degX(i) =
degX(i′) ≤ 2 for i ∈ N and i′ ∈ N ′. For each i ∈ N , if degX(i) = degX(i′) =
1 then we add toX (one copy of) the edge (i, i′), and if degX(i) = degX(i′) =
0 then we add to X two copies of the edge (i, i′). Then, the resulting edge
set X satisfies degX(i) = degX(i′) = 2 for each i ∈ N . This implies that
X can be decomposed into two perfect matchings, which are denoted as X1

and X2. Moreover, the total weight of the edge set X is twice as much as the
weight of a maximum-weight matching since X contains all edges in M ∪M ′

and each edge (i, i′) has zero weight. Hence, both of the matchings X1 and
X2 are maximum-weight matchings that are perfect matchings.

Based on this observation, in the following discussion we restrict match-
ings in (N,N ′, w) to bijections from N ′ to N .

We present some properties of equilibria. For a vector q ∈ RN and
j′ ∈ N ′, we define a set D̃j′(q) ⊆ N by

D̃j′(q) = argmax{w(i, j′)− qi | i ∈ N}. (3.2)

By definition, we have D̃j′(q) = Dj(q). Let

H0 = {q ∈ RN | (q, r) is an equilibrium payoff in (N,N ′, w)

for some r ∈ RN ′}. (3.3)
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Proposition 3.2. Let η : N ′ → N be a (bijection) matching in (N,N ′, w).
(i) A payoff (q, r) ∈ RN × RN ′

is an equilibrium payoff in (N,N ′, w) if and
only if q ∈ H0 and

rj′ = max{w(i, j′)− qi | i ∈ N} (j′ ∈ N ′). (3.4)

(ii) Suppose that q ∈ H0. Then, η is an equilibrium matching in (N,N ′, w)
if and only if η(j′) ∈ D̃j′(q) (∀j′ ∈ N).

Proof. By definition, the tuple (η, q, r) is an equilibrium in (N,N ′, w) if and
only if

qi + rj′ ≥ w(i, j′) (∀i ∈ N, j′ ∈ N ′), (3.5)

qη(j′) + rj′ = w(η(j′), j′) (∀j′ ∈ N ′), (3.6)

qi ≥ 0 (∀i ∈ N), rj′ ≥ 0 (∀j′ ∈ N ′), (3.7)

Hence, the claim (i) follows from (3.5) and (3.6). Also, the claim (ii) follows
from (3.5), (3.6), and Propositions 2.4 (iii).

The next property shows that there exists an equilibrium payoff of the
form (p, p) in (N,N ′, w).

Proposition 3.3. For an equilibrium payoff (q, r) in (N,N ′, w), ((q +
r)/2, (q + r)/2) is also an equilibrium payoff in (N,N ′, w).

Proof. By Proposition 2.4 (ii) and the symmetry of the assignment game
(N,N ′, w), the payoff (r, q) is an equilibrium payoff in (N,N ′, w). Since
the set of equilibrium payoffs is a convex set by Proposition 2.4 (ii), ((q +
r)/2, (q + r)/2) is also an equilibrium payoff.

3.2. Theorem and Algorithm

We first show that an equilibrium in a partnership formation problem
(N, v) corresponds to a “symmetric” equilibrium in the associated assign-
ment game (N,N ′, w). For a matching η : N ′ → N in (N,N ′, w), we denote
by η−1 : N ′ → N the matching in (N,N ′, w) such that η−1(j′) = i if
η(i′) = j. We say that an equilibrium (η, q, r) in (N,N ′, w) is symmetric if
η = η−1 and q = r hold.

For a matching µ : N → N in (N, v), the matching ηµ : N ′ → N in
(N,N ′, w) associated with µ is given by

ηµ(j
′) = µ(j) (j′ ∈ N ′). (3.8)

Note that the matching ηµ satisfies the condition ηµ = (ηµ)
−1.
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Theorem 3.4. For a matching µ : N → N and a payoff p ∈ RN in (N, v),
the tuple (µ, p) is an equilibrium in (N, v) if and only if (ηµ, p, p) with the
matching ηµ : N ′ → N given by (3.8) is an equilibrium in (N,N ′, w). In
particular, there exists an equilibrium in (N, v) if and only if there exists a
symmetric equilibrium in (N,N ′, w).

Proof. The conditions (2.1) for (µ, p) to be an equilibrium in (N, v) can be
rewritten in terms of ηµ, p, and w(i, j′) as follows:

pi + pj′ ≥ w(i, j′) (∀i ∈ N, ∀j′ ∈ N ′),
pηµ(j′) + pj′ = w(ηµ(j

′), j′) (∀j′ ∈ N ′),

pi ≥ 0 (∀i ∈ N).

These conditions hold if and only if (ηµ, p, p) is an equilibrium in (N,N ′, w).

We then show that an equilibrium of the partnership formation problem
(N, v) can be obtained by using an equilibrium payoff of the associated
assignment game (N,N ′, w), provided that an equilibrium exists in (N, v).

Theorem 3.5. Let µ : N → N be a matching in (N, v) and q ∈ H0.
(i) µ is an equilibrium matching in (N, v) if and only if

µ(j) ∈ Dj(q) (∀j ∈ N). (3.9)

(ii) Suppose that µ is an equilibrium matching in (N, v). Define p ∈ RN by

pj = (1/2)(vj,µ(j) + qj − qµ(j)) (j ∈ N). (3.10)

Then, p is an equilibrium payoff in (N, v).

Proof. Let ηµ : N ′ → N be the matching in (N,N ′, w) given by (3.8). Below
we omit the subscript of ηµ for simplicity.

We first prove the claim (i). By Theorem 3.4, µ is an equilibrium match-
ing in (N, v) if and only if η is an equilibrium matching in (N,N ′, w). By
Proposition 3.2 (ii), η is an equilibrium matching in (N,N ′, w) if and only
if η(j′) ∈ D̃j′(q) (∀j′ ∈ N ′), which is equivalent to the condition (3.9) since

Dj(q) = D̃j′(q) and µ(j) = η(j′) hold for j ∈ N .
We then prove the claim (ii). By Theorem 3.4, η is an equilibrium match-

ing in (N,N ′, w). It follows from Proposition 3.2 (i) and 3.3, that (η, q, r) is
an equilibrium in (N,N ′, w) with r ∈ RN ′

given as rj′ = w(η(j′), j′)− qη(j′)
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(j′ ∈ N ′). By Proposition 2.4 (iii), (η, (q+ r)/2, (q+ r)/2) is also an equilib-
rium in (N,N ′, w), from which follows that (µ, (q + r)/2) is an equilibrium
in (N, v) by Theorem 3.4. By the definitions of η and w, we have

(1/2)(qj + rj′) = (1/2)(qj + w(η(j′), j′)− qη(j′))

= (1/2)(qj + vj,µ(j) − qµ(j)) = pj (j ∈ N),

implying that p is an equilibrium payoff in (N, v).

Based on Theorem 3.5, we can check the existence of an equilibrium in a
partnership formation problem (N, v) by the following algorithm. The idea is
as follows. Let q ∈ RN be buyers’ payoff in H0. If (N, v) has an equilibrium,
then Theorem 3.5 implies that there exists a matching µ : N → N in (N, v)
satisfying the condition (3.9), which is an equilibrium matching. Therefore,
if there exists no matching satisfying (3.9), then we can discern that (N, v)
has no equilibrium.

Algorithm ComputeEquilibrium
Step 1: Find a vector q ∈ H0.
Step 2: If there exists no matching µ : N → N in (N, v) satisfying (3.9),

then assert that “no equilibrium exists in (N, v)” and stop.
Step 3: Find a matching µ : N → N in (N, v) satisfying (3.9), and let p ∈ RN

be a vector given by (3.10).
Output (µ, p) as an equilibrium of (N, v).

Remark 3.6. We discuss the computation of a vector q ∈ H0 in Step 1.
Suppose that we can obtain the information on the sets

argmax{w(i, j′)− qi | i ∈ N ∪ {0}} (j′ ∈ N ′, q ∈ RN ).

Note that this set contains the set D̃j′(q) if max{w(i, j′) − qi | i ∈ N} ≥ 0
and this set is equal to {0} if max{w(i, j′) − qi | i ∈ N} < 0. Then, a
vector q ∈ H0 can be computed by any of price adjustment processes for the
assignment game (see, e.g., Andersson et al. (2010); Andersson and Erlanson
(2013); Demange et al. (1986); Mishra and Parkes (2009)). In particular,
minimal and maximal vectors in H0 can be computed.

Even in the case where only the information of the sets D̃j′(q) = Dj(q)
is available, a vector q ∈ H0 can be computed by a price adjustment process
by Andersson et al. (2014a). See Section 4 for details.

Remark 3.7. Computation of a matching µ in (N, v) satisfying (3.9) can
be reduced to the problem of finding a maximum-cardinality matching in
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a undirected graph with vertex set N and edge set given by {(i, j) | i, j ∈
N, i ∈ Dj(p)} (see Andersson et al. (2014a)). Note that finding a maximum-
cardinality matching in an undirected graph can be done in strongly poly-
nomial time (see, e.g., Schrijver (2003)).

4. Connection to Algorithm of Andersson et al. (2014a)

We show that our algorithm in Section 3 can be seen as a generalization
of the algorithm in Andersson et al. (2014a). In particular, the choice of a
vector q ∈ H0 in Step 1 is more flexible in our algorithm, while it is fixed
to a (unique) minimal vector in H0 in Andersson et al. (2014a), as proved
below.

In this section, we assume that the values vij are integers. For a payoff
p ∈ RN and a set S ⊆ N of agents, we define

O(S, p) = {j ∈ N | Dj(p) ⊆ S},
U(S, p) = {j ∈ N | Dj(p) ∩ S ̸= ∅}.

We say that S is in excess demand if the following condition holds:

|U(T, p) ∩O(S, p)| > |T | (∅ ̸= ∀T ⊊ S).

Note that if |O(S, p)| > |S| holds for some S ⊆ N , then a set in excess
demand exists, and a maximal set in excess demand is uniquely determined
(see Andersson et al. (2010, 2013); Mo et al. (1988)).

We describe the algorithm of Andersson et al. (2014a); the following is
a variant of the original algorithm given in Andersson et al. (2014b).

Algorithm PartnershipFormationProcess
Step 0: Set p := (0, 0, . . . , 0).
Step 1: Collect the demand sets Dj(p) for j ∈ N .
Step 2: If |O(S, p)| ≤ |S| (∀S ⊆ N), then set p̂ = p and go to Step 4.
Step 3: Find the unique maximal set S ⊆ A in excess demand, update p

by pi := pi + 1 (i ∈ S), and go to Step 1.
Step 4: If there exists a matching µ : N → N such that µ(j) ∈ Dj(p̂)

(∀j ∈ N), then collect the values vj,µ(j) for j ∈ N , compute

the payoff p∗ ∈ RN by

p∗j = (1/2)(vj,µ(j) + p̂j − p̂µ(j)) (j ∈ N),

and output (µ, p∗) as an equilibrium of (N, v).
Otherwise, assert that “no equilibrium exists.”
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We will show that the vector p̂ is contained in H0. Hence, Algorithm
PartnershipFormationProcess can be seen as an implementation of our
algorithm with a special selection of a vector q ∈ H0 in Step 1. Moreover,
we prove the following stronger statement:

Theorem 4.1. The vector p̂ found in Algorithm PartnershipFormation-
Process is equal to a (unique) minimal vector in H0.

Note that a minimal vector in the set H0 is uniquely determined (see, e.g.,
Shapley and Shubik (1971)).

To prove Theorem 4.1, the following property is crucial. We define

H = {p ∈ RN | pi ≥ 0 (∀i ∈ N), |O(S, p)| ≤ |S| (∀S ⊆ N)}. (4.1)

Proposition 4.2 (Andersson et al. (2014a, Theorem 2)). A minimal vector
in H is uniquely determined and equal to the vector p̂.

We then rewrite the definition of H in terms of the assignment game
(N,N ′, w). Recall the definition of D̃j′(q) in (3.2).

Proposition 4.3.

H = {q ∈ RN | qi ≥ 0 (∀i ∈ N), ∃matching η : N ′ → N in (N,N ′, w)

s.t. η(j′) ∈ D̃j′(q) (∀j′ ∈ N ′)}. (4.2)

Proof. For every S ⊆ N and q ∈ RN , we have U(N \ S, q) = N \ O(S, q).
Hence, |O(S, q)| ≤ |S| holds if and only if

|U(N \ S, q)| = |N | − |O(S, q)| ≥ |N | − |S| = |N \ S|,

implying that

H = {q ∈ RN | q ≥ 0, |U(T, p)| ≥ |T | (∀T ⊆ N)}. (4.3)

For T ⊆ N and q ∈ RN , we define

Ũ(T, q) = {j′ ∈ N ′ | D̃j′(q) ∩ T ̸= ∅} (= {j′ ∈ N ′ | j ∈ U(T, q)}).

Since |Ũ(T, q)| = |U(T, q)|, we can rewrite the formula (4.3) as

H = {q ∈ RN | q ≥ 0, |Ũ(T, p)| ≥ |T | (∀T ⊆ N)}.

By the well-known Hall’s theorem in graph theory, the condition |Ũ(T, q)| ≥
|T | (∀T ⊆ N) holds if and only if there exists some matching η : N ′ → N
such that η(j′) ∈ D̃j′(q) (∀j′ ∈ N ′). Hence, we obtain (4.2).
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This property implies the following relation between H and H0.

Proposition 4.4.

H0 = {q ∈ H | max{w(i, j′)− qi | i ∈ N} ≥ 0 (∀j′ ∈ N ′)}. (4.4)

Proof. By the conditions for equilibrium in (N,N ′, w) (cf. (3.5), (3.6), (3.7))
we have q ∈ H0 if and only if the following conditions hold:

max{w(i, j′)− qi | i ∈ N} ≥ 0 (∀j′ ∈ N ′),

∃matching η : N ′ → N s.t. η(j′) ∈ D̃j′(q) (∀j′ ∈ N),

qi ≥ 0 (∀i ∈ N).

This, together with Proposition 4.3, implies (4.4).

We now prove Theorem 4.1. By Proposition 4.4, it holds that q̂ ∈ H0 ⊆
H. Since p̂ is the unique minimal vector in H, we have p̂ ≤ q̂, which implies

max{w(i, j′)− p̂i | i ∈ N} ≥ max{w(i, j′)− q̂i | i ∈ N} ≥ 0,

where the last inequality is by Proposition 4.4. Hence, we have p̂ ∈ H0 by
Proposition 4.4. By the minimality of q̂ in H0 and p̂ ≥ q̂, we have p̂ = q̂.
This concludes the proof of Theorem 4.1.

Remark 4.5. By Theorem 4.1, Steps 1–3 of Algorithm PartnershipFor-
mationProcess can be seen as a price adjustment process to compute the
unique minimal vector in H0. Moreover, the behavior of the vector q during
the iterations of Steps 1–3 is the same as that of the price adjustment process
by Demange et al. (1986) and Mo et al. (1988) applied to the assignment
game (N,N ′, w).
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